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CLIQUES, CLUBS AND CLANS * 

ROBERT J. MOKKEN** 

University of Amsterdam 

1. Introduction 

In the analysis of social networks adequate concepts are necessary to 
indicate various types and configurations of social groups such as peer 
groups, coteries, acquaintance groups, etc. The problem has theoretically 
been argued convincingly by e.g. Kadushin (1968), who introduced the 
general concept of "social circle". In the actual empirical study of social 
networks there is therefore a need for adequate operational and analytically 
useful concepts to represent such more or less closely knit groups. 

Many of these can be developed with the help of the theory of graphs 
and networks. A well-known concept, more or less corresponding to that of 
the peer group is the clique: a group all members of which are in contact 
with each other or are friends, know each other, etc. However, similar 
concepts will be necessary to denote less closely knit, yet significantly 
homogeneous social groups, such as "acquaintance groups", where every 
pair of members, if they are not in mutual contact, have mutual 
acquaintances, or common third contacts, etc. In this latter type of social 
group an important aspect is brought out by the question of whether the 
homogeneity of a social group is due to its position in a larger social 
network in which it is embedded, or whether it is a property of the group 
itself as a more or less autarchic unit, independent of the surrounding social 
network. In the first case, for instance, a group may be as closely knit as an 
"acquaintance network", 
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just because there are "mutual acquaintances" outside the group in the 
surrounding network. Changes in the environment, i.e. the outside net-
work, may change the character of the group as an acquaintance group, In 
the latter case, however, a group is an acquaintance group, because mutual 
acquaintances linking members are themselves members of that group. 
Therefore changes in the outside social network will not affect the nature 
and structure of the group itself as an acquaintance group. Such concepts 
can be worked out in terms of graph theoretic cluster-concepts. For 
instance, the familiar concept of n-clique deals with the tightness of a 
group as a global property, due to the interrelationships or interactions of 
all members of a larger social network. The concepts of clubs and clans, to 
be introduced here denote a local property of structural autarchy in the 
sense that the interrelationships within the particular social group are 
sufficient for its homogeneity, and independent of those interrelationships 
involving members or parts of the surrounding larger social network. 

In this paper we shall introduce three different cluster concepts of 
graphs, cliques, clubs and clans, and investigate their interrelationships. 
The graphs treated here will be simple graphs: finite, non-empty, and 
having no loops or multiple lines. We shall mainly follow the notation and 
concepts given by Harary (1969), to which we may refer the reader for 
further reference. 

We shall suffice here with a cursory introduction of the concepts and 
notation used. 

A graph G is a set of points together with a set of lines. To simplify 
notation here, we shall use the same symbol G to denote the set of points 
of G. Any line of G connects some pair of points, u, v∈ Gt which then are 
said to be adjacent to each other in G. We shall also consider subgraphs of 
G, indicated by their pointset. If H ⊂ G is a subset of G, the subgraph H of 
G consists of all points of H together with all lines of G, which connect 
points, u, v ∈ H in G. A path, connecting two points u, v of a subgraph H, 
in that same subgraph H, consists of points u, w1, w2, . . . wl-1,  v ∈ H, such 
that u is adjacent to w1, wi is adjacent to wi+1, consecutively and wi-1 is 
adjacent to v. The length l of a path is given by the number of its lines. A 
cycle Cl of length l is a path of length l, where u = v. A subgraph H is 
connected in G, if each pair of points u, v ∈ H is connected by a path in H. 
A complete graph Kp is a graph of p points, where each pair of points is 
adjacent to each other. 

We shall also consider maximal subgraphs with respect to a given 
property. They are subgraphs of G satisfying that property, such that no 
larger subgraphs with that property exist in G, which contain them. A well 
known example is given by the cliques of a graph G: maximal complete 
subgraphs Kp of G. 
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The distance of a pair of points u, v in a certain subgraph H, denoted by 

dH(u, v) 

is given by the length of a shortest path connecting u and v in H. If u, v are 
not connected in H, this distance is infinity. We shall frequently make use 
of the well-known relation that, if H is a subgraph of G, than for every pair 
of points u, v∈ H 

dG(u,v) ≤ dH(u,v) (1) 

The distance between any two points in a subgraph of G cannot be smaller 
than their distance in G itself. 

The diameter of a subgraph H is given by the largest distance between a 
pair of points in that subgraph. If we extend the pointset H⊂ G with a point 
w ∈ G - H or a subset S ⊂ G - H, we may consider the distances in the 
larger subgraphs corresponding to H ∪ {w} or H ∪ S, denoting for 
simplicity distances as dH,w or dH,S [1]. The degree of a point u in G is the 
number of points (neighbors) adjacent to u in G. The set of those points is 
called the 1-neighborhood of u in G, to be denoted by V1(u). We may 
restrict the set of neighbors to those in a subgraph H of G only, to be 
denoted as V1

H(u). Similar extensions may be made to n-neighborhoods of 
u: points at distance n from u. 

2. Cluster concepts 

In standard graph theory a familiar cluster concept is given by the 
cliques of a graph G. As mentioned above, they are given by the set of 
maximal complete subgraphs of G. Another cluster type definition of 
subgraphs of graphs are the "n-cliques", introduced by Luce (1950; see 
also Luce and Perry, 1949) as given by the following definition [2], 

DEFINITION 1: An n-clique L of a graph G is a maximal subgraph of G 
such that for all pairs of points u, v of L the distance in G 

dG{u, v) ≤ n . (2) 

The reader may note that, due to the maximality of L, for every point w ∈ 
G - L, there is a point v ∈  L for which 

dG(w,v)>n. (3) 
From this definition, it can be seen that the n-clique is a global concept, 

based on the total structure of the network, as based on the graph 
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and reflected in its distance matrix. The distances between points in a 
certain subset of points can be based on shortest paths, involving other 
points from the network not belonging to that group. 

It is well-known, therefore, that in the subgraph formed by the points 
of an n-clique L, the distances between points can be larger than n. This 
follows from the familiar property, referred to above in condition (1), that 
for any two points u, v of the subgraph L of G we must have 

dG(u, v) ≤ dL{u, v). 

The condition (2) therefore does not imply that for each u, v ∈ L 

dL(u, v) ≤  n . 

Consequently, the diameter of L may be larger than n. 
In a recent article Alba (1973) has illustrated this phenomenon with 

the example, given here in Fig. 1. 
If we restrict our attention to 2-cliques L (n = 2) and designate 2-

cliques by their pointsets, it can be seen that L = {1, 2, 3, 4, 5} is a 2-
clique. However, its diameter is 3, i.e. the largest distance in L is 3, in the 
case of the pair of points 4 and 5. In fact, an n-clique can be disconnected 
(diameter infinity) as we shall illustrate further in this paper. 

The concept of n-clique therefore does not embody the idea of parti-
cular tightness or even connectedness of the particular group concerned 
as an essential feature of the corresponding cluster of points in a graph. 
Yet in many, if not most, problems in social network analysis, leading to 
a graphtheoretic formulation, this idea of interconnectedness is a basic 
feature of the "tightness" of sets of points, underlying the definition of a 
cluster. Putting up a similar argument for the connectedness of clusters as 
subgraphs, as well as for their tightness as measured by their diameter, 
Alba introduced "sociometric cliques", as a more satisfactory subclass of 
n-cliques. They are n-cliques with diameter n and consequently 
connected. As the sociometric context is not essential, we suggest as a 
more appropriate name "n-clan". 

Fig. 1. Graph G.
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DEFINITION 2. An n-clan M of a graph G is an n-clique of G such that 
for all pairs of points u, v of M the distance in M 

dM(u, v) ≤  n . (4) 

Consequently, for an n-clan M of G the following relations hold: 
(1) for all points u, v ∈ M: 

dM(u, v) ≤ n ; (5) 

(2) for all points w ∈ G - M there is a u ∈ M for which: 

dG(u, w) > n . (6) 

The relations (5) and (6) imply that M is an n-clique, as from relations (1) 
and (5) we have 

dG(u, v) ≤ dM(u, v) ≤ n , (7) 

whereas relation (6) ensures the maximality of M as an n-clique. 
Instead of the restriction of cliques to clans we could also have looked 

immediately at clusters corresponding to subgraphs of diameter n. These 
we shall call "n-clubs". 

DEFINITION 3. An n-club N of a graph G is a maximal subgraph of G of 
diameter n. 

For all points u, v of an n-club N we have for the subgraph N of G 

dN(u, v) ≤ n . (8) 

The maximality of N as an n-club of G implies that for all points w ∈ G - 
N, there is a point u ∈ N such that 

dN,w(u, w)>n . 
This condition, however, is not sufficient for the maximality of N, as 
illustrated by the graph of Fig. 2. The points on the cycle C4: {1, 2, 3, 4} 

form a subgraph of diameter 2. Neither point 5 nor point 6 can be 
 

 

Fig. 2. N of diameter 2.



 

Fig. 2. N of diameter 2. 
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added without enlarging the diameter of the resulting subgraph to 3, Yet N 
as a whole is a graph of diameter 2 which contains the C4. 

3. Interrelationship of cliques, clubs and clans 

By definition n-clans are n-cliques of diameter n. But how are they 
related to n-clubs? According to Alba (1973) all n-clubs are n-clans, as 
formulated in his theorem 2.1, which, in our terminology, states that a 
subgraph of G is an n-clan if and only if (iff) it is an n-club. This theorem 
is incorrect, as the "if"-part is deficient. This can be shown with the 
following proposition. 

Proposition 1: Every n-club N of a graph G is contained in some n-
clique L of G. 

Proof: An n-club N of G satisfies relation (8) and, as a subgraph also 
relation (1). Therefore, we have for all points u, v ∈ N 

dG(u, v) ≤ dN(u, v) ≤ n 

Hence N is contained in some n-clique L of G. However, N can be 
properly contained in such an n-clique L. For instance, there may be a 
point w of L, not in N, such that for all points u ∈ N we have 

dG(u, w) ≤ n , 

whereas there is a point v ∈ N such that 

dN,w(v, w)>n . 

For instance, in the example provided by Alba (1973), as given in Fig. 1 in 
this paper, the set {1, 2, 3, 4} is obviously a 2-club, which is not a 2-clique 
and therefore not a 2-clan, as it is properly contained in the 2-clique 
{1,2,3,4,5}. 

Proposition 2: Every n-clan M of G is an n-club of G. 
Proof: Let M be an n-clan of G. It therefore satisfies relations (5), (6) 

and (7). Now assume M to be contained in a larger subgraph of diameter n 
formed by M ∪ S, where S ⊂ G - M: S is a subset of points in the other 
points of G. However, then we must have, for all u, v ∈ M; s, w ∈ S: 

dG{u, w) ≤ dM,S(u, w) ≤ n ; 

dG(s, w) ≤ dM,S(s, w) ≤ n ; 
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and, obviously,  

   dG(u, v) ≤ dM,S(u, v) ≤  dM(u, v )≤  n .  

This violates relation (6) and contradicts the maximality of M as an n-
clique of G: M ∪ S is contained in some n-clique L of G. Consequently, 
there can be no such set S in G and M is a maximal subset of G with 
diameter n. That is, M is also an n-club of G, 

In our example of Fig. 1, the only 2-clique, which is also a 2-clan and 
hence a 2-club is formed by the set of points {2, 3, 4, 5, 6}. 

An obvious corollary of proposition 2 is: 

Corollary 1: If an n-club N of G is contained in an n-clan M, then N = 
M. 

Our results can be summarily illustrated with the aid of Fig. 1, where 
we restrict ourselves to distance 2 or diameter 2, (n = 2). 

(a) 2-cliques of G: a1 {1,2, 3,4,5};a2: {2,3,4,5,6}. 
(b)2-clubs of G: b1: {1,2, 3,4}; b2: {1,2, 3, 5}; b3: {2 ,3 ,4 ,5 ,6} .  
(c)2-clans of G: cl: {2,3,4,5,6}. 
The 2-clubs b1 and b2 are not 2-clans. They are properly contained in 

the 2-clique a1, which is not a 2-clan, as it has diameter 3. The 2-clique 
a2 is a 2-clan (cl) and hence also a 2-club (b3). 

4. The systems of cliques, clubs and clans of a graph 

From the foregoing discussion it will be clear that for any graph G we 
can distinguish: 

(1) the system of n-cliques of G: the class Ln(G) = Ln, the elements of 
which are indicated by the pointsets L of the different n-cliques L of G; 

(2) the system of n-clubs of G: the class Nn(G) = Nn, containing the 
pointsets N of the different n-clubs N of G; 

(3) the system of n-clans of G: the class Mn(G) = Mn, containing the 
pointsets M of the different n-clans of G. 
In this section we consider more closely the possible interrelationships of 
these classes Ln, Nn, and Mn

  of a graph G.  Consider the symmetric 
difference of Ln  and Nn: 

Ln ∆ Nn =  (Ln ∪ Nn ) – (Ln ∩ Nn),  

containing only those n-cliques or n-clubs which are not common to both. 
Define 

~Nn =def Nn  ∩ (Ln ∆ Nn), 
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which contains only n-clubs which are not n-clans, and 

~Ln  =def Ln ∩ (Ln ∆ Nn), 

the subclass of n-cliques, which are not n-clans. The foregoing results of 
propositions 1 and 2 can be collected in the following lemma. 

Lemma 1: For each n-club N ∈ Nn, there is an n-clique L ∈ Ln such that N 
⊆ L; (a) N is an n-clan (N ∈ Mn) iff for every v ∈ G - N there is a u ∈ N 
such that 

dG(u, v) > n; 

(b) N is not an n-clan (N ∈ ~Nn) iff there is a v ∈ G - N, such that for all u 
∈ N 

dG(u, v) ≤ n . 

According to this lemma every n-club N ∈ Nn is either equal to an n-
clique L ∈ Ln, (N = L), and then an n-clan (N ∈ Mn) or N is properly 
contained in some n-clique L ∈ Ln,), (N ⊂ L). The concept of n-clique (L 
∈ Ln,) defines a class of clusters or subgraphs based on "close" reachability 
of points, through paths including points in G external to L. 

On the other hand n-clubs (N ∈ Nn) are based on the condition of 
"close" reachability of points, involving internal points of N only. In that 
sense n-clubs N have a property of local autarchy: the closeness or 
tightness of their communication structure is independent of the relations 
of its points with the surrounding network. Obviously, this latter, more 
stringent, condition leads to "smaller" clusters: n-clubs cannot be larger 
than n-cliques, as they are included in them. In fact, as we can see from 
the examples mentioned in this paper, an n-clique L can contain more than 
one n-club N and, conversely, an n-club can be contained in more than one 
n-clique L. 

The n-clans (M ∈ Mn) belong to both Ln and Nn they are n-cliques as 
well as n-clubs. As n-clubs they share the property of connectedness with 
sufficiently narrow diameter. As n-cliques they have the advantage of 
"size": they are as "large" as n-cliques. 

We therefore can subsume the interrelationship of these classes in the 
following three, mutually exclusive subclasses: 

(a) Mn = Ln ∩ Nn: the class of n-clans as the intersection of the class of 
n-cliques and the class of n-clubs; 

(b) ~Ln: the subclass of n-cliques which are not n-clans; 
(c) ~Nn: the subclass of n-clubs, which are properly contained in 

n-cliques. 
For n - 1 we trivially have Ln = Nn = Mn, all systems reducing to 
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the system of cliques of G; the class of maximal complete subgraphs of G. 
A similar trivial reduction can be seen for the case of G itself being an n-
club. Excluding these trivial cases, we may note that, except for the 
nullgraph, Nn and Ln are never empty. 

The following three cases deserve some interest:  
(I) Mn  = ∅: there are no n-clans;  
(II) ~Nn = ∅: all n-clubs are n-clans; (Alba's case); 
(III) ~ Ln = ∅: all n-cliques are n-clans. 

Case I. = Mn = ∅ (No clans) 
In this case ~Nn and Ln are disjoint classes. Every N ∈ ~Nn, so condi-

tion (b) of Lemma 1 holds for every N ∈ Nn. We shall illustrate this case 
for n = 2, (distances and diameter 2). Extensions to general n, if neces-
sary, are left to the reader.        

We can define for all N ∈ ~N2 (= N 2 in this case) and for every v ∈ G 
- N (≠ ∅) the set 

Nv  =def {u ∈ N; dN,V(u, v) > 2} (9) 

Note that Nv is never empty, as G - N never is, under the present 
assumptions. Consequently, for every v ∈ G - N and for all corresponding 
u ∈ Nv we have 

V1
(N)(u) ∩ V1

(N)(v) = ∅. (10) 

Their 1-neighborhoods in N are disjoint in G. Obviously, v ∈ G - N and u 
∈ Nv cannot be adjacent in G either, nor in any subgraph of G. Given 
relation (10) such a pair of points u, v can therefore have 

dG (u, v) = 2 

if and only if 

V1
G-N(u) ∩ V1

G-N(v) ≠ ∅, (11) 

that is when their 1-neighborhoods in G - N are not disjoint in G. These 
considerations establish the validity of the following proposition: 

Proposition 3. M2
 = ∅, iff for all N ∈ N2, there is a point v ∈ G - N, 

such that for all u ∈ Nv 

V1
(G-N)(u) ∩ V1

(G-N)(v) ≠ ∅ 
 
In this case as M2 = ∅, there are no 2-clans, all 2-clubs N ∈ N2 are 
properly contained in larger 2-cliques L. This situation is illustrated with 
the graph G of Fig. 3, which has no 2-clans as can be deduced from the 
enumeration of its classes N2 and Ln given in Table I. In this 
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Fig. 3. A graph G without 2-clans. 



example all 2-cliques contain 2-clubs. More than one 2-club, a star and a cycle 
Cs, is contained in each 2-clique. 

Case II. Nn = ∅. Alba's case: all clubs are clans 
We have Nn ⊆ Ln. This case is therefore equivalent to Mn =  Nn. All N ∈ Nn 

satisfy condition (a) of Lemma 1. For the case of diameter 
2 (n = 2) one can see easily that: M2

 = N2 iff for every N ∈ Nn all v ∈ 
G - N, there is a u ∈ Nv satisfying 

(a) 1-neighborhoods in G - N disjoint: 
 
V1

(G-N)(u) ∩ V1
(G-N)(v) ≠ ∅                                                                (12) 

 
or, equivalently, 

(b) 1-neighborhoods in G disjoint: 
 
V1(u) ∩ V1(v) ≠ ∅                                                                              (13) 
 
 
An example for n = 2 is given in Fig. 4, where the sets {si}, {uj} and {vk} 

indicate points of degree 2, each adjacent solely to the points 1, 3 or, 
respectively 1, 2 or 2, 3. All the 2-clubs are 2-clans and therefore 
 
TABLE I 
 

N2                                   L2 

 
Star: {2,3,4,6}        ⊂      {1,2,3,4,5,6} 
C5:    {1,2,3,4,5}     ⊂      {1,2,3,4,5,6} 
Star:  {1,2,5,7}       ⊂      {1,2,3,5,6,7} 
C5:     {1,2,3,6,7}    ⊂      {1,2,3,5,6,7} 
Star:  {1,4,5,8}       ⊂      {1,3,4,5,6,8} 
C5:     {3,4,5,6,8}    ⊂      {1,3,4,5,6,8} 
Star:  {3,6,7,8}       ⊂      {1,3,5,6,7,8} 
C5:     {1,5,6,7,8}    ⊂      {1,3,5,6,7,8} 
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Fig. 4. A graph G where all 2-clubs are 2-clans. 

2-cliques. They are: 

{1, 3, si}, {1, 2, uj}, {2, 3 , v k }  

and 

{si , 1, uj}, {uj, 2, vk}, { si,  3 ,v k }  

There are two 2-cliques which are not 2-clans: L ∈ L2, They are: {1, 2, 
3} and {si, uj, vk}. Note that as subgraphs they are nullgraphs i.e. totally 
disconnected. All their points are isolated. It should be noted, that these 
latter 2-cliques do not contain any 2-clubs, or, for that matter, any 
subgraph of G of diameter 2. This illustrates the more general situation 
where there can exist w-cliques L ∈ ~Ln, which contain no n-clubs N ∈ 
Nn, but at most parts of N ∈ Nn. 

Case III. ~Ln = ∅  All n-cliques are n-clans _ 
As Ln ⊂ Nn we immediately have Ln = Nn = Mn

 and therefore ~Ln = ∅ 
implies ~ Nn = ∅9£„ = 4>. If there are no n-cliques which are not n-clans, 
then there are no n-clubs which are not n-clans. (We have seen in the 
former 

 
10" 9 

Fig. 5. A graph G where all 2-cliques are 2-clans. 
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case that the reverse need not be true). It is hard to characterize such 
graphs beyond the obvious statement that all n-cliques have diameter n. 

For n = 2 an example is given in Fig. 5. In this all 2-clubs are 2-cliques 
and conversely. All three clustersystems coincide as L2 = N2 = M2. The 
common elements of these systems are: (a) all the stars of degree 3: e.g. 
{1, 2, 3, 7} etc.; (b) all the cycles C4: e.g. {1, 2, 6, 7} etc.; (c) the two 
cycles C5: {1, 2, 3,4, 5} and {6, 7,8,9,10}.  

5. Conclusions and suggestions for further research 

We may conclude that the two classes of n-cliques Ln and n-clubs Nn  
of a graph G are classes of clusters which are in general but loosely 
interrelated and have a significance of their own. The latter, the n-clubs, 
are maximal subgraphs N of G with respect to internal reachability of 
points within distance n, i.e. independent of the connection of the points 
of N with order points in G: G - N. In that sense n-clubs are essentially 
local concepts: their reachability as diameter n subgraphs is not effected 
by changes in the subgraph G - N and the connection of G - N with N. 
This independence of the environment given by the outer network G - N 
can be seen as a certain local autarchy. In short, N as a subgraph would 
have at most diameter n in any other graph G. 

The n-cliques L are global concepts in G in the sense that their reach-
ability of points within distance n can involve points external to L, Hence 
their reachability can be determined outside L in G - L: elimination of 
points from G - L, or lines in the subgraph G - L or connecting G - L and 
L, can effect the reachability of points in L. 

The n-clans M of G, when they exist, combine these local and global 
aspects as they are cliques as well as clubs. However, the class Mn^ of  n-
clans may be empty for a graph G. 

Finally, n-clubs N are always contained in some n-clique L. In that 
sense they are "smaller" than n-cliques. Only n-clans, as n-clubs have the 
"size" of an n-clique; Moreover different n-clubs can be contained in the 
same n-clique and different n-cliques can contain the same n-clubs. 

The interrelationship of the three classes Ln, Nn and Mn therefore can 
be manifold. One perspective for further research is therefore to 
characterize graphs G according to the nature of that relationship. In the 
cases I, II and III, given in the last section our characterization hardly 
proceeded beyond that provided by the definitions. 

Then the development of adequate (computer-) algorithms for the 
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production of the systems of n-cliques L, n-clans M and n-clubs N of any 
graph G invites further research. The problem is satisfactorily solved for 
the detection of n-cliques. A well-known method is given by Auguston 
and Minker (1970). A reputedly faster algorithm than that referred to by 
them was recently published by Bron and Kerbosch (1973). 

Therefore, the problem of detecting the system of n-clans of a graph 
reduces to sorting out the n-cliques of diameter n from the n-cliques of 
that graph (Alba, 1973). The development of an algorithm for the 
detection of the system of n-clubs of a graph may well be more cumber-
some. Our first cursory assessment of this problem suggests that it may be 
of the order of enumerating the subgraphs corresponding to all subsets of 
points within the n-cliques of a graph. 

Further research may also concern possible generalizations. One 
obvious generalization is that of (m, n)-clans (m ≥ n) of a graph: n-cliques 
which are m-clubs. Another generalization extends these concepts to 
directed graphs, with the introduction of directed cliques, clubs and clans. 

Notes 

The conventional notation of set theory is used. In particular S ⊆ G will denote 
set inclusion, S ⊂ C proper inclusion and S = G identity of sets. 

2 Although the cluster concepts to be introduced in this paper suggest more 
appropriate names, we shall resist the temptation to do so and accept this part of 
the nomenclature as established. 

3 It should be noted that, although for each N ∈  Nn we have N ⊆ L for some L ∈ 
Ln, in general Nn ⊆ Ln,does not hold, as some elements N (∈ Nn) are not 
n-cliques L and therefore do not belong to Ln ., 
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