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Seidman (1983a) has suggested that the engineering concept of LS sets provides a good formaliza- 
tion of the intuitive network notion of a cohesive subset. Some desirable features that LS sets 

exhibit are that they are difficult to disconnect by removing edges, they are relatively dense within 

and isolated without, they have limited diameter, and individual members have more direct links 

to other members than to non-members. Unfortunately, this plethora of features means that LS 

sets occur only rarely in real data. It also means that they do not make good independent 

variables for structural analyses in which greater-than-expected in-group homogeneity is hypothe- 

sized with respect to some substantive dependent variable, because it is unclear which aspect of 

the LS set was responsible for the observed homogeneity. We discuss a variety of generalizations 

and relations of LS sets based on just a few of the properties possessed by LS sets. Some of these 

simpler models are drawn from the literature while others are introduced in this paper. One of the 

generalizations we introduce, called a lambda set, is based on the property that members of the set 

have greater edge connectivity with other members than with non-members. This property is 

shared by LS sets. Edge connectivity satisfies the axioms of an ultrametric similarity measure, and 

so LS sets and lambda sets are shown to correspond to a particular hierarchical clustering of the 

nodes in a network. Lambda sets are straightforward to compute, and we have made use of this 

fact to introduce a new algorithm for computing LS sets which runs an order of magnitude faster 

than the previous alternative. 

1. Introduction 

Since the introduction of the sociogram (Moreno 1934), and the 
sociomatrix (Forsyth and Katz 1946), one of the main preoccupations 

* The authors are grateful for helpful comments by Linton Freeman, Steve Seidman, and 

especially Katherine Faust. This research was supported in part by grant number ROO0231292 of 
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of what is now called network analysis has been the detection of 
cohesive subsets in social networks. The first formal description of a 
cohesive subset was by Lute and Perry (1949), who formalized the 
clique as a maximal set of actors each of whom named the other as a 
friend in a sociometric interview. Since then a myriad of cohesive 
subset definitions have appeared in the literature. 

In this paper, we take as our point of departure the suggestion by 
Seidman (1983a) that the electrical engineering concept of LS sets 
(Lawler 1973; Luccio and Sami 1969) provides a useful formalization 
of the social networks notion of a cohesive subset. One reason why LS 
sets are appealing in this context is that they possess many of the 
characteristics that we intuitively associate with the notion of cohesive 
subset. In fact, they may have too many features, in the sense that few 
LS sets are found in observed social networks. This leads to practical 
problems with using LS sets to analyze empirically derived datasets. 
The many properties possessed by LS sets can also lead to certain 
problems of interpretation, which we discuss in the final section. The 
main objectives of this paper are to explore some of the key properties 
of LS sets, and to suggest generalizations based on these properties that 
may be more useful in some applications. In the process, we relate LS 
sets to a number of alternative models of cohesive subsets. We also 
introduce a new algorithm for computing LS sets which is an order of 
magnitude faster and easier to comprehend than previously published 
methods. 

2. Notation, terminology and scope 

In this paper, we consider only networks represented as connected, 
undirected irreflexive graphs. We use G( I’, E) to denote a graph with 
vertex set I’ and edge set E. We use the terms “vertex”, “node”, 
“ point”, and “actor” synonymously. Similarly, we use “edge”, “line”, 
and “link”, synonymously. The number of edges linking vertex sets A 
and B, where A and B are disjoint subsets of V, is represented by 
CX( A, B). When B = V - A, we may write CC(A). By a slight abuse of 
notation we also use (Y( a, B) to denote the number of edges linking a 
vertex a to a set of vertices B. The subgraph induced by a subset of 
nodes S is denoted G,. The minimum degree of a graph or subgraph G 
is denoted 6(G). The edge connectivity of a pair of vertices a, h is 



S. P. Borgatti et al. / LS sets, lambda sets and other subsets 339 

given by the minimum number of edges that must be removed in order 
to disconnect them, and is denoted h( a, b). Technically, h( a, a) is 
infinite, but for the purposes of data analysis we conventionally assign 
h( a, a) = MAX({ X(i, j): i, j E I/ and i #:j}). The edge connectivity 
of a graph G is denoted A(G) and is equal to MIN((X(a, b): a, b E 
V}). The edge connectivity of a subset S is written h(S) = 
MIN(( h( a, b): a, b E S)). The quantity A(S) should not be confused 
with X( G,), which is the edge connectivity of the subgraph induced by 
S. 

3. LS sets 

The notion of LS sets was first introduced by Luccio and Sami 
(1969) who termed them minimal groups. Lawler (1973) renamed them 
LS sets. after their authors. The definition is as follows: 

Definition 1. Let G( V, E) be a graph. Then a subset H of V is termed 
an LS set if for any proper subset K of H, a( K, V - K) > a( H, V - 

H). 

The essence of the idea is that an LS set may be thought of as the 
union of its subsets, and this union is “better” than any subset because 
it has fewer connections to the outside. In the context in which LS sets 
were introduced, graphs were used to represent circuits of electronic 
components mounted on silicon chips. The design objective was to 
group components onto physical chips in such a way as to minimize the 
number of connections across chips. The LS set definition guarantees 
that if any subset contained in an LS set were mounted on a chip by 
itself, it would require more connections to the outside than the LS set 

h 
3 4 7 a 11 12 

Fig. 1. 
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would. Hence, each subset is better off joining the LS set than going 
out on its own, so to speak. 

Note that the set of all nodes V is an LS set, and that every singleton 
subset { u }, u E V, is also an LS set. We refer to these as “ trivial” LS 
sets. Connected graphs have ( I/ 1 + 1 trivial LS sets. 

As a network model of a cohesive subset, an LS set has many 
appealing characteristics. One important property is that each member 
of an LS set is required to have more connections with other members 
than with non-members. For example, the graph in Figure 1 contains 
the following 16 LS sets: 

(1) (21 131 (41 (51 161 VI (81 (91 WI {W (121 
(1 2 3 4) 
(1 2 3 4 5 6 7 S} (9 10 11 12) 
(1 2 3 4 5 6 7 8 9 10 11 12). 

For each one (except singletons), it can be seen that individual mem- 
bers of the LS set have more connections to other members than to 
outsiders. As others have pointed out (Phillips and Conviser 1972; Alba 
1973; Sailer and Gaulin 1984), the requirement that members have 
more ties within-set than without is an important part of what we mean 
by a cohesive subset. 

However, the definition of an LS set requires more than just individ- 
ual members having more internal than external links. Rather, every 
proper subset of an LS set must have more ties, as a set, to the rest of 
the, LS set, than to outsiders. Hence, in Figure 1, the LS set { 1 2 3 4) 
contains 14 proper subsets, each of which has more connections to the 
remaining members than to non-members (see Table 1). Seidman 
(1983a,b) has proved the following proposition: 

Proposition 1. Let G( V, E) be a graph. A subset H of V is an LS set if 
and only if for any proper subset K of H, a( K, H - K) > a( K, V - 

H). 

The proposition states that LS sets are subsets of actors in which every 
proper subset K of the subset H has more connections to the remain- 
ing members of the subset, H - K than to all outsiders, V- H. Since 
the proposition is an “if and only if”, it can be regarded as an 
alternative to the original definition given by Luccio and Sami. 
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Table 1 
All subsets of LS set H = {l 2 3 4) from Figure 1. Note that V- H = (5 6 7 8 9 10 11 12) 

Subset K H-K a(K, H-K) a(K, V-H) 

111 
(21 
(31 
(41 
{l 21 
(1 31 
(1 41 
(2 3) 
(2 4) 
(3 41 
(1 2 3) 
{l 2 4) 
(1 3 41 
(2 3 41 

(2, 3, 41 

(1 3 41 
(1 2 41 
(1 2 31 
13 41 
(2 4) 
(2 31 
(1 41 
(1 3) 
(1 21 
(41 
(31 
{21 
{l) 

3 
2 
3 
2 
3 
4 
3 
3 
4 
3 
2 
3 
2 
3 

0 

1 
0 
1 
1 
0 
1 
1 
2 
1 
1 
2 
1 
2 

In substantive terms, if we equate the sociological notion of a 
“group” with the network notion of a cohesive subset, Proposition 1 
guarantees that LS sets do not contain splinter groups with more 
“allegiance” to outsiders than to the rest of the group. Although it is 
outside the scope of this paper to put forth a theory of group stability 
and fission (see, for example Tutiauer 1985 and Zachary 1984), we can 
easily imagine that the existence of such splinter groups would increase 
the probability of a future schism. Since LS sets cannot contain 
factions of this kind, we can expect LS sets to be relatively stable over 
time. 

It is a general property of LS sets is that they do not, in the precise 
sense detailed below, contain minimum weight cutsets. Lawler (1973) 
has proved the following proposition: 

Proposition 2. Let G( V, E) be a graph. Let S be any subset of I’, let H 
and T be proper subsets of S such that H is an LS set and a(T) is 
minimal. Then H is a subset of T or S - T. 

The sense of Proposition 2 is as follows. Begin by letting the set S 
equal V, the set of all nodes. Find a minimum weight cutset C. In the 
case of ordinary graphs whose edges are not valued, a cutset is a 
collection of edges whose removal disconnects the graph. A minimum 
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weight cutset is a cutset with no more edges than any other. Let the two 
sets of nodes separated by C be called T and V- T. Note that 
a(T) = 1 C 1 is minimal, because C is a minimal weight cutset. If there 
are any LS sets in the graph, aside from I’ itself, they will be wholly 
contained in (or equal to) either T or I/- T. In other words, they 
cannot “straddle” a minimum weight cutset. This is the simplest case. 
The more complicated case allows .S to be any subset of I’. For 
example, we could let S equal the set T found above in the simple case. 
Within this new S we find a new T such that CX( T) is minimal. Again, 
this amounts to finding a minimum weight cutset separating some 
members of S (to be called T) from all other nodes (to be called 
V- T). The proposition says that any LS sets wholly contained in this 
S will be found in T or S - T. 

Substantively, Proposition 2 reinforces Seidman’s claim that LS sets 
are highly cohesive. As Zachary (1977) has suggested in a slightly 
different context ‘, minimum weight cutsets may be thought of as fault 
lines in a network, along which rifts or breakups are likely to occur. LS 
sets do not, in the relative sense specified by the proposition, contain 
these fault lines. 

A consequence of Proposition 2 is that LS sets are relatively robust 
in the face of random removal of edges. In order to disconnect an LS 
set (i.e., isolate one or more members from the others), a relatively 
large number of edges must be removed. For example, a minimum of 3 
edges must be removed from the graph in Figure 1 in order to 
disconnect members of the LS set { 1 2 3 4}, yet only 2 edges need to 
be removed to disconnect any member of this set from any non-mem- 
bers (and only 1 edge to disconnect from some non-members). The 
reason LS sets are so hard to disconnect is that every pair of points 
within the set is connected by a relatively large number of independent 
paths. Independent paths are edge-disjoint, which means they have no 
edges in common. Removing an edge from one path destroys only that 
path, so that other paths connecting the points are not disturbed. In 
other words, members of LS sets are joined to other members by more 
edge-disjoint paths than they are to non-members. Consequently, graphs 
subject to random deletion of edges will tend to retain connections 
within LS sets, while losing connections between them. The general 

’ Zachary’s primary interest was in the interpretation of minimum weight cutsets 

of actors who were identified, a priori, as leaders of opposing factions. 

separating pairs 
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principle, given by Proposition 3, is that the edge connectivity between 
members of an LS set is greater than the connectivity between members 
and non-members. 

Proposition 3. Let H be an LS set of a graph G( I’, E). Then for all U, 
u, w E H and x E V- H, A( u, u) > A( w, x). 

Proof. We first note that if e is an edge not in H then H is an LS set 
in G - e. Deleting edges outside H can lower the value of h(H) as well 
as X( w, x), but h(H) is bounded below by the edge connectivity of the 
induced subgraph G n. If X(H) is less than or equal to h( w, x) then 
consider the induced subgraph G’ formed by H and all (w, x) disjoint 
paths. H is still an LS set in G’ with x’(H) I X(H) and X( w, x) is 
unchanged. It follows that H must contain a minimal cutset, con- 
tradicting Lawler’s result. 0 

The characterization of LS sets in terms of edge connectivities has 
some practical benefits. Although we have ignored the point so far, the 
reader will have noticed that LS sets can contain each other, but they 
cannot partially overlap. In other words if H and L are LS sets, then 
either H n L = 0 or H f’ L = H or H n L = L (Luccio and Sami 
1969). Consequently, we can represent the set of all LS sets in a graph 
as series of nested partitions of the set of vertices in the graph. For 
example, the LS sets in Figure 1 form the following partitions: 

((11 (21 (31 (41 (51 (61 (71 (8) (91 1101 (111 (1211 
((1 2 3 4) (51 (61 (71 (81 (91 (101 (111 (1211 
((1 2 3 4 5 6 7 8) (9 10 11 12)) 
((1 2 3 4 5 6 7 8 9 10 11 12)) 

We can represent these nested partitions as a dendrogram (see Figure 
2) such as produced by hierarchical clustering programs. One question 

0000000001~11 
A 312467589012 

-____- _ - - _ - _ - - - - - - 

Fig. 2. Dendogram representing the LS sets of the graph in Figure 1 
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that comes to mind, is in what important way do the smaller, less 
inclusive LS sets differ from the larger, more inclusive LS sets? The 
answer is edge connectivity. In Figure 2, the first column gives the edge 
connectivity of all LS sets found at that level in the partition. Members 
of the highest, most exclusive LS sets have high edge connectivity with 
each other and are therefore highly cohesive. Members of the lower, 
less exclusive LS sets are less well connected. Thus, edge connectivity 
provides a framework for organizing the LS sets of a graph. 

4. Lambda sets 

The fact that LS sets form nested partitions, where the level of 
nesting corresponds to the internal cohesiveness of the subsets, can be 
explored further. Suppose we compute the edge connectivity between 
every pair of points in a graph, and represent the information in a 
matrix as shown in Figure 3. Notice that all points whose maximum 
edge connectivity is 3 have identical rows in the matrix, aside from the 
cells corresponding to each other. In other words if points i and j have 
the same maximum connectivity, then for all k # i #j, then A( i, k) = 

A( j, k). For example, the rows associated with nodes 1 and 2 are 
identical except for the values in columns 1 and 2. More generally, for 
every triple i, j, k E V, at least two of following must be equal: 
{ X(i, j), A( j, k), A( i, k)}. This occurs because edge-connectivity 

433322221111 

343322221111 

334322221111 

333422221111 

222243331111 

222234331111 

222233431111 

222233341111 
111111114222 

111111112422 

111111112242 

111111112224 

Fig. 3. Matrix of edge-connectivities between pairs of vertices for the graph in Figure 1. 
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000000000111 

x 123456789012 
-_--_ - _ - _ _ - - _ _ _ _ 

4 . . . . . . . . . . . . 
3 xxxxxxx xxxxxxx . . . . 
2 xxxxxxxxxxxxxxx xxxxxxx 
1 xxxxxxxxxxxxxxxxxxxxxxx 

Fig. 4. Hierarchical clustering of edge connectivities given in Fig. 3. Each cluster is a lambda set 

with connectivity A. 

satisfies the triangle inequality condition of an ultrametric, namely that 
for all i, j, k E I’, X(i, k) 2 MIN(X( i, j), X(j, k)). 

The fact that edge connectivity satisfies the axioms of an ultrametric * 
implies (Johnson 1967) that there exists a corresponding hierarchical 
clustering of the nodes of the graph. Thus, the matrix of edge connec- 
tivities given in Figure 3 corresponds to the hierarchical clustering 
given in Figure 4. Note that all the LS sets of the graph are among the 
clusters, but there are other ones as well. This result suggests the 
possibility of an interesting generalization of LS sets, which we will call 
lambda sets. The definition is as follows: 

Definition 2. Given a graph G( V, E), a lambda set S is a subset of V 
such that for all a, b, c E S and d E V- S, A(a, b) > X(c, d). 

A lambda set is a maximal subset of actors who have more edge-inde- 
pendent paths connecting them to each other than to outsiders. Since 
we can characterize a lambda set S by the minimum connectivity 
among its members, we can also refer to lambda sets as lambda-k sets, 
where k = A(S). In the dendrogram in Figure 4, every cluster is a 
lambda set (Proposition 3), and the connectivity within each set is 
given by the level of clustering. 

A convenient feature of lambda sets is that they are more numerous 
in real data than LS sets, and therefore more practical as an analytic 
tool. Yet since every LS set is a lambda set (Proposition 3), any analysis 
based on lambda sets will not contradict one based on LS sets. 
Whenever it makes sense to break down the structure of a graph into 

’ The other two axioms of an ultrametric are easily satisfied since X(i, j) = A( j, i) and X 
achieves its maximal value only for h(i, i). 
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LS sets, it also makes sense to examine the lambda sets, since they can 
only add additional information to the analysis. 

The fact that lambda-sets are disjoint at a given A-level, rather than 
partially overlapping, is convenient for data analysis. From a measure- 
ment point of view, the lambda set an actor falls in may be seen as a 
categorical attribute of that actor, scarcely different in this context 
from his or her ethnic group, race, party affiliation, birthplace, and so 
on. Thus, the assignment of actors to lambda sets may be used as a 
categorical variable in further analysis. For example, it might be used 
to predict amount of knowledge about the other actors possessed by 
the actor, or to estimate the probability of adoption of an innovation. 

The fact that lambda sets generate a series of groupings that are 
nested hierarchically within each other means that the data analyst is 
able to choose the level of detail to analyze. All lambda set groupings 
describe the same cohesive subset structure of a network, but they vary 
according to the coarseness or fineness of the description. 

Lambda sets are easy to interpret. Actors form lambda sets if there 
are more distinct paths linking them to each other than to others. 
Actors in lambda sets with connectivity X have a minimum of X 
independent paths linking any one to any other. When X is large, a 
lambda set describes a subset that is relatively difficult to disconnect by 
means of edge removals. For example, in a graph where nodes repre- 
sent cities and edges represent roads, a lambda set is a collection of 
cities which, in the event of a natural disaster are unlikely to be 
completely disconnected from each other. 

Lambda sets may be viewed as pockets of a network which are less 
vulnerable to disruption than other areas. We can imagine that if what 
flows across the edges of the network are information or goods or even 
genes, then over time we can expect members of the same lambda set to 
be more homogeneous with respect to the goods, information or genes 
they possess. For example, we expect animals of a given species living 
in geographic areas accessible via multiple independent paths should 
share more genetic traits, all else being equal, than animals nearly 
isolated from each other. Similarly, human groups that maintain multi- 
ple, independent, paths of communication are more likely to share 
cultural traits than those with few paths, if there is a high likelihood of 
edge destruction. 

Even in affective networks, we might expect that subsets that are 
lambda sets are much more likely to survive spats between individual 
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members than other subsets, because bad feeling between any pair of 
members will not cut the subset in half: all the other members will 
continue to be connected to each other despite the missing link. Thus, 
problems remain local rather than necessarily escalating into group 
fission. In this sense, we can expect lambda sets to demonstrate greater 
stability or persistence over time than subsets with less edge connectiv- 
ity. 

5. Computation of lambda sets and LS sets 

Lambda sets may be computed via a simple two-step algorithm. In 
the first step, we compute a matrix C of edge connectivities such that 
Cjj = A( i, j) for i, j E I/. Ford and Fulkerson’s (1956) well known 
“max-flow, mm-cut” theorem states that the capacity of a minimum 
weight cutset separating two vertices (i.e., their edge connectivity) is 
equal to the maximum flow between them. Ford and Fulkerson’s 
constructive proof yields an algorithm for computing the maximum 
flow between any two vertices. The basic algorithm is reproduced in 
many standard texts of graph theory (such as Bondy and Murty 1976) 
and combinatorics (such as Nijenhuis and Wilf 1975). For non-valued 
graphs with n vertices and m edges the standard algorithm runs in 
0( nm) time for each pair of vertices, or approximately 0( n3m) s 0( n’) 
time for the entire matrix of edge connectivities. However, since we 
know in advance that we will need to compute flows between all pairs 
of vertices, some efficiencies are possible, thanks to an algorithm by 
Gomory and Hu (1964) which runs in 0(n4) time. 

In the second step, we perform the equivalent of a hierarchical 
clustering on C. To do this, we successively partition V such that 
Pk( i) = Pk( j) only if X(i, j) 2 k, where 0 I k I Max[A(i, j) 1 i, j E 

V]. For example, if we implement P as an integer matrix with 
Max[h( i, j) ( i, j E V] + 1 rows and 1 V 1 columns, then we should 
have the following code fragment: 

for k := 0 to MaxC do begin 
for j := 1 to n do P[k, j] :=j; 
for i := 2 to n do for j := 1 to i - 1 do if C[i, j] > = k 

then P[k, i] := P[k, j]; 
end; 
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On output, each row of P stores a different, hierarchically nested, 
clustering of nodes. Two nodes i and j are in the same lambda set at 
level k if and only if P[k, i] = P[k, j]. 

LS sets may be computed from the set of all lambda sets by 
exploiting a theorem by Luccio and Sami (1969). The theorem states 
that the union of two or more LS sets S, is itself an LS set if 
Cx(S, us, u... U S,) < MIN(a( S,), a(S,), . . . , CX(S,)). In other words, 
the union of the LS sets is an LS set if its outdegree is less than that of 
any of its LS set constituents. The importance of the theorem is that we 
do not need to consider all possible subsets in evaluating whether a 
given set is an LS set. Rather, we need only consider those subsets 
which are themselves LS sets. Further, our own Proposition 3 guaran- 
tees that all LS sets are lambda sets, so we need not test any but the set 
of lambda sets for the LS condition. 

This suggests the following procedure. Begin with the smallest lambda 
set S that is not a single vertex. Since S is the union of smaller LS sets 
(singletons), we know that S is an LS set if for all si E S, a( S, V - S) 
--c MIN(a(s,, V), (Y(s~, V) ,... ). Repeat for every other lambda set 
whose elements do not include other lambda sets. Now take the 
smallest lambda set obtainable as a union of the LS sets created in the 
first round. Test whether it is an LS set by determining whether its 
outdegree is less than that of any of the LS sets within it. Repeat for 
every other lambda set. The process continues until the only lambda set 
left is the one containing all vertices in the graph. Since this process 
obviously executes in less than 0( n4) time, the entire procedure for 
extracting LS sets including the lambda set step runs in O(n4) time. 
This compares favorably with Luccio and Sami’s non-polynomial al- 
gorithm and Lawler’s 0( n’) algorithm. 3 

6. Other generalizations and relaxations of LS sets 

Lambda sets capture one aspect (connectivity) of the notion of a 
cohesive subset very nicely. Unlike LS sets, however, they completely 

’ Actually, Lawler (1973: 282) claims only a modest 0(m2n4) I O(n8) time for his algorithm. 
However, the maximum flow algorithm he uses is designed for valued hypergraphs, not simple 

graphs. Substituting a fast 0(n3) flow algorithm such as Dinic’s (1970) brings the overall 

procedure down to O(ns). The advantage of our algorithm over Lawler’s, besides simplicity, is 

that ours can make use of Gomory and Hu’s efficient algorithm for computing flows between all 

pairs of vertices whereas Lawler’s cannot. 
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Fig. 5. Nodes a and b for a lambda-3 set together, despite being only distantly connected. 

fail to capture many other key aspects. For example, while members of 
lambda sets are required to have more connections with insiders than 
outsiders, these connections need not be direct. For example, in the 
graph in Figure 5, members of lambda set {a, b} have no direct links 
with each other. Even worse, the intermediaries that link them are 
outsiders. Despite their usefulness in some settings, lambda sets are a 
very different kind of cohesive subset than we normally think of, and 
cannot be thought of as a general purpose model. 

LS sets on the other hand, capture many of the key aspects underly- 
ing the intuitive notion of cohesive subset. For example, it has been 
shown here or in Seidman (1983a,b) that LS sets are in certain ways 
difficult to disconnect, relatively dense within and isolated without, of 
limited diameter, and so forth. Unfortunately, LS sets are also rela- 
tively rare in empirical datasets, perhaps because they do impose so 
many conditions on membership. Consequently, they can be of limited 
value in real data analysis situations. There is also a problem with 
interpretability. Because LS sets have a number of important character- 
istics, structural studies that use the LS clusterings as independent 
variables face difficulties interpreting the results. For example, if it 
happens that the LS sets of a graph do show statistically significant 
homogeneity or homophily with respect to a substantive variable of 
interest (e.g. members of the same set share more attitudes than 
non-members), we cannot determine what structural property is the 
cause. Is it the large number of face-to-face contacts or the multitude of 
independent indirect paths? LS sets have both. For structural investiga- 
tions such as these, it would be useful to define simpler, purer subsets 
which generalize LS sets along just one or two key properties. 

For example, one basic property of LS sets that is very appealing is 
the condition that individual members have more links to other mem- 
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1 2 3 

-,:==-F 
” 

10 

Fig. 6. Sets (1.. .9) and { 8 9 10) are alpha sets, among others. 

bers than to non-members. This is not a property possessed by lambda 
sets. We define a generalization of LS sets called alpha sets based 
exclusively on this principle: 

Definition 3. Let G(V, E) be a graph. An alpha set S is a subset of V 
such that for all s E S, (Y(s, S) > a( s, I/ - S). 

An unfortunate characteristic of alpha sets is that they can be quite 
numerous, and they can partially overlap. For example, the graph in 
Figure 1 contains both alpha set A = { 1 2 3) and alpha set B = { 1 3 
4). Another unfortunate characteristic is that since the quantifying 
condition is relative degree rather than absolute degree and it is 
expressed at the level of the individual member, there is little we can 
say about the connectivity or density of the subset as a whole. For 
example, an alpha set can consist primarily of hangers-on or pendants, 
as shown in Figure 6. Such nodes are more connected to the subset 
than to others simply because they are not connected to any other 
points. 

Of course, the notion of alpha set is not as pure and simple as 
possible, since it implicitly requires attention to both inner and outer 
connections. We could achieve greater clarity by taking each of these 
types of connections separately. For example, we could define a struc- 
ture whose only qualification is that members of the subset have no 
fewer than k connections with other members, regardless of their 
connections with non-members: 

Definition 4. Let G( V, E) be a graph. A k-degree set is a subset of V 
such that for all s E S, (Y(s, S) 2 k. 

A k-degree set S induces a subgraph G, in which the minimum degree 
6(G,) = k. Like alpha sets, k-degree sets are numerous and overlap- 
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ping. Seidman (1983a,b) has shown that maximal k-degree sets, which 
he terms k-cores, may be regarded as “seedbeds, within which we can 
expect highly cohesive subsets to be found”. Unlike ordinary degree 
sets, k-cores do not partially overlap. Rather, for any given level of k, 

k-cores form a set of disjoint sets of vertices of the graph. Like lambda 
sets and LS sets, k-cores form hierarchical clusterings of the nodes of a 
graph. 

All LS sets are k-degree sets where k = a( H)/2, but they are not 
necessarily k-cores. They must be contained in any k-core in which 
k < a( H)/2. 

Another well-known structure which is generalized by the notion of 
a k-degree set is the clique (Lute and Perry 1949). A clique S of a 
graph G( V, E) is a maximal subset of V such that for all s E S, 
(Y(s, S) = 1 S 1 - 1. Thus, a clique is a maximal set of actors each of 
whom is directly connected to every other actor in the set. Cliques may 
also be described as maximal ( ( S ( - 1)-degree sets. Like LS sets, 
cliques are not k-cores but are wholly contained by them, provided 
k< (SI-1. 

Seidman and Foster (1978) have introduced a generalization of the 
clique called a k-plex. A k-plex S of a graph G( V, E) is a subset of V 
such that for all s E S, cr(s, S) 2 ( S I - k. Thus a clique may be 
described as a maximal k-plex. A k-plex of size ( S ( will be wholly 
contained in a p-core C with p = I C I - k. 

Building on the work of Lute (1950) and Alba (1973) Mokken 
(1979) has introduced a family of three generalizations of cliques, 
namely n-clans, n-clubs, and n-cliques. An n-clique S of a graph G is a 
maximal subset of V such that for all u, u E S, d( u, u) < = n. An 
n-club S of G is a maximal subset of V such that the diameter of the 
subgraph induced by S is less than or equal to n. An n-clan S is an 
n-clique of G such that the diameter of the subgraph induced by S is 
less than or equal to N. While n-clans are both n-cliques and n-clubs, 
n-clubs are not necessarily n-cliques, though they are always wholly 
contained by an n-clique. Like all generalizations of cliques, including 
k-degree sets and k-plexes, n-cliques n-clubs and n-clans are concerned 
only with connections within subsets. They differ from k-degree sets 
and k-plexes, however, in that they generalize cliques by relaxing 
distances among members rather than the number of links between 
members. 

Since structures defined entirely in terms of within-set connections 
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have proven useful, it is reasonable to consider structures defined only 
in terms of out-set connections. For example, a structure analogous to 
k-degree sets is as follows: 

Definition 5. A k-outdegree set S of a graph G is a subset of I/ such 
that for all s E S, a( s, V- S) I k. 

Essentially, k-outdegree sets are subsets whose members have no more 
than k connections with non-members. An entire graph is a O-outde- 
gree set. In themselves, k-outdegree sets are not particularly useful, 
since in unconnected graphs, even collections of isolates would qualify. 
However, like k-degree sets, they form subregions of graphs which 
contain important subsets like lambda sets and LS sets. 

One type of k-outdegree set is the minimal set described by Lawler 
(1973). A minimal set S of a graph G(V, E) is a subset of V such that 
CY( S, V - S) is as small as possible. In other words, S is a minimal set 
if no other subset of I/ can be found which has fewer connections with 
outsiders. Note that whereas the qualifying condition of k-outdegree 
sets is phrased in terms of individual actors, the qualifying condition of 
minimal sets is phrased in terms of the subset as whole. Minimal sets 
may be viewed as the result of minimum weight cutsets. Removing a 
minimum weight cutset from a graph divides the graph into two 
components, each of which is a minimal set. Because minimal sets are 
created by splitting graphs at their weakest points (i.e., where the 
fewest cuts need to be made), they may be viewed as regions of the 
graph which are relatively cohesive or connected. LS sets have already 
been shown to be wholly contained by minimal sets (Proposition 2) 
and lambda sets are also clearly contained by them. 

7. Discussion 

Two kinds of relations between different models of subsets have 
been discussed. One is the generalization relation that records which 
models are “a type of’ which others. For example, LS sets are a type of 
lambda set, just as cliques are a type of k-plex. The other relation is the 
subset relation that records which models “are contained in” which 
others, in the special sense used in Proposition 2. For example, k-plexes 
are contained in k-cores while lambda sets are not. 
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The various models of subsets can also be related by the extent to 
which they share specific features or properties, such as restrictions on 
the minimum number of internal links, the maximum number of 
external links, the maximum distance among members, the diameter of 
the induced subgraph, etc. Subset models can viewed as unique combi- 
nations of features, and some models can be “derived” from others by 
adding or subtracting features. For example, n-clans may be “derived” 
from n-cliques by adding a restriction on the diameter of the induced 
subgraph. The features found in the set of subset models described in 
the network literature to date can be viewed as a set of generative 
elements which could be combined in various ways to form a very large 
set of models, most of which are yet to be named or described in the 
literature. 

One question that arises is whether any of these models, known or 
unknown, is better than any other. We suggest that if the purpose of 
these various subset definitions were to formalize the intuitive socio- 
logical notion of a group, then the winner should be the model which 
captures as many of the characteristics underlying the intuitive notion 
as possible. Among the models reviewed in this paper, this would 
probably be the LS set. The fact that LS sets are empirically rare 
should, in this context, be regarded as a problem and a challenge to 
develop a means of quantifying the extent to which a collection of 
actors departs from the conditions of an LS set, or alternatively, of 
measuring the extent to which individuals depart from belonging to a 
given LS set. 

However, we must also ask whether formalizing the sociological 
notion of group is a sensible goal, given the fact that, at present, no 
precise theory of social groups exists. Sociological usage of the term 
“group” is nearly as vague as lay usage. In the absence of a theory of 
groups, the sociologist’s intuitive understanding of the word “group” is 
scarcely different from that of any native speaker of English. Conse- 
quently, attempts to formalize the intuitive notion of group unfor- 
tunately reduce to an exercise in mathematical ethnography, which 
presumably is not what most network researchers intend. 

Rather, network researchers try to use these mathematical models as 
explanatory variables. For example, a study of cultural consensus 
might hope to find that members of the same cohesive subset share 
significantly more cultural traits than members of different subsets. For 
another example, members of the same cohesive subset might be found 
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to frequently suffer the same diseases at similar times. It is important 
to note, however, that the cohesive subsets do not in themselves explain 
the substantive outcome. Rather, they “stand in” for the structural 
variables that are related to the dependent variables. Since different 
cohesive subset definitions embody different features or properties, 
they stand in for different structural independent variables. 

For example, if the probability of an actor contracting a certain 
disease were a function of the number of direct links between the 
individual and carriers of the disease, then we would expect dense 
regions of the network to show greater homogeneity with respect to 
infection of the disease than less dense regions. Since cliques are 
precisely maximally dense regions of graphs, we could reasonably 
expect common membership in cliques to predict homogeneity with 
respect to disease infection. Hence a cohesive subset such as a clique 
can serve as a convenient surrogate for the key underlying structural 
variable, which in this case would be the number of links with disease 
carriers. 

Similarly, suppose that the sharing of cultural traits depends upon 
the existence (and perhaps quantity) of direct or indirect avenues of 
communication between actors. Then in the presence of disruptive 
factors such as natural disasters which could sever these pathways, we 
would expect that, over time, sets of actors connected by a larger 
number of wholly edge-independent paths would show a greater pro- 
portion of shared traits than actors connected by few independent 
paths. Since lambda sets are precisely subsets of actors with more 
edge-disjoint paths to each other than to outsiders, we would expect 
common lambda set membership to be a good predictor of cultural 
consensus. Again, the cohesive subset (here, the lambda set) provides a 
convenient categorical independent variable that stands in for the key 
structural variable, which in this case is the number of independent 
paths linking pairs of actors. 

If we take this approach to using models of cohesive subsets, it 
becomes clear that, contrary to our previous conclusion, complex 
models like LS sets are not as useful as simpler models such as lambda 
sets, because the complex models stand in for several important varia- 
bles at the same time. That is, in complex definitions like LS sets, such 
variables as the maximum distance between members, the number of 
disjoint paths linking members, the ratio of direct to indirect links to 
other group members from each member, and so on, all coincide 
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perfectly, so that each acts as a mask for the other. We could achieve 
greater explanatory power by directly correlating separate measures of 
each of these variables with the dependent variable than by collapsing 
them together into a complex subset definition. 

For example, if we were investigating the social determinants of a 
monastery breaking in two and it happened that common clique 
membership failed to predict the schism while common lambda set 
membership succeeded, we could tentatively conclude that having 
many direct ties among actors was not as important in maintaining 
cohesion as having many independent paths linking them together. 
Thus, in this approach to using cohesive subsets, we try to apply many 
different definitions of subsets to reveal different aspects of the struc- 
ture, rather than to choose the one subset definition that best captures 
the analyst’s intuitive understanding of the group concept. Hence the 
need for relatively simple cohesive subset models such as lambda sets. 

In summary, we have taken seriously Seidman’s suggestion that the 
engineering concept of LS sets provides a useful formalization of the 
notion of a cohesive subset. LS sets capture many of the key aspects 
underlying the intuitive notion of a cohesive subset (and, incidentally, a 
social group). For example, they are difficult to disconnect by removing 
edges, they are relatively dense within and isolated without, they have 
limited diameter, members have more direct links to other members 
than to non-members, and so on. Unfortunately, this plethora of 
features means that LS sets occur only rarely in real data. It also means 
that they do not make good independent variables for structural 
analyses in which greater-than-expected in-group homogeneity is hy- 
pothesized with respect to some substantive dependent variable, be- 
cause it is unclear which aspect of the LS set was responsible for the 
observed homogeneity. We have discussed a variety of generalizations 
and relaxations of LS sets based on just a few of the properties 
possessed by LS sets. Among these is the lambda set, based on the LS 
property that members of the set have greater edge connectivity with 
other members than with non-members. Lambda sets may prove espe- 
cially useful in the study and design of networks which are subject to 
disruption by removal or decay of edges. 
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