Epidemic models

- Epidemic models
 - SI model
 - SIS model
 - SIR model

Utility:

Models information diffusion, rumor spread, disease propagation etc.

- Mathematical epidimiology
- W. O. Kermack and A. G. McKendrick, 1927
- Deterministic compartamental model (population classes) $\{S, I, T\}$
- S(t) succeptable, number of individuals not yet infected with the disease at time t
- I(t) infected, number of individuals who have been infected with the disease and are capable of spreading the disease.
- R(t) recoverd, number of individuals who have been infected and then recovered from the disease, can't be infected again or to transmit the infection to others.
- Fully-mixing model
- Closed population (no birth, death, migration)
- Models: SI, SIS, SIR, SIRS,...

SI Model

• S(t) -susceptible , I(t) - infected

$$S \longrightarrow I$$

$$S(t) + I(t) = N$$

- ullet infection/contact rate, Probability of infecting a susceptible node
- Infection equation:

$$I(t + \delta t) = I(t) + \beta \frac{S(t)}{N} I(t) \delta t$$
$$\frac{dI(t)}{dt} = \beta \frac{S(t)}{N} I(t)$$

SI Model

- Fractions: i(t) = I(t)/N, s(t) = S(t)/N
- Equations

$$\frac{di(t)}{dt} = \beta s(t)i(t)$$

$$\frac{ds(t)}{dt} = -\beta s(t)i(t)$$

$$s(t)+i(t)=1$$

• Differential equation, $i(t = 0) = i_0$

$$\frac{di(t)}{dt} = \beta(1 - i(t))i(t)$$

Solution:

1.
$$i_0 = 0??$$

2. beta>0t->infyi(t)->1

• Limit $t \to \infty$

$$i(t) \rightarrow 1$$
 $s(t) \rightarrow 0$
 $s \mid i(t) \mid i$

SIS model

• S(t) -susceptable , I(t) - infected,

$$S \longrightarrow I \longrightarrow S$$

 $S(t) + I(t) = N$

- ullet eta infection rate (on contact), γ recovery rate
- Infection equations:

$$\frac{ds}{dt} = -\beta si + \gamma i$$

$$\Rightarrow \frac{di}{dt} = \beta si - \gamma i$$

$$s + i = 1$$

• Differential equation, $i(t = 0) = i_0$

$$\frac{di}{dt} = (\beta - \gamma - i)i$$

SIS model

Solution

$$i(t) = (1 - \frac{\gamma}{\beta}) \frac{C}{C + e^{-(\beta - \gamma)t}}$$

where

$$C = \frac{\beta i_0}{\beta - \gamma - \beta i_0}$$

• Limit $t \to \infty$

$$eta>\gamma$$
 , $i(t) o (1-rac{\gamma}{eta})$ Equilibrium condition $eta<\gamma$, $i(t)=i_0e^{(eta-\gamma)t} o 0$

SIS model

• $\beta > \gamma$, $i(t) \rightarrow (1 - \frac{\gamma}{\beta})$

• $\beta < \gamma$, $i(t) = i_0 e^{(\beta - \gamma)t} \rightarrow 0$

• S(t) -susceptable , I(t) - infected, R(t) - recovered

$$S \longrightarrow I \longrightarrow R$$

$$S(t) + I(t) + R(t) = N$$

- ullet β infection rate, γ recovery rate
- Infection equation:

$$\frac{ds}{dt} = -\beta si$$

$$\frac{di}{dt} = \beta si - \gamma i$$

$$\Rightarrow \frac{dr}{dt} = \gamma i$$

$$s + i + r = 1$$

Equation

$$\frac{ds}{dt} = -\beta s \frac{dr}{dt} \frac{1}{\gamma}$$

$$s = s_0 e^{-\frac{\beta}{\gamma}r}$$

$$\frac{dr}{dt} = \gamma (1 - r - s_0 e^{-\frac{\beta}{\gamma}r})$$

Solution

$$t = \frac{1}{\gamma} \int_0^r \frac{dr}{1 - r - s_0 e^{-\frac{\beta}{\gamma}r}}$$

 $\frac{\beta}{\gamma}=4$

• $i_0 = 0.1$

R

No Epidemic

- \bullet $\frac{\beta}{\gamma} = 0.5$
- $i_0 = 0.1$

Equation

$$\frac{dr}{dt} = \gamma (1 - r - s_0 e^{-\frac{\beta}{\gamma}r})$$

• Limits: $t \to \infty$, $\frac{dr}{dt} = 0$, $r_{\infty} = const$,

$$1 - r_{\infty} = s_0 e^{-\frac{\beta}{\gamma} r_{\infty}}$$

• Initial conditions: r(0) = 0, i(0) = c/N, $s(0) = 1 - c/N \approx 1$

$$1 - r_{\infty} = e^{-\frac{\beta}{\gamma}r_{\infty}}$$

R0-> ∞ , r_{∞} ->1 R0->0, r_{∞} ->0

Non-zero solution of $r_{\scriptscriptstyle \infty}$ exists when

critical point: $R_0 = 1$

ER graph: Phase transition

Let u – fraction of nodes that do not belong to GCC. The probability that a node does not belong to GCC

$$u = P(k = 1) \cdot u + P(k = 2) \cdot u^{2} + P(k = 3) \cdot u^{3} \dots =$$

$$= \sum_{k=0}^{\infty} P(k)u^{k} = \sum_{k=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!} u^{k} = e^{-\lambda} e^{\lambda u} = e^{\lambda(u-1)}$$

Let s -fraction of nodes belonging to GCC (size of GCC)

$$s = 1 - u$$

$$1 - s = e^{-\lambda s}$$

when
$$\lambda \to \infty$$
, $s \to 1$
when $\lambda \to 0$, $s \to 0$
 $(\lambda = pn)$

ER graph: Phase transition

$$s = 1 - e^{-\lambda s}$$

non-zero solution exists when (at s = 0):

$$\lambda e^{-\lambda s} > 1$$

critical value:

$$\lambda_c = 1$$
 $\lambda_c = \langle k \rangle = p_c n = 1, \quad p_c = \frac{1}{n}$

- \bullet r_{∞} the total size of the outbreak
- Epidemic threshold

Epidemics: $R_0 > 1$, $\beta > \gamma$, $r_\infty = const > 0$

No epidemics: $R_0 < 1, \quad \beta < \gamma \quad , \quad r_\infty \to 0$

Basic reproduction number

$$R_0 = \frac{\beta}{\gamma}$$