
YACC/BISON

Lexical analyser

yylex()

Recall Lex – Generates lexical analyser

y.tab.h

YACC/Bison – Generates Parser, and ++

Includes the
parser
yyparse()

Outcome of Parser
Parse Tree!
Sequence of productions!
Something else!!

Implements bottom up parser (LALR)

How to execute YACC, with Lex

Initiates the call

Auxiliary declarations

Regular expressions

Lex – example

Generates yylex()

%%Any char

Macro definitions of
terminals

Auxiliary declarations

Regular expressions

Lex – example

Generates yylex()

%%Any char

y.tab.h keeps the macros for
terminals/tokens

Macro definitions of
terminals/tokens

First compile with YACC

Structure of YACC program

(i) C declarations
(ii) YACC

declarations

Grammar
(i) Productions rules
(ii) Semantic actions

Additional supporting functions
--- say main() etc

Optional

Structure of YACC program – Declaration

(a) C declarations
(i) declaration of variable, functions
(ii) inclusion of header file,
(iii)Defining macro

• Enclosed within %{ and %}

• Auxiliary declarations are copied as
such by YACC to the output y.tab.c
file.

• Not processed by the YACC
tool.

(b) YACC declarations

Structure of YACC program – Declarations

(a) C declarations
(i) declaration of variable, functions
(ii) inclusion of header file,
(iii)Defining macro

• Enclosed within %{ and %}

• Auxiliary declarations are copied as
such by LEX to the output lex.yy.c
file.

• Not processed by the LEX
tool.

(b) YACC declarations

Structure of YACC program– Declarations

1. Start: Specifies start non-terminal
2. Token: Specifies expected terminals/tokens

from Lex
• Tokens which gets multiple lexemes –

identifies, numbers etc
• Generates macros in y.tab.h
• No need to specify the literal tokens such

as +, - etc

• Type: Specifies the Non-terminals

Structure of YACC program– Translation rules
Grammar

Each rule consists of a
(i) grammar production and
(ii) the associated semantic action.
A set of productions that we have been writing:

C code snippet

• Head of the production is followed by a colon, then body of the production
• Multiple right side may be separated by |
• Actions associated with each rule are entered within {}

1. Literal terminals are quoted ‘+’, ‘-’
2. Separate productions with ;
3. unquoted strings of letters and digits not

declared to be tokens are taken to be
nonterminals

Semantic rules

Structure of YACC program– Translation rules
Grammar

• Head of the production is followed by a colon, then body of the production
• Multiple right side may be separated by |
• Actions associated with each rule are entered within {}

1. Literal terminals are quoted ‘+’, ‘-’
2. Separate productions with ;
3. unquoted strings of letters and digits not

declared to be tokens are taken to be
nonterminals

;

Structure of YACC program– Translation rules

Semantic rules

• Head of the production is followed by a colon, then body of the production
• Multiple right side may be separated by |
• Actions associated with each rule are entered within {}

1. Literal terminals are quoted ‘+’, ‘-’
2. Separate productions with ;
3. unquoted strings of letters and digits not

declared to be tokens are taken to be
nonterminals

Semantic actions and attributes

Each of the Terminal and Non-terminals has an attribute, called val

LR parsing

Apply the action, as soon
as you reduce!

Input string: 3 * 5

Apply the action, as soon
as you reduce!

LR parsing

Done by Lex

Output of the parser

• A Yacc semantic action is a sequence of C statements.

• In a semantic action, the symbol $$ refers to the attribute value associated with the nonterminal of the
head

• $i refers to the value associated with the i^th grammar symbol (terminal or nonterminal) of the body.

• The semantic action is performed when ever we reduce by the associated production,
• Normally the semantic action computes a value for $$ in terms of the $i’s.

• Default action
$$=$1

Structure of YACC program– Translation rules

Structure of YACC program– Translation rules

Done by Lex

• Specifies different attribute types
that lexical analyzer may return for
tokens

• Attribute values

Input string: 3 * 5

The value of the token
number gets stored in the
variable num

• Specifies the attribute type of nonterminals.
• Type-checking is performed

Recall:
Structure of YACC program – Declarations

Structure of YACC program– Supporting C
functions

Additional supporting functions
--- say main() etc

Optional

• YACC generates C code for the production rules specified in the rules section and places this code
into a single function called yyparse().

• In addition to this YACC generated code, the programmer may wish to add his own code to the
y.tab.c file.

• Symbol table implementation
• Functions associated with semantic actions

• The auxiliary functions section allows the programmer to achieve this.

How to execute YACC, with Lex

Initiates the call
y.tab.h

Example 1

trans_v1.y

As soon as yyparse() encounters input that does not match any known
grammatical productions,
it calls the yyerror() function

Example 1

exp_v1.l

Example 1

Example 1

Example 2

Example 2

Calc.y

Calc.y

Calc.l

Reading number
Reading identifier

Example 2

Example 2
text

