Community detection

Network communities

Definition

Network communities are groups of vertices such that vertices inside the
group connected with many more edges than between groups.

@ Graph partitioning problem

Network communities

Definition

Network communities are groups of vertices similar to each other.

8 @ @
@ -‘ 1" Y i ~J
Y ®
G ® i @
33 T (D
@) iy 3
~ g @ ! @\} ;
) ' r|§"
30 . @ | L
; "
® ® 2N
Jr l_s.)v
i6 ar
@ | a9
I
LY @

@ Community detection is an assignment of vertices to communities.
@ Non-overlapping communities (every vertex belongs to a single group)

Community ldentification/Clustering

Groups of nodes that are densely connected
amongst themselves while being sparsely
connected to the rest of the network

Might not be easy to see through ...

Computational Metods

Agglomerative

— make an empty graph (N nodes, 0 edges)

— add edges into empty graph maximizing
something in original network

Divisive
— cut edges in prescribed order until
communities separate

Spectral

— split graph based on
eigenvalues/eigenvectors of Graph Laplacian

Network communities

Definition

Network communities are groups of vertices similar to each other.

8 @ @
@ -‘ 1" Y i ~J
Y ®
G ® i @
33 T (D
@) iy 3
~ g @ ! @\} ;
) ' r|§"
30 . @ | L
; "
® ® 2N
Jr l_s.)v
i6 ar
@ | a9
I
LY @

@ Community detection is an assignment of vertices to communities.
@ Non-overlapping communities (every vertex belongs to a single group)

Similarity Measures

Choosing (dis)similarity measures — a critical step
In community finding/clustering

Recall that the goal is to group together “similar”
data — but what does this mean?

No single answer — it depends on what we want to
find or emphasize in the data; this is one reason
why clustering is an “art”

The similarity measure Is often more important than
the clustering algorithm used — don’t overlook this
choice!

Similarity based clustering

Similarity based vertex clustering:

@ Define similarity measure between vertices based on network structure
- Jaccard similarity
- Cosine similarity
- Pearson correlation
- Eucledian distance (dissimilarity)

o Calculate similarity between all pairs of vertices in the graph
(similarity matrix)

@ Group together vertices with high similarities

Similarity matrix

Zachary karate club

FHEEE Y S E N TN NI 2B AZ e arm o o
i " R P

Hierarchical clustering

Agglomerative clustering:

@ Assign each vertex to a group of its own

@ Find two groups with the highest similarity and join them in a single
group

o Calculate similarity between groups:
- single-linkage clustering (most similar in the group)
- complete-linkage clustering (least similar in the group)
- average-linkage clustering (mean similarity between groups)

@ Repeat until all joined into single group

Dendrogram

Agglomerative Method

Start with every data point in a separate cluster

Keep merging the most similar pairs of data
points/clusters until we have one big cluster left

This is called a bottom-up or agglomerative
method

Heaght

Hierarchical clustering

12

Cluster Dendrogram

1.0

0.8

06
|

25

26

1

2
3
17

= _| e A ||
=]
o | : k]
1 | m| =3
[=x] o - |
&= 3] o —
= ¥
=
L I |
— T | gk
= & =5
e
- f= iy e T T 1
= o - =
—
ol £ O — &0 LY O
— Od O ™ — —
Dist

helust (°, "average”)

Heaght

12

1.0

0.8

0.6

0.4

0.2

0.0

Hierarchical clustering

Cluster Dendrogram

|
25
26

R
a0 —

1
2
3
4
12
13 | |
17
33—
34 |

— — el =] —
o w — |
—
ol £ oy o— &3 U D
— Bd B ™ — —
Dist

helust (7, "average”)

Hierarchical clustering

Heaght

12

1.0

0.8

0.6

0.4

0.2

0.0

Hierarchical clustering

Cluster Dendrogram

|
25
26

1

2
3
17

3 —
34 |

25
24
27
3
a0 —

18
22
23
21
19
15
16

Dist
helust (7, "average”)

Hierarchical clustering

@
) @ o
® ® o
@
o'. @
® ® @© @
@ @
® o o.‘
&
@ ® o ?
i@ &
())

Community Detection Algorithm

Divisive Method (Newman-Girvan Algo)

Calculate the edge betweenness for all edges in the
network.

Remove the edge with the highest betweenness.

Recalculate betweennesses for all edges affected by the
removal.

5
A

Repeat until no edges remain. ‘;z
H

& /e[ut these first
/ - g
Z% 4

Community Detection Algorithm

Divisive Method

By el
"- -'l--‘---
i et [\
R, |
- .'._ _.l--l- I.'I‘\- -~
— 1 |

Edge betweenness .
ot these first

b—.
i !
| |
b i --.
—
F

K
1L .. "
)
]
TT Sty
L
i 1

'._' _I-..J—\._'.:-_..'

|

.".. _.-I

betweenness(e;;) = number of times e..

appears in all shortest paths :

High betweenness edges are more
“central”

Betweenness Centrality

Tries to determine how important is a node In a
network

Degree of a node doesn’t only determine its
Importance in the network — do you agree???

The node can be on a bridge centrally between
two regions of the network!!

LF =

Region C) Region O

Betweenness Centrality

Centrality of v: Ratio: the number of shortest paths
that pass through v Vs total number of shortest
paths from node s to node t.

In Execution

2]
+—
>
(&)
()
o
—

2]
+—
>
(&)
()
o
Lo

120 cuts

Community Detection

Modularity maximization

How good Is a community

Communities are dense compared to random
case

Measured In terms of modularity

Total number of in-community edges —
expected number of edges If there Is no
community structure

Modularity

Modularity measures the group interactions compared with the
expected random connections in the group

Apriori communities

In a network with m edges, for two nodes with degree d; and d;

expected random connections between

d;d;/2m S
The interaction utility in a group:

> Ay —did;/2m

ieC,jeC

Modularity

2m Z Z 42J d dj /‘)n;

C e’ jed

Bounds between [-0.5: +1]

them are

NULL model

Expected Number of
edges between 6 and 9
IS
5*3/(2*17) = 15/34

25

Community Detection Algorithm

)
i:'!'f:.-:l::'”". -
Edge betweenness) |
— cut these first
betweenness(e;;) = number of times e.. i /
appears in all shortest paths O
*,
L

High betweenness edges are more
“central”

Betweenness Centrality

Centrality of v: Ratio: the number of shortest paths
that pass through v Vs total number of shortest
paths from node s to node t.

Computing edge betweenness

* Finding shortest path between node pairs

 n nodes and m edges
* Floyd-Warshall algorithm — O(n3)

« Compute shortest path between (s,d) using BFS (O(m))
Repeat for all pairs O(mn?)

« Case 1: Only one shortest path between any
node pair

 BFS tree shows those paths

Breadth first search

s
s - .\A‘-_‘ - &
Vg / Y
/ | \
2 \ 3 Construct BFS tree
\ 4
B c
Nt
/ \
5 ' 6
\ /
4 ¥

Computing edge betweenness

Case 1. Only one shortest path between any
node pair Use this tree to calculate the contribution

of each edge to betweenness

(a) V=2 (Step 1: Find the leaves => No shortest paths to
‘ other nodes pass through them.

Assign score 1 to each such leave edge
Step 2: Starting from farthest edges, walk upwards

Assign score v to each edge
1+ (sum of the scores on the neighboring edges
immediately below it)

Result score v for each edge:

L Betweenness counts of the paths from source S
leaves _
Repeat this process for all S node and sum up
the scores for each edge

Results full betweenness score for shortest
paths of all pairs

Computing edge betweenness

The breadth-first search and the process of working
up through the tree both take worst-case time O(m)

there are n vertices total, so the entire calculation
takes time O(mn) as claimed.

Computing edge betweenness

Case 2. Multiple shortest paths between any

node pair Key idea: If there are three shortest paths between (a,b) passing through

an edge e, each will contribute 1/3 to edge betweenness of e

1. The initial vertex s is given distance d, = 0 and a
weight w, = 1.

2. Every vertex ¢ adjacent to s is given distance d; =
d. +1 =1, and weight w; = w, = 1.

3. For each vertex j adjacent to one of those vertices 1
we do one of three things:

(a) If 7 has not yet been assigned a distance, it
is assigned distance d; = d; + 1 and weight
wy = wy.

1 (b) If 7 has already been assigned a distance and
d; = d; + 1, then the vertex’s weight is in-
creased by w;, that is w; «— w; + wy.

First perform the BFS on source S

and obtain the graph

(¢) If 5 has already been assigned a distance and
d; < d; + 1, we do nothing.

The weight on a vertex i represents the 4. Repeat from step 3 until no vertices remain that

number of distinct paths from Sto i have assigned distances but whose neighbors do not
have assigned distances.

Computing edge betweenness

Calculation of edge weight (i,j)

S toi: w_idifferent paths
W_i Paths: S to j via i, results w_i different paths
So contribution of (i,))=w_i/w_]j

g
fraction of shortest paths from j through ito s

contributes to (i,)) = 1/w_|

Computing edge betweenness

1. Find every “leaf” vertex t, i.e., a vertex such that
(1+2/3)*1/2=5/6 no paths from s to other vertices go though .

2. For each vertex 7 neighboring ¢ assign a score to the
edge from t to 7 of w; /wy.

3. Now, starting with the edges that are farthest from
the source vertex s—lower down in a diagram such
as Fig. [db—work up towards s. To the edge from
vertex 7 to vertex g, with 5 being farther from s
than i, assign a score that is 1 plus the sum of
) the scores on the neighboring edges immediately
belgw it (i.e., those with which it shares a common
vertex), all multiplied by w;/w;.

4. Repeat from step 3 until vertex s is reached.

(1+ sum of the scores on the neighboring edges
immediately below it)*w_i/w_j

Computing edge betweenness

Now repeating this process for all n source vertices s and
summing the resulting scores on the edges gives us the
total betweenness for all edges in time O(mn).

Kernighan and Lin heuristic

“An Efficient Heuristic Procedure for Partitioning
Graphs” B. W. Kernighan and S. Lin, The Bell
System Technical Journal, 49(2):291-307, 1970

An Efficient Heuristic Procedure for Partitic:ming Graphs

By B. W. KERNIGHAN and S. LIN

W conpsder the probilem of pernifioning the noder of a graph with coals 1 fmyin =gy (Ip\lp
on ils edopes tnlo subsels of E'ven sizes oo as e minimere She sum of the coats kl o) Fiap ’
on oll edpes cul. Thua problem arises o aeveral phyrical riiuations—ijor . : .
: ul ity 2 For mosl values of n, &, and p, th reasion yiel .
example, tn pamgring e components of elecironic efrewils Lo olrpusl hrurr -2l m.:de [n-:LIu l- {';n _:nd: ;.":'I:Jﬂ m ’”-lqﬁl'ﬂi:L:’;;i?erjﬂ:::nnllgﬂ
= ¥ ", i i

boards o minimise the number of conneciions beiween boorde.
Thu paper presenis & heurishc melhod for parfitoning griiirary grapha
which w btk gffective in finding oplimal partiions, and fon ernough Lo be

Formally the problem eould alss be solved ns an integer linesr pro-
gramming problem, with & large number of constraint equations neces-
tical e} i sary to express the woiformity of the partition,

PrACicat I foluing Tanpt paoliome Because it seema likely that soy direct approach to finding an optimal

ldea of KL Algorithm

Start with any initial partition X and Y.

A pass or iteration means exchanging each vertex A € X
with each vertex B € Y exactly once:

1.Fori:=1tondo
From the unlocked (unexchanged) vertices,
choose a pair (A,B) s.t. gain(A,B) Is largest.
Exchange A and B. Lock A and B.
Let g, = gain(A,B).
2. Find the k s.t. G=g,+...+g, IS maximized.
3. Switch the first k pairs.

Repeat the pass until there is no improvement (G=0).

The gain function = (number of edges that lie within the two groups) — (the number of
edges that lie between them)

Kernighan-Lin Algorithm (1)

Given:

Initial weighted graph G with
V(G)={a,b,cdef}

Start with any partition of
V(G) into X and Y, say

X={a,ce}

KL algorithm (2a)

Compute the gain values of moving node
X to the others set:

G, =E, -1l

E, = cost of edges connecting node x
with the other group (exter)

|, = cost of edges connecting node x
within its own group (intra)

G,=E,-1,=-3 (=3-4-2)
X={a,ce} G.=E.—-I.= 0(F1+2+4-4-3)
Y={b,d,f} G.=E,—-Il.=+1 (=6-2-3)

G,=E,-1,=+2 (=3+1-2)
Gy=Ey;-1l3j=-1(=2-2-1)
Gi=Ei—1l; =+9 (F4+6-1)

KL algorithm (2b)

Cost saving when exchanging a and b is
essentially G, +

However, the cost saving 3 of the direct
edge was counted twice. But this edge
still connects the two groups

Hence, the real “gain” (i.e. cost saving)
of this exchangeis 9., =G, + G, - 2c,,

{a,ce} G,=E,—-1,=-3 (3-4-2)
{b,d, f} Gy=E,-l,=+2 (=3+1-2)
0y =G, +G,—2¢c,,=— 7 (= —=3+2-23)

Op =G, +G, - 2w, =-3+2-2.3=-7
Oag = G ,+ Gy —2w,=-3-1-2.0=-4

O0s=G,+G;—2w,=-3+9-2.0=+6

cut5|ze—16 gcb:G +G,-2w,=0+2-21 = 0
gcdeC+GOI 2Wyy=0-1-2.2 =5

—2W; =0+9-24 =+1
Op = G+ Gy, — 2w, =+1+2-2.0=+43
Oog =G+ Gy —2w,=+1-1-2.0= 0
O =G +G;—2w =+1+9-2.6=-2

Pair with
maximum gain

;/
lo]

S,

I

Q)

(@]

+

9

KL algorithm (4)

cut-size = 16 cut-size =16 -6 =10
Exchange nodes a Then lock up
and f nodes a and f)

Oat = Ga + G~ 20 =3+ 9-2.0=+6

cut-size = 10

KL algorithm (5)

Update the G-values of unlocked nodes

G’.=G.+2c,—2c+=0+2(4-4)=0

G . =G, +2c,—2Cc:=1+2(2-6)=—7
=G,+2c,;—-2¢,,=2+2(0-3)=-4
=Gyt2c4—-2c,,=-1+2(1-0)=1

KL algorithm (6)

G’.= 0 =4
' =7 Gy =+1

II II
F’HHH
w—aw-'

Compute the gains

2’ =G . +G’,-2c,=0-4-2.1 =-6

cut-size = 10 g’ =G’ +G’y-20,4=0+1-2.2 =-3

=G TG, 2= T 4—20=_11
/ged G+ G20, =T +1—2:0=—6

Pair with maximum gain
(can also be neative)

KL algorithm (7)

cut-size =10 cut-size =10 - (—3) =13
Exchange nodes ¢ Then lock up
and d nodes c and d

g’cd:G,C'l'G,d—ZCCd:O+1—2.2 =_3

KL algorithm (8)

G'.= 0 G,=-4
=7 Gy=+1

X”:{e}
y’={b}

Update the G-values of unlocked nodes

G”,= G’ +2C,—2C,.=—7+2(0-3)=-1
= G+ 20— 2C.= —4 + 2(2 — 1) = -2

cut-size = 13

Compute the gains

Pair w_ith max. gain
s (e, b) g% =G+ G”— 2, =-1-2-2:0 =-3

KL algorithm (9)

Summary of the Gains...

g =+6

g+g =+6—-3=+3

g+g +g =+6-3-3=0
Maximum Gain =g = +6
Exchange only nodes a and f.
End of 1 pass.

dConsider this as initial state
d Repeat the Kernighan-Lin.

ldea of KL Algorithm

Start with any initial partition X and Y.

A pass or iteration means exchanging each vertex A € X
with each vertex B € Y exactly once:

1.Fori:=1tondo
From the unlocked (unexchanged) vertices,
choose a pair (A,B) s.t. gain(A,B) Is largest.
Exchange A and B. Lock A and B.
Let g, = gain(A,B).
2. Find the k s.t. G=g,+...+g, IS maximized.
3. Switch the first k pairs.

Repeat the pass until there is no improvement (G=0).

Louvain algorithm

Start with the weighted network of N nodes Pseudocode

Introduce “pass’ hase 1 and phase 2 1. Repeat until local optimum reached
g P P 1.1 Phase 1: partition network greedily using modularity

PSE Ll dIDCE:JdE flI:II" ph ase l 1.2 Phase 2: agglomerate found clusters into new nodes

1. Assign a different community to each node

2. For each node |

» For each neighbor j of i, consider removing i from its
community and placing it to j's community

» Greedily chose to place 1 into community of neighbor that

leads to highest modularity gain No positive gain, |
i stays in its original community

3. Repeat until no improvement can be done

_ _ 1. One node may be considered multiple times
Modularity gain AQ=Q(t)-Q(t-1) 2. Stops when local maxima is attained (no
] b ke individual move can improve the Q)
ik,

S N I O
2m [’

2m

G{C?,'-. Cj]!

Q

1,J

Louvain algorithm

Pseudocode for phase 2 Building a new network

1. Let each community C; form a new node |

2. Let the edges between new nodes i and j be the sum of edges

between nodes in C; and C; in the previous graph (notice
there are self-loops)

Links between nodes in same community leads to self loop

Once we complete the phase 2, reapply the phase 1 on the new graph
Pass2, Pass 3...... until maximum Q is attained
Number of meta communities deceases at each pass ..

Most of the computing time is used in phase 1

Louvain algorithm

13

Modularity Community
Optimization Aggregation

2nd pass 26

—

Communities of communities are built during the process
Height of the hierarchy is determined by the number of passes

24

Louvain algorithm

» The output is also a hierarchy

» Works for weighted graphs, and so modularity has to be
generalized to

QWZ(- o) (G, G)

where Wi is the weight of undirected edge (1,}),
W=>,W;ands =5, W

Louvain algorithm

Karate Arxiv Internet Web nd.edu Phone Web uk-2005 Web WebBase 2001
Nodes/links ~ 34/77 9k/24k 70k/351k 325k/1M 2.6M/6.3M 39M/783M 118M/1B
CNM 38/0s .772/3.6s .692/799s .927/5034s -/- - /- -/-
PL 42/0s .757/3.3s .729/575s .895/6666s -/- -/- -/-
WT 42/0s .761/0.7s .667/62s .898/248s 56/464s -/- -/-
Our algorithm 42/0s .813/0s ST81/1s 935/3s 769 /134s 079 /738s 984 /152mn

algorithm of Clauset, Newman and Moore [8], of Pons and Latapy [7], of Wakita and
Tsurumi [16] and of our algorithm for community detection in networks of various

Fast and high modularity obtained

In the case of the Karate Club [24], for instance, there are only 3 passes: during the
first one, the 34 nodes of the network are partitioned mmto 6 communities; after the
second one, only four communities remain; during the third one, nothing happens and
the algorithm therefore stops. In the above examples, the number of passes 18 always

smaller than 5.

[y

(=
=)

08

-
=
~

o
o

0,4

Proportion of majority language speakers
B8 & £ 85

o

100

Belgian phone call network

2.6M customers, weighted links --- total phone calls during 6 months

Y A ,AB
S PR T

= Majority French
» Majority Dutch

1000 10000
Community size

100000

Six levels
Top level------- 261 communities (>100
customers, >75% of total population)

Homogeneity of a community is measured
by the fraction of people speaking in
dominant language

Most of the communities are monolingual
36 communities of size>10000

Except one, all these communities have
>85% speaking in one language

French Dutch. Wl
Sub communities are closely connected to
each other

They also composed of heterogeneous groups

Crucial for integration of the country

Presence of German and English
66% German is one community
French people more densely connected

Different social behavior

https://sites.google.com/site/findcommunities/ El | Q Search ﬁ B ¥ 4

Louvain method: Finding communities in large networks

A Multi-Level Aggregation Method for optimizing modularity

Two C+H codes, the

onginal and an

updated versions, are d I I I bl
freely available for CO e IS aval a e
download. More

information can be

found in the readme

file included in both

distributions and here.

A preliminary matlab

version can be

obtaned on demand, In the last few years, there have been many attempts to uncover communities in large networks. By large, we mean systems composed of millions of

nodes, which cannot be visualized nor analyzed at the level of single nodes and therefore require a coarse-grained description.

Details about our
Our method, that we call Louvain Method (because, even though the co-authors now hold positions in Paris, London and Louvain, the method was

method can be found , , , . D .
devised when they all were in Louvain), outperforms other methods in terms of computation time, which allows us to analyze networks of unprecedented

| I

Overlapping communities

Overlapping communities

Scientists

Scientific
community

Overlapping communities

Cligue percolation

* Our community definition is based on the
observation that a typical member in a community
IS linked to many other members, but not
necessarily to all other nodes in the community

* |In other words, a community can be interpreted as
a union of smaller complete (fully connected)
subgraphs that share nodes.

* such complete subgraphs are called k-cliques, where k
refers to the number of nodes in the subgraph

k-cligue template rolling

k-cligue template: A k-cligue template can be thought
of as an object that Is Isomorphic to a complete
graph of k nodes.

Such a template can be placed onto any k-clique of
the network, and rolled to an adjacent k-clique by
relocating one of its nodes and keeping its other k-1
nodes fixed.

Thus, the k-cliqgue-communities of a graph are all
those subgraphs that can be fully explored by rolling
a k-cligue template in them but cannot be left by this
template.

K-cligue community

@ k-clique is a clique (complete subgraph) with k nodes

@ k-clique community a union of all k-cliques that can be reached from
each other through a series of adjacent k-cliques

@ two k-cliques are said to be adjacent if they share k — 1 nodes.

Adjacent 4-cliques

Special cases

The k-cligue-communities of a network at k = 2
are equivalent to the connected components

o e K2

Series of shared nodes

S

Series of shared edges

K-cligue community

* k-clique chain: the union of a sequence of
adjacent k-cliques

* k-clique connectedness: two k-cliques are k-
cligue-connected If they are parts of a k-cligue
chain.

» k-cligue-communities are equivalent to the k-
cligue connected components of the network.

k-cligue template rolling

k-cligue template: A k-cligue template can be thought
of as an object that Is Isomorphic to a complete
graph of k nodes.

Such a template can be placed onto any k-clique of
the network, and rolled to an adjacent k-clique by
relocating one of its nodes and keeping its other k-1
nodes fixed.

Thus, the k-cliqgue-communities of a graph are all
those subgraphs that can be fully explored by rolling
a k-cligue template in them but cannot be left by this
template.

K-clique percolation

first extracts all complete subgraphs of the network that
are not parts of larger complete subgraphs

@ Find all maximal cliques *

@ Create clique overlap matrix . /

Overlapping nodes
between cliques

@ Threshold matrix at value kK — 1 _
cliques

@ Communities = connected components

In this symmetric matrix each row (and column) represents a clique

the matrix elements are equal to the number of common nodes between the
corresponding two cliques

(Note that the intersection of two cliques is always a complete subgraph.)

Diagonal entries are equal to the size of the clique.

K-clique percolation

These components can be found by erasing (i) every off-
diagonal entry smaller than k-1 and (ii) every diagonal
element smaller than k in the matrix,

Replacing the remaining elements by 1
Carrying out a component analysis of this matrix

The k-cligue-communities for a given value of k are
equivalent to

such connected cliqgue components in which the
neighbouring cliques are linked to each other by at
least k-1 common nodes.

clique percolation

K-

2

II;:: 2| 3

1000]|0O

C R

-I{}L‘lﬂﬂ{}{}

L0001 |0

Molojfojlo|lo|o0

Bolofollo|lo |1

Mixing pattern

Network mixing patterns

@ Assortative mixing, "like links with like", attributed of connected
nodes tend to be more similar than if there were no such edge

@ Disassortative mixing, "like links with dislike”, attributed of
connected nodes tend to be less similar than if there were no such

edge

Vertices can mix on any vertex attributes (age, sex, geography in social
networks), unobserved attributes, vertex degrees

Examples:

assortative mixing - in social networks political beliefs, obesity, race
disassortative mixing - dating network, food web (predator/prey),
economic networks (producers/consumers)

Mixing pattern

@ Political polarization on Twitter: political retweet network ,red color -
"right-learning” users, blue color - "left learning” users

@ Assortative mixing = homophily

Assortative mixing

women
black hispanic white other 1
black | 0.258 0.016 0.035 0.013 | 0.323
= | hispanic | 0.012 0.157 0.058 0.019 | 0.247
= white | 0.013 0.023 0.306 0.035 | 0.377
other | 0.005 0.007 0.024 0.016 | 0.053
b; | 0.289 0.204 0.423 0.084

The amount of assortative mixing in a network can be characterized by measuring
how much of the weight in the mixing matrix falls on the diagonal, and how much
off it.

Let us define e; to be the fraction of all edges in a network that join a vertex of type
| to a vertex of type |.

Ends of an edge always attach to one man and one woman, we also specify which index
corresponds to which type of end, which makes e asymmetric

Friendship network

0.18 0.02 0.01 0.03\ &
0.02 020 0.03 0.02
0.01 0.03 0.16 0.01
0.03 0.02 0.01 0.22

Assortative mixing

The matrix should also satisfy the sum rules

E Eij::l: E €ij = i, E :Eij:bj?
ij 7 i

where a;, and b, are the fraction of each type of end of an edge that is attached to

vertices of type |
_ i Cii — D b

1 — Zi ﬂft'bi

the sum of the elements of the matrix x. We call the quantity » the “assortativity
coefficient”. It takes the value 1 in a perfectly assortative network, since in that case
the entire weight of the matrix e lies along its diagonal and) _. e;; = 1. Conversely, if
there is no assortative mixing at all, then e;; = a;b; for all 7, j and r = 0. Networks
can also be disassortative: vertices may associate preferentially with others of different
types—the “opposites attract” phenomenon. In that case, » will take a negative value.

T

Assortativity leads to community
formation

Model

0.02 020 0.03 0.02
0.01 003 0.16 0.01
0.03 0.02 0.01 0.22

(0,18 0.02 0.1 &03)‘

Apply community detection algo

. First we choose degree distributions pg} for each vertex type i. The quantity
pE} here denotes the probability that a randomly chosen vertex of type 7 will

have degree k. We can also calculate the mean degree z; =) ;. kp}::} for each
vertex type.

pk()

Type |

pk(i)

pk(k)

2(K)

2. Next we choose a size for our graph in terms of the number m of edges and
draw m edges from the desired distribution e;;. We count the number of ends
of edges of each type 7, to give the sums m; of the degrees of vertices in each

ass—and we caleulate the expected number n; of vertices of each type from
DlJ]ldEd to the nearest integer).
Compute m(i), m(j) etc

m(i)

Type |

2(i)

0.02 0.01 0.03
0.20 0.03 0.02
0.03 0.16 0.01)°
0.02 0.01 0.22

z(K) m(k)

. We draw n; vertices from the desired degree distribution p;;:j for type :. Normally
the degrees of these vertices will not sum exactly to m; as we want them to, in
which case we choose one vertex at random, discard it, and draw another from

the distribution ps}, repeating until the sum does equal m;.

Type | m(i)
z(i)

z(K) m(k)

4. We pair up the m; ends of edges of type ¢ at random with the vertices we have
generated, so that each vertex has the number of attached edges corresponding
to its chosen degree.

5. We repeat from step 3 for each vertex type.

Type | m(i)
z(i)

0.18 0.02 0.01 0.03
0.02 020 0.03 0.02
0.01 0.03 0.16 0.01}°
0.03 002 001 0.22

Figure 6: A network generated using the mixing matroc of Eq. [E] and a Poisson degree
distnibution with mean z = 5. The four different shades of vertices represent the four
types, and the four shapes represent the commumties discovered by the commumty-finding

alporithm of Section .. The placement of the vertices has also been chosen to accentuate
the commumtes and show where the algonthm fails. As we can see, the correspondence

between vertex type and the detected community structure 1= very close; only nine of the
100} vertices are misclassified.

