
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Compilers Laboratory: CS39003
3rd Year CSE: 5th Semester

Assignment - 3: Lexer for tinyC Marks: 100
Assign Date: August 18, 2023 Submit Date: 23:55, August 28, 2023

1 Preamble – tinyC

This assignment follows the lexical specification of C language from the Interna-
tional Standard ISO/IEC 9899:1999 (E). To keep the assignment within our
required scope, we have chosen a subset of the specification as given below. We
shall refer to this language as tinyC and subsequently (in a later assignment)
specify its grammar from the Phase Structure Grammar given in the C Standard.

The lexical specification quoted here is written using a precise yet compact
notation typically used for writing language specifications. We first outline the
notation and then present the Lexical Grammar that we shall work with.

2 Notation

In the syntax notation used here, syntactic categories (non-terminals) are in-
dicated by italic type, and literal words and character set members (terminals)
by bold type. A colon (:) following a non-terminal introduces its definition.
Alternative definitions are listed on separate lines, except when prefaced by the
words ''one of''. An optional symbol is indicated by the subscript ''opt'', so that
the following indicates an optional expression enclosed in braces.

{ expressionopt }

3 Lexical Grammar of tinyC

1. Lexical Elements

token:
keyword
identifier
constant
string-literal
punctuator

2. Keywords

keyword: one of
auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof Bool
continue if static Complex
default inline struct Imaginary
do int switch
double long typedef
else register union

3. Identifiers

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

1



identifier-nondigit: one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

4. Constants

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

integer-constant:
nonzero-digit
integer-constant digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

floating-constant:
fractional-constant exponent-partopt
digit-sequence exponent-part

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ –

digit-sequence:
digit
digit-sequence digit

enumeration-constant:
identifier

character-constant:
' c-char-sequence '

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ', backslash \, or new-line character
escape-sequence

escape-sequence: one of
\' \'' \? \\
\a \b \f \n \r \t \v

5. String literals

string-literal:
'' s-char-sequenceopt ''

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote '', backslash \, or new-line character
escape-sequence

2



6. Punctuators

punctuator: one of

[ ] ( ) { } . ->

++ -- & * + - ~ !

/ % << >> < > <= >= == != ^ | && ||

? : ; ...

= *= /= %= += -= <<= >>= &= ^= |=

, #

7. Comments

(a) Multi-line Comment

Except within a character constant, a string literal, or a comment, the
characters /* introduce a comment. The contents of such a comment
are examined only to identify multibyte characters and to find the
characters */ that terminate it. Thus, /* ... */ comments do not
nest.

(b) Single-line Comment

Except within a character constant, a string literal, or a comment,
the characters // introduce a comment that includes all multibyte
characters up to, but not including, the next new-line character. The
contents of such a comment are examined only to identify multibyte
characters and to find the terminating new-line character.

4 The Assignment

1. Write a flex specification for the language of tinyC using the above lexical
grammar. Name of your file should be ass3 roll.l. The ass3 roll.l should
not contain the function main().

2. Write your main() (in a separate file ass3 roll.c) to test your lexer.

3. Prepare a Makefile to compile the specifications and generate the lexer.

4. Prepare a test input file ass3 roll test.c that will test all the lexical rules
that you have coded.

5. Prepare a tar-archive with the name ass3 roll.tar containing all the above
files and upload to Moodle.

5 Credits

1. Flex Specifications: 60

2. Main function and Makefile: 20 [15+5]

3. Test file: 20

3


