Random graph



Network models

Empirical network features:
o Power-law (heavy-tailed) degree distribution
@ Small average distance (graph diameter)
o Large clustering coefficient (transitivity)

@ Giant connected component, hierarchical structure,etc

Generative models:
@ Random graph model (Erdos & Renyi, 1959)
@ "Small world” model (Watts & Strogatz, 1998)
@ Preferential attachement model (Barabasi & Albert, 1999)



Random graph model

Graph G{E,V}, nodes n = |V/|, edges m = |E|
Erdos and Renyi, 1959.
Random graph models

e Gpm, a randomly selected graph from the set of
n(n—1)

Cpgraphs, N = ===, with n nodes and m edges
o G, p, each pair out of N = @ pairs of nodes is connected with

probability p, m - random number

n(n—1)
2

(m)=p

Average degree (k) = —Z ki = =p(n—1)=pn

Graph density P — n(n—1)/2 — P



Random graph model

@ Probability that i-th node has a degree ki = k

P(ki = k) = P(k) = CK_ypk(1 — )2~
Binomial distribution
(Bernoulli distribution)
p¥ - probability that connects to k nodes (has k-edges)
(1 — p)"~*=1 - probability that does not connect to any other node
Ck_, - number of ways to select k nodes out of all to connect to

@ Limiting case of Bernoulli distribution, when n — oc at fixed

(k) = pn= A |
_(k)kem R \kemA
= T

(Poisson distribution)



Poisson distribution
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Phase transition

Consider G, , as a function of p
@ p =0, empty graph
e p =1, complete (full) graph
@ There are exist critical pc, structural changes from p < pc to p > pc

e Gigantic connected component appears at p > p.
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Random graph model

p>>pc




Phase transition

Let u — fraction of nodes that do not belong to GCC. The probability that
a node does not belong to GCC

u=Pk=1)-u+Pk=2)-t* +P(k=3)-’... =

oc \ka—A
— Z P(!’()Uk = Z 0 Uk = et = AMu—1) ®

k=0 k=0 .
Let s -fraction of nodes belonging to GCC (size of GCC) ’_M’
s=1—-u &

AS

1l —s=e"

when A — >, s—1 This node does not belong
when A -0, s— 0 to GCC , if k neighbors do not

(A = pn) participate



Phase transition
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Simulations

Random graph model
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Phase transitions

Graph G(n, p), for n — oo, critical value pc = 1/n

@ when p < pc, ((k) < 1) there is no components with more than
O(In n) nodes, largest component is a tree

e when p = p, ((k) = 1) the largest component has O(n?/3) nodes
@ when p > pc, ({(k) > 1) gigantic component has all O(n) nodes

Critical value: (k) = p.n = 1- on average one neighbor for a node
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Clustering coefficient

@ Clustering coefficient

C(k) = #of links between NN pk(k —1)/2
~ Zmax number of links NN~ k(k—1)/2 "

(k)

n

C:p:

@ whenn— o0, C—=0



Graph diameter

@ G(n,p) is locally tree-like (GCC) (no loops; low clustering coefficient)

@ on average, the number of nodes d steps away from a node (k)
e in GCC, around p. , (k)9 ~ n,

Inn

cio In(k)




General degree distribution
Configuration model

@ Random graph with n nodes with a given degree sequence:

D = {ki, ko, k3..kn} and m =1/2) . ki edges.

@ Construct by randomly matching two stubs and connecting them by

AXFAA 43

@ Can contain self loops and multiple edges

@ Probability that two nodes / and j are connected

B kik;
- 2m—1

Pij

@ Will be a simple graph for special "graphical degree sequence”



Configuration model

Can be used as a "null model” for comparative network analysis

karate club configuration model



Generating function

A. Generating functions

Our approach is based on generating functions [42]. the
most fundamental of which. for our purposes. 1s the generat-
ing function Gy(x) for the probability distribution of vertex
degrees k. Suppose that we have a umipartite undirected
graph—an acquaintance network, for example—of N verti-
ces. with N large. We define

OC

Gﬂ"’”:; pxk, (2)
=0

where p; 1s the probability that a randomly chosen vertex on
the graph has degree k. The distribution p; 1s assumed cor-
rectly normalized, so that

Gg(l}zl {ﬂ}



in a community of 1000 people. each person knows between
zero and five of the others. the exact numbers of people
imm each category Dbemng. from =zero to five:

186.150.363.238.109.54}. This distribution will then be gen-
erated by the polynomual

864+ 150x+363x2+ 238y +109v*+ 54x°
1000 '

Gﬂ{l'}:
(24)



Generating function

Derivatives. The probability p; 1s given by the ith deriva-
tive of G according to

1 d*G,
P "axF

(4)

x=0

Thus the one function Gy(x) encapsulates all the information
contained in the discrete probability distribution p;. We say
that the function Gy(x) ““generates’ the probability distribu-
tion p;..

Moments. The average over the probability distribution
generated by a generating function—ifor instance. the aver-
age degree z of a vertex in the case of Gy(x)—1s given by

z=(ky=2, kpp=Gy(1). (K")= 2. K'pi= U
k

d’

T_
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Powers

If the distribution of a property (degree) k of an object is generated by a given generating
function, then the distribution of the total of k summed over m independent realizations

of the object is generated by the mth power of that generating function.

For example, if we choose m vertices at random from a large graph, then the distribution
of the sum of the degrees of those vertices is generated by [G_0(x)]*m.

To see why this is so, consider the simple case of just two vertices

The square [GO(x)]*2 of the generating function for a single yertex can be expanded as

2

[Gg{."l: }]2: |:§ JE}A..T;(

=, ppp/tF
Jk

=polox’ + (PP + 2 10o)x! 8
+(PoPa+P1P1+DPapo)x”
+(pop3+piPat+pap P+ - a' Np



Powers

It is clear that the coefficient of the power of x" in this
expression is precisely the sum of all products p ,p; such that
j+Fkik=n, and hence correctly gives the probability that the
sum of the degrees of the two vertices will be n. It 1s straight-
forward to convince oneself that this property extends also to
all higher powers of the generating function.



Degree distribution through
randomly chosen edge

degree k

Distribution of the degree of the vertices that we
arrive at by following a randomly chosen edge.

Such an edge arrives at a vertex with probability
proportional to the degree of that vertex,

the vertex therefore has a probability distribution
of degree proportional to kpk

2 kot
k

Gylx)
- GL(1)
2;(/ kp 0




Distribution of outgoing edges of
neighbors

Excess degree k-1

If we start at a randomly chosen vertex and follow each of \
the edges at that vertex to reach the & nearest neighbors. then
the vertices arrived at each have the distribution of remaining
outgoing edges generated by this function. less one power of
x. to allow for the edge that we arrived along. Thus the
distribution of outgoing edges i1s generated by the function

Golx) 1
; :?GG{.T]I. {9}
Gg{l} B

Gl{-ﬂ:

where - 1s the average vertex degree, as before. The prob-
ability that any of these outgoing edges connects to the origi-



Excess degree-revisit

de k

Excess degree k-1

gk

o = (F + 1)pr4a _ (k +1)pr41
Zk kpk ~ 1



Excess degree-revisit

de k

Excess degree k-1

gk




No cycle
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Probability distribution of the
number of second neighbors

The generating function for the probability
distribution of the number of second neighbors of
the original vertex can be written as

; Pl G1(x)]F=Go(G4(x)).

degree k _
Average number of second neighbors

if} (G,(x)) =G (1)G(1)=G,(1

e 0 1(X) =G 1)G(1)=Gy(1).

\ =1\

Go(G,(0)G,(x)  °



Component size

First let us consider the distribution of the sizes (s;) of
connected components in the graph

Let H1(X) be the generating function for the distribution of the
sizes of components that are reached by choosing a random

edge and following it to one of its ends. 4%.‘
.

We explicitly exclude from H1(x) the giant component, if there
IS one; the giant component is dealt with separately.



Component size

This means that the distribution of components generated by H1(x)
can be represented graphically as

like recursion

T~

_=?+O+ +\O/\+...

g, (excess degree)

Each component is treelike in structure, consisting of the single node
we reach by following our initial edge, plus any number of other
treelike clusters,

Recursively follow the same size distribution,

If we denote by gk the probability that the initial node has k edges
coming out of it other than the edge we came in along



the “powers™ property of Sec. II A. H;(x) must satisfy a
self-consistency condition of the form

Hiy(x)=xqo+xq H{(x)+xq:[H{(x)]P+---. (25)

However. ¢; is nothing other than the coefficient of x* in the
generating function G(x). Eq. (9). and hence Eq. (25) can
also be written

H{(x)=xG{(H{(x)). (26)

If we start at a randomly chosen vertex. then we have one
such component at the end of each edge leaving that vertex.
and hence the generating function for the size of the whole

component is
H;(x) H,(x)

{
g Ho(x) =xGo(H, (x)). (27)
- O + é + 86 0, H,(X) generates the probability s, that a randomly

chosen node belongs to a component of size k




the average size of the component to which a randomly cho-

sen vertex belongs. for the case where there 1s no giant com-
ponent 1n the graph. 1s given in the normal fashion by

(s)=Hy(1)=1+Gy(1)H(1). (29)

From Eq. (26) we have

Hi(1)=1+Gj(1)H{(1). (30)
and hence
Gol(l) :f
Avg component {5}:]4_ =14+ ) (31)
size 1_(_;{{1} 21—
where z; ==z 1s the average number of neighbors of a vertex

and z, 1s the average number of second neighbors. We see



Phase transition-Giant component
formation

that this expression diverges when
G, (1)=1. (32)

This point marks the phase transition at which a giant com-
ponent first appears. Substituting Eqs. (2) and (9) mnto Eq.
(32). we can also write the condition for the phase transition

as S
(k=)

- =7

k
2- k(k—2)p;=0. (k) (33)

Indeed, since this sum increases monotonically as edges are added to the graph, it
follows that the giant component exists if and only if this sum is positive.



ER graph — Phase transition

B <k>ke—{k} B /\ke—/\
P(k) = k! k!

K
k) ~°

A=1

<k>= A
<kz>= A% + A



