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PREFACE 

The scientific study of networks, such as computer networks, biological networks, and social networks, is 
an interdisciplinary field that combines ideas from mathematics, physics, biology, computer science, the 
social sciences, and many other areas. The field has benefited enormously from the wide range of 
viewpoints brought to it by practitioners from so many different disciplines, but it has also suffered 
because human knowledge about networks is dispersed across the scientific community and researchers in 
one area often do not have ready access to discoveries made in another. The goal of this book is to bring 
our knowledge of networks together and present it in consistent language and notation, so that it becomes 
a coherent whole whose elements complement one another and in combination teach us more than any 
single element can alone. 

The book is divided into five parts. Following a short introductory chapter, Part I describes the basic 
types of networks studied by present-day science and the empirical techniques used to determine their 
structure. Part II introduces the fundamental mathematical tools used in the study of networks as well as 
measures and statistics for quantifying network structure. Part III describes computer algorithms for the 
efficient analysis of network data, while Part IV describes mathematical models of network structure that 
can help us predict the behavior of networked systems and understand their formation and growth. Finally, 
Part V describes theories of processes taking place on networks, such as epidemics on social networks or 
search processes on computer networks. 

The technical level of the presentation varies among the parts, Part I requiring virtually no mathematical 
knowledge for its comprehension, while Parts II and III require a grasp of linear algebra and calculus at 
the undergraduate level. Parts IV and V are mathematically more advanced and suitable for advanced 
undergraduates, postgraduates, and researchers working in the field. The book could thus be used as the 
basis of a taught course at more than one level. A less technical course suitable for those with moderate 
mathematical knowledge might cover the material of Chapters 1 to 8, while a more technical course for 
advanced students might cover the material of Chapters 6 to 14 and selected material thereafter. Each 
chapter from Part II onward is accompanied by a selection of exercises that can be used to test the reader’s 
understanding of the material. 

This book has been some years in the making and many people have helped me with it during that time. 
I must thank my ever-patient editor Sonke Adlung, with whom I have worked on various book projects for 
more than 15 years now, and whose constant encouragement and kind words have made working with him 
and Oxford University Press a real pleasure. Thanks are also due to Melanie Johnstone, Alison Lees, 
Emma Lonie, and April Warman for their help with the final stages of bringing the book to print. 

I have benefited greatly during the writing of this book from the conversation, comments, suggestions, 
and encouragement of many colleagues and friends. They are, sadly, too numerous to mention 
exhaustively, but special thanks must go to Steve Borgatti, Duncan Callaway, Aaron Clauset, Betsy 
Foxman, Linton Freeman, Michelle Girvan, Martin Gould, Mark Handcock, Petter Holme, Jon Kleinberg, 
Alden Klovdahl, Liza Levina, Lauren Meyers, Cris Moore, Lou Pecora, Mason Porter, Sidney Redner, 
Puck Rombach, Cosma Shalizi, Steve Strogatz, Duncan Watts, Doug White, Lenka Zdeborova, and Bob 
Ziff, as well as to the many students, particularly Michelle Adan, Alejandro Balbin, Chris Fink, Ruthi 
Hortsch, and Jane Wang, whose feedback helped iron out a lot of rough spots. I would also especially like 
to thank Brian Karrer, who read the entire book in draft form and gave me many pages of thoughtful and 
thought-provoking comments, as well as spotting a number of mistakes and typos. Responsibility for any 
remaining mistakes in the book of course rests entirely with myself, and I welcome corrections from 
readers. 

Finally, my profound thanks go to my wife Carrie for her continual encouragement and support during 
the writing of this book. Without her the book would still have been written but I would have smiled a lot 
less. 
  

Mark Newman 
Ann Arbor, Michigan 
February 24, 2010 
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CHAPTER 1 

INTRODUCTION 

A short introduction to networks and why we study them 

A NETWORK is, in its simplest form, a collection of points joined together in pairs by lines. In 
the jargon of the field the points are referred to as vertices1 or nodes and the lines are referred to as 
edges. Many objects of interest in the physical, biological, and social sciences can be thought of as 
networks and, as this book aims to show, thinking of them in this way can often lead to new and 
useful insights. 

We begin, in this introductory chapter, with a discussion of why we are interested in networks 
and a brief description of some specific networks of note. All the topics in this chapter are covered 
in greater depth elsewhere in the book. 

 

A small network composed of eight vertices and ten edges. 
  

 

 

 

 

 



WHY ARE WE INTERESTED IN NETWORKS?  

There are many systems of interest to scientists that are composed of individual parts or components 
linked together in some way. Examples include the Internet, a collection of computers linked by data 
connections, and human societies, which are collections of people linked by acquaintance or social 
interaction. 

Many aspects of these systems are worthy of study. Some people study the nature of the individual 
components—how a computer works, for instance, or how a human being feels or acts—while others 
study the nature of the connections or interactions—the communication protocols used on the Internet or 
the dynamics of human friendships. But there is a third aspect to these interacting systems, sometimes 
neglected but almost always crucial to the behavior of the system, which is the pattern of connections 
between components. 

The pattern of connections in a given system can be represented as a network, the components of the 
system being the network vertices and the connections the edges. Upon reflection it should come as no 
surprise (although in some fields it is a relatively recent realization) that the structure of such networks, 
the particular pattern of interactions, can have a big effect on the behavior of the system. The pattern of 
connections between computers on the Internet, for instance, affects the routes that data take over the 
network and the efficiency with which the network transports those data. The connections in a social 
network affect how people learn, form opinions, and gather news, as well as affecting other less obvious 
phenomena, such as the spread of disease. Unless we know something about the structure of these 
networks, we cannot hope to understand fully how the corresponding systems work. 

A network is a simplified representation that reduces a system to an abstract structure capturing only the 
basics of connection patterns and little else. Vertices and edges in a network can be labeled with additional 
information, such as names or strengths, to capture more details of the system, but even so a lot of 
information is usually lost in the process of reducing a full system to a network representation. This 
certainly has its disadvantages but it has advantages as well. 

The most common network variants are discussed in detail in Chapter 6. 

Scientists in a wide variety of fields have, over the years, developed an extensive set of tools—
mathematical, computational, and statistical—for analyzing, modeling, and understanding networks. Many 
of these tools start from a simple network representation, a set of vertices and edges, and after suitable 
calculations tell you something about the network that might well be useful to you: which is the best 
connected vertex, say, or the length of a path from one vertex to another. Other tools take the form of 
network models that can make mathematical predictions about processes taking place on networks, such 
as the way traffic will flow over the Internet or the way a disease will spread through a community. 
Because they work with networks in their abstract form, these tools can in theory be applied to almost any 
system represented as a network. Thus if there is a system you are interested in, and it can usefully be 
represented as a network, then there are hundreds of different tools out there, already developed and well 
understood, that you can immediately apply to the analysis of your system. Certainly not all of them will 
give useful results—which measurements or calculations are useful for a particular system depends on 
what the system is and does and on what specific questions you are trying to answer about it. Still, if you 
have a well-posed question about a networked system there will, in many cases, already be a tool available 
that will help you address it. 

Networks are thus a general yet powerful means of representing patterns of connections or interactions 
between the parts of a system. In this book, we discuss many examples of specific networks in different 
fields, along with techniques for their analysis drawn from mathematics, physics, the computer and 
information sciences, the social sciences, biology, and elsewhere. In doing so, we bring together a wide 
range of ideas and expertise from many disciplines to give a comprehensive introduction to the science of 
networks. 

 

 



SOME EXAMPLES OF NETWORKS  

One of the best known and most widely studied examples of a network is the Internet, the 
computer data network in which the vertices are computers and the edges are physical data 
connections between them, such as optical fiber cables or telephone lines. Figure 1.1 shows a 
picture of the structure of the Internet, a snapshot of the network as it was in 2003, reconstructed 
by observing the paths taken across the network by a large number of Internet data packets 
traveling between different sources and destinations. It is a curious fact that although the Internet is 
a man-made and carefully engineered network we don’t know exactly what its structure is, since it 
was built by many different groups of people with only limited knowledge of each other’s actions 
and little centralized control. Our best current data on its structure are derived from experimental 
studies, such as the one that produced this figure, rather than from any central repository of 
knowledge or coordinating authority. 

We look at the Internet in more detail in Section 2.1. 

There are a number of excellent practical reasons why we might want to study the network 
structure of the Internet. The function of the Internet is to transport data between computers (and 
other devices) in different parts of the world, which it does by dividing the data into pieces or 
packets and shipping them from vertex to vertex across the network until they reach their intended 
destination. Certainly the structure of the network will affect how efficiently it accomplishes this 
function and if we know the network structure we can address many questions of practical 
relevance. How should we choose the route by which data are transported? Is the shortest route 
always necessarily the fastest? If not, then what is, and how can we find it? How can we avoid 
bottlenecks in the traffic flow that might slow things down? What happens when a vertex or an 
edge fails (which they do with some regularity)? How can we devise schemes to route around such 
failures? If we have the opportunity to add new capacity to the network, where should it be added? 

Knowledge of Internet structure also plays a central role in the development of new 
communications standards. New standards and protocols are continually being devised for 
communication over the Internet, and old ones are revised. The parameters of these protocols are 
tuned for optimal performance with the structure of the Internet in mind. In the early days of the 
network, rather primitive models of network structure were employed in the tuning process, but as 
better structural data become available it becomes possible to better understand and improve 
performance. 

 

 



Figure 1.1: The network structure of the Internet. (See Plate I for color version.) The vertices 

 



in this representation of the Internet are “class C subnets”—groups of computers with similar 
Internet addresses that are usually under the management of a single organization—and the 
connections between them represent the routes taken by Internet data packets as they hop between 
subnets. The geometric positions of the vertices in the picture have no special meaning; they are 
chosen simply to give a pleasing layout and are not related, for instance, to geographic position of 
the vertices. The structure of the Internet is discussed in detail in Section 2.1. Figure created by the 
Opte Project (www.opte.org). Reproduced with permission. 
  

A more abstract example of a network is the World Wide Web. In common parlance the words 
“Web” and “Internet” are often used interchangeably, but technically the two are quite distinct. 
The Internet is a physical network of computers linked by actual cables (or sometimes radio links) 
running between them. The Web, on the other hand, is a network of information stored on web 
pages. The vertices of the World Wide Web are web pages and the edges are “hyperlinks,” the 
highlighted snippets of text or push-buttons on web pages that we click on to navigate from one 
page to another. A hyperlink is purely a software construct; you can link from your web page to a 
page that lives on a computer on the other side of the world just as easily as you can link to a 
friend down the hall. There is no physical structure, like an optical fiber, that needs to be built 
when you make a new link. The link is merely an address that tells the computer where to look 
next when you click on it. 

The World Wide Web is discussed in more detail in Section 4.1. 

Abstract though it may be, the World Wide Web, with its billions of pages and links, has proved 
enormously useful, not to mention profitable, to many people, and the structure of the network of 
links is of substantial interest. Since people tend to add hyperlinks between pages with related 
content, the link structure of the Web reveals something about the content structure. What’s more, 
people tend to link more often to pages that they find useful than to those they do not, so that the 
number of links pointing to a page can be used as a measure of its usefulness. A more 
sophisticated version of this idea lies behind the operation of the popular Web search engine 
Google, as well as some others. 

The mechanics of Web search are discussed in Section 19.1. 

The Web also illustrates another concept of network theory, the directed network . Hyperlinks 
on the Web run in one specific direction, from one web page to another. Given an appropriate link 
on page A, you can click and arrive at page B. But there is no requirement that B contains a link 
back to A again. (It may contain such a link, but there is no law that says that it must and much of 
the time it will not.) One says that the edges in the World Wide Web are directed, running from 
the linking page to the linked. 

Social networks are discussed in more depth in Chapter 3. 

Moving away from the technological realm, another type of network of scientific interest is the 
social network. A social network is, usually, a network of people, although it may sometimes be a 
network of groups of people, such as companies. The people or groups form the vertices of the 
network and the edges represent connections of some kind between them, such as friendship 
between individuals or business relationships between companies. The field of sociology has 
perhaps the longest and best developed tradition of the empirical study of networks as they occur 
in the real world, and many of the mathematical and statistical tools that are used in the study of 
networks are borrowed, directly or indirectly, from sociologists. 

Figure 1.2 shows a famous example of a social network from the sociology literature, Wayne 
Zachary’s “karate club” network. This network represents the pattern of friendships among 
members of a karate club at a north American university. The network was constructed by direct 
observation of interactions between the club’s members. As is typical of such studies the network 

 

 

 

 



is small, having, in this case, only 34 vertices. Network representations of the Internet or the 
World Wide Web, by contrast, can have thousands or millions of vertices. In principle there is no 
reason why social networks cannot be similarly large. The entire population of the world, for 
example, can be regarded as a very large social network. But in practice social network data are 
limited to relatively small groups because of the effort involved in compiling them. The network of 
Fig. 1.2, for instance, was the product of two years of observations by one experimenter. In recent 
years a few larger social networks have been constructed by dint of enormous effort on the part of 
large groups of researchers. And online social networking services, such as Facebook or instant 
message “buddy lists,” can provide network data on a previously unreachable scale. Studies are 
just beginning to emerge of the structure and properties of these larger networks. 

 

Figure 1.2: Friendship network between members of a club. This social network from a study 
conducted in the 1970s shows the pattern of friendships between the members of a karate club at 
an American university. The data were collected and published by Zachary [334]. 
  

Neural networks are discussed in Section 5.2 and food webs in Section 5.3 

A third realm in which networks have become important in recent years is biology. Networks 
occur in a number of situations in biology. Some are concrete physical networks like neural 
networks—the networks of connections between neurons in the brain—while others are more 
abstract. In Fig. 1.3 we show a picture of a “food web,” an ecological network in which the 
vertices are species in an ecosystem and the edges represent predator-prey relationships between 
them. That is, pairs of species are connected by edges in this network if one species eats the other. 
The study of food webs forms a substantial branch of ecology and helps us to understand and 
quantify many ecological phenomena, particularly concerning energy and carbon flows in 
ecosystems. Food webs also provide us with another example of a directed network, like the World 
Wide Web discussed previously. The edges in a food web are asymmetric and are conventionally 
thought of as pointing from the prey to the predator, indicating the direction of the flow of energy 
when the prey is eaten. (This choice of direction is only a convention and one could certainly make 
the reverse choice. The important point is the asymmetry of the predator-prey interaction.)

 

 

 



Figure 1.3: The food web of Little Rock Lake, Wisconsin. (See Plate II for color version.) This 
elegant picture summarizes the known predatory interactions between species in a freshwater lake 
in the northern United States. The vertices represent the species and the edges run between 
predator-prey species pairs. The vertical position of the vertices represents, roughly speaking, the 
trophic level of the corresponding species. The figure was created by Richard Williams and Neo 
Martinez [209]. 
  

Biochemical networks are discussed in detail in Section 5.1. 

Another class of biological networks is that of biochemical networks, such as metabolic 
networks, protein-protein interaction networks, and genetic regulatory networks. A metabolic 
network, for instance, is a representation of the chemical reactions that fuel cells and organisms. 
The reader may have seen the wallcharts of metabolic reactions that adorn the offices of some 
biochemists, incredibly detailed maps with hundreds of tiny inscriptions linked by a maze of 
arrows.2 The inscriptions—the vertices in this network—are metabolites, the substrates and 
products of metabolism, and the arrows—directed edges—are reactions that turn one metabolite 
into another. The depiction of reactions as a network is one of the first steps towards making sense 
of the bewildering array of biochemical data generated by recent and ongoing experiments in 
molecular genetics. 

These are just a few examples of the types of network whose study is the focus of this book. 
There are many others that we will come across in later pages. Among them some of the best 
known are telephone networks, road, rail, and air networks, the power grid, citation networks, 
recommender networks, peer-to-peer networks, email networks, collaboration networks, disease 
transmission networks, river networks, and word networks.

 

 

 



PROPERTIES OF NETWORKS  

We have seen that a variety of systems can be represented as networks. If we can gather data on 
the structure of one of these networks, what then can we do with those data? What can they tell us 
about the form and function of the system the network represents? What properties of networked 
systems can we measure or model and how are those properties related to the practical issues we 
care about? This, essentially, is the topic of this entire book, and we are not going to answer it in 
this chapter alone. Let us, however, look briefly here at a few representative concepts, to get a feel 
for the kinds of ideas we will be dealing with. 

A first step in analyzing the structure of a network is often to make a picture of it. Figures 1.1, 
1.2, and 1.3 are typical examples. Each of these was generated by a specialized computer program 
designed for network visualization and there are many such programs available, both commercially 
and for free, if you want to produce pictures like these for yourself. Visualization can be an 
extraordinarily useful tool in the analysis of network data, allowing one to see instantly important 
structural features of a network that would otherwise be difficult to pick out of the raw data. The 
human eye is enormously gifted at picking out patterns, and visualizations allow us to put this gift 
to work on our network problems. On the other hand, direct visualization of networks is only really 
useful for networks up to a few hundreds or thousands of vertices, and for networks that are 
relatively sparse, meaning that the number of edges is quite small. If there are too many vertices or 
edges in a network then pictures of the network will be too complicated for the eye to comprehend 
and their usefulness becomes limited. Many of the networks that scientists are interested in today 
have hundreds of thousands or even millions of vertices, which means that visualization is not of 
much help in their analysis and we need to employ other techniques to determine their structural 
features. In response to this need, network theory has developed a large toolchest of measures and 
metrics that can help us understand what our network data are telling us, even in cases where 
useful visualization is impossible. 

An example of an important and useful class of network measures is that of measures of 
centrality. Centrality quantifies how important vertices (or edges) are in a networked system, and 
social network analysts in particular have expended considerable effort studying it. There are a 
wide variety of mathematical measures of vertex centrality that focus on different concepts and 
definitions of what it means to be central in a network. A simple but very useful example is the 
measure called degree. The degree of a vertex in a network is the number of edges attached to it. In 
a social network of friendships between individuals, for instance, such as the network of Fig. 1.2, 
the degree of an individual is the number of friends he or she has within the network. In the 
Internet degree would be the number of data connections a computer, router, or other device has. 
In many cases the vertices with the highest degrees in a network, those with the most connections, 
also play important roles in the functioning of the system, and hence degree can be a useful guide 
for focusing our attention on the system’s most crucial elements. 

See Chapter 7 for further discussion of centrality measures. 

 

 

 



The number beside each vertex in this small network indicates the vertex’s degree. 
  

In undirected networks degree is just a single number, but in directed networks vertices have 
two different degrees, in-degree and out-degree, corresponding to the number of edges pointing 
inward to and outward from those vertices. For example, the in-degree of a web page is the 
number of other pages that link to it and the out-degree is the number of pages to which it links. 
We have already mentioned one example of how centrality can be put to use on the Web to answer 
an important practical question: by counting the number of links a web page gets—the in-degree of 
the page—we (or a search engine operating on our behalf) can make a guess about which pages are 
most likely to contain information that might be of use to us. 

It is an interesting observation that many networks are found to contain a small but significant 
number of “hubs”—vertices with unusually high degree. Social networks often contain a few 
central individuals with very many acquaintances; there are a few websites with an extraordinarily 
large number of links; there are a few metabolites that take part in almost all metabolic processes. 
A major topic of research in recent years has been the investigation of the effects of hubs on the 
performance and behavior of networked systems. Both empirical and theoretical results indicate 
that hubs can have a quite disproportionate effect, playing a central role particularly in network 
transport phenomena and resilience, despite being few in number. 

Hubs are discussed further in Section 8.3. 

Another example of a network concept that arises repeatedly and has real practical implications 
is the so-called small-world effect. One can define a distance, called the geodesic distance, 
between two vertices in a network to be the minimum number of edges one would have to traverse 
in order to get from one vertex to the other. For instance, two friends would have geodesic distance 
1 in a friendship network because there is a single edge connecting them directly, while the friend 
of your friend would have distance 2 from you. As discussed in Sections 3.6 and 8.2, it is found 
empirically (and can be proven mathematically in some cases) that the mean geodesic distance, 
appropriately defined,3 between vertex pairs is very short, typically increasing only as the 
logarithm of the number of vertices in the network. Although first studied in the context of 
friendship networks, this small-world effect appears to be very widespread, occurring in essentially 
all types of networks. In popular culture it is referred to as the “six degrees of separation,” after a 
successful stage play and film of the same name. The semi-mythological claim is that you can get 
from anyone in the world to anyone else via a sequence of no more than five intermediate 
acquaintances—six steps in all. 

The small-world effect can have interesting repercussions. For example, news and gossip spread 
over social networks. If you hear an interesting rumor from a friend, you may pass it on to your 
other friends, and they in turn pass it on to theirs, and so forth. Clearly the rumor will spread 
further and faster if it only takes six steps to reach anyone in the world than if it takes a hundred, or 
a million. It is a matter of common experience that indeed a suitably scandalous rumor can reach 
the ears of an entire community in what seems like the blink of an eye, and the structure of social 
networks has a lot to do with it. 

And consider the Internet. One of the reasons the Internet functions at all is because any 
computer on the network is only a few “hops” over optical and other data lines from any other. In 
practice the paths taken by packets over the Internet are typically in the range of about ten to 
twenty hops long. Certainly the performance of the network would be much worse if packets had 
to make a thousand hops instead. 

A third example of a network concept of practical importance is provided by clusters or 
communities in networks. We are most of us familiar with the idea that social networks break up 
into subcommunities—tightly knit groups of friends or acquaintances within the larger, looser 
network. Friendship networks, for instance, tend to contain cliques, circles, and gangs of friends 
within which connections are strong and frequent but between which they are weaker or rarer. The 

 

 

 



same is true of other kinds of social network also. For instance, in a network of business 
relationships between companies one often finds clusters formed of sets of companies that operate 
in particular sections of the economy. Connections might be stronger, for instance, between a pair 
of computer companies or a pair of biotech companies than between a computer company and a 
biotech company. And if it is the case that communities correspond to genuine divisions of interest 
or purpose in this way, then we may well learn something by taking a network and examining it to 
determine what communities it contains. The way a network breaks down into communities can 
reveal levels and concepts of organization that are not easy to see without network data, and can 
help us to understand how a system is structured. There is a substantial research literature in social 
network analysis as well as in other fields concerned with precisely these kinds of questions, and a 
large number of techniques have been developed to help us extract and analyze subcommunities 
within larger networks. These are highly active topics of research at present, and hold promise for 
exciting applications in the future. 



OUTLINE OF THIS BOOK  

This book is divided into five parts. In the first part, consisting of Chapters 2 to 5, we introduce the 
various types of network encountered in the real world, including technological, social, and 
biological networks, and the empirical techniques used to discover their structure. Although it is 
not the purpose of this book to describe any one particular network in great detail, the study of 
networks is nonetheless firmly founded on empirical observations and a good understanding of 
what data are available and how they are obtained is immensely helpful in understanding the 
science of networks as it is practiced today. 

The second part of the book, Chapters 6 to 8, introduces the fundamental theoretical ideas on 
which our current understanding of networks is based. Chapter 6 describes the basic mathematics 
used to capture network ideas, Chapter 7 describes the measures and metrics we use to quantify 
network structure, and Chapter 8 describes some of the intriguing patterns and principles that 
emerge when we apply our mathematics and our metrics to real-world network data. 

In the third part of the book, Chapters 9 to 11, we discuss computer algorithms for analyzing 
and understanding network data. Measurements of network properties, such as those described in 
Chapter 7, are typically only possible with the help of fast computers and much effort has been 
devoted over the years to the development of efficient algorithms for analyzing network data. This 
part of the book describes in detail some of the most important of these algorithms. A knowledge 
of this material will be of use to anyone who wants to work with network data. 

In the fourth part of the book, Chapters 12 to 15, we look at mathematical models of networks. 
The material in these chapters forms a central part of the canon of the field and has been the 
subject of a vast amount of published scientific research. We study both traditional models, such as 
random graphs and their extensions, and newer models, such as models of growing networks and 
the “small-world model.” 

Finally, in the fifth and last part of the book, Chapters 16 to 19, we look at processes taking 
place on networks, including failure processes and resilience, network epidemiology, dynamical 
systems, and network search processes. The theory of these processes is less well developed than 
other aspects of the theory of networks and there is much work still to be done. The last chapters of 
the book probably raise at least as many questions as they answer, but this, surely, is a good thing. 
With luck readers will feel inspired to answer some of those questions themselves and the author 
looks forward to the new and exciting results they generate when they do.

 



PART I 

THE EMPIRICAL STUDY OF NETWORKS 

 

 



CHAPTER 2 

TECHNOLOGICAL NETWORKS 

A discussion of engineered networks like the Internet and the power grid and how we 
determine their structure 

IN THE next four chapters we define and describe some of the most commonly studied networks, 
dividing them into four general classes—technological networks, social networks, information 
networks, and biological networks. We will list the most important examples in each class and 
then describe the techniques used to measure their structure. (The classes are not rigorously 
defined and there is, as we will see, some overlap between them, with some networks belonging to 
more than one class. Nonetheless, the division into classes is a useful one, since networks in the 
same class are often treated using similar techniques or ideas.) 

It is not our intention in this book to study any one network in great detail. Plenty of other books 
exist that do that. Nonetheless, network science is concerned with understanding and modeling the 
behavior of real-world networked systems and observational data are the starting point for 
essentially all the developments of the field, so the reader will find it useful to have a grasp of the 
types of data that are available, their strengths and limitations, and the means used to acquire them. 
In this chapter we look at technological networks, the physical infrastructure networks that have 
grown up over the last century or so and form the backbone of modern technological societies. 
Perhaps the most celebrated such network—and a relatively recent entry in the field—is the 
Internet, the global network of data connections, electrical, optical, and wireless, that links 
computers and other information systems together. Section 2.1 is devoted to a discussion of the 
Internet. A number of other important examples of technological networks, including power grids, 
transportation networks, delivery and distribution networks, and telephone networks, are discussed 
in subsequent sections. 

 

 

 



2.1 THE INTERNET  

The Internet should not be confused with the World Wide Web, a virtual network of web 
pages and hyperlinks, which we discuss in Section 4.1. 

The Internet is the worldwide network of physical data connections between computers and related 
devices. The Internet is a packet switched data network, meaning that messages sent over it are 
broken up into packets, small chunks of data, that are sent separately over the network and 
reassembled into a complete message again at the other end. The format of the packets follows a 
standard known as the Internet Protocol (IP) and includes an IP address in each packet that 
specifies the packet’s destination, so that it can be routed correctly across the network. 

The telephone network is discussed in Section 2.2. 

The alternative to a packet switched network is a circuit switched network, the classic example 
of which is the telephone system. In a circuit switched network, vertices request connections when 
needed, such as when a telephone call is placed, and the network allocates a separate circuit for 
each connection, reserved for the sole use of that connection until the connection is ended. This 
works well for voice traffic, which consists of discrete phone calls each with a definite beginning 
and end, but it would be a poor model for a data network, in which data transmission typically 
occurs in brief, intermittent bursts. Using a packet switched model for the Internet allows 
computers to transmit and receive data intermittently or at varying rates without tying up capacity 
on the network. By making packets reasonably small, we also allow for a certain amount of 
unreliability in the network. It is not uncommon for packets to disappear on the Internet and never 
reach their destination, sometimes because of hardware or software failure, but more often because 
packets are deliberately deleted to reduce congestion in the busiest parts of the network. If a 
message is divided into several packets before transmission and a few packets are lost, then only 
those that are lost need be resent to complete the message. A software protocol called Transport 
Control Protocol or TCP, which runs on top of IP, performs the necessary error checking and 
retransmission automatically, without the need for intervention from computer users or other 
software.4 

The simplest network representation of the Internet (there are others, as we will shortly see) is 
one in which the vertices of the network represent computers and other devices, and the edges 
represent physical connections between them, such as optical fiber lines. In fact, ordinary 
computers mostly occupy only the vertices on the “outside” of the network, those that data flows 
to and from, but they do not act as intermediate points for the flow of data between others. (Indeed, 
most computers only have a single connection to the net, so it would not be possible for them to lie 
on the path between any others.) The “interior” nodes of the Internet are primarily routers, 
powerful special-purpose computers at the junctions between data lines that receive data packets 
and forward them in one direction or another towards their intended destination. 

The general overall shape of the Internet is shown, in schematic form, in Fig. 2.1. The network 
is composed of three levels or circles of vertices. The innermost circle, the core of the network, is 
the backbone of the network, the trunk lines that provide long-distance high-bandwidth data 
transport across the globe, along with the high-performance routers and switching centers that link 
them together. These trunk lines are the highways of the Internet, built with the fastest fiber optic 
connections available (and improving all the time). The backbone is operated by network backbone 
providers (NBPs), who are primarily national governments and communications companies such 

 

 

 



as AT&T, Global Crossing, British Telecom, and others.
The second circle of the Internet is composed of Internet service providers or ISPs—commercial 

companies, governments, universities, and others who contract with NBPs for connection to the 
backbone and then resell or otherwise provide that connection to end users, the ultimate consumers 
of Internet bandwidth, who form the third circle—businesses, government offices, academics, 
people in their homes, and so forth. In fact, as Fig. 2.1 shows, the ISPs are further subdivided into 
regional ISPs and local or consumer ISPs, the former being larger organizations whose primary 
customers are the local ISPs, who in turn sell network connections to the end users. This 
distinction is somewhat blurred however, because large consumer ISPs, such as America Online or 
British Telecom, often act as their own regional ISPs (and some may be backbone providers as 
well). 

The network structure of the Internet is not dictated by any central authority. Protocols and 
guidelines are developed by an informal volunteer organization called the Internet Engineering 
Task Force, but one does not have to apply to any central Internet authority for permission to build 
a new spur on the Internet, or to take one out of service. 

 

Figure 2.1: A schematic depiction of the structure of the Internet. The vertices and edges of 
the Internet fall into a number of different classes: the “backbone” of high-bandwidth long-
distance connections; the ISPs, who connect to the backbone and who are divided roughly into 
regional (larger) and local (smaller) ISPs; and the end users—home users, companies, and so 
forth—who connect to the ISPs. 
  

One of the remarkable features of the Internet is that the scheme used for the routing of packets 
from one destination to another is arrived at by automated negotiation among Internet routers using 
a system called the Border Gateway Protocol (BGP). BGP is designed in such a way that if new 
vertices or edges are added to the network, old ones disappear, or existing ones fail either 
permanently or temporarily, routers will take note and adjust their routing policy appropriately. 
Some human oversight is required to keep the system running smoothly, but no “Internet 
government” is needed to steer things from on high; the system organizes itself by the combined 
actions of many local and essentially autonomous computer systems. 

While this is an excellent feature of the system from the point of view of robustness and 
flexibility, it is a problem for those who want to study the structure of the Internet, because there is 

 

 



no central registry from which one can determine that structure. There is no one whose job it is 
to maintain an official map of the network. Instead the network’s structure must be determined by 
experimental measurements. There are two primary methods for doing this. The first uses 
something called “traceroute”; the second uses BGP.



2.1.1 MEASURING INTERNET STRUCTURE USING TRACEROUTE  

It is not, at least for most of us, possible to probe the network structure of the Internet directly. We 
can, however, quite easily discover the particular path taken by data packets traveling between our 
own computer (or any computer to which we have access) and most others on the Internet. The 
standard tool for doing this is called traceroute. 

In addition to a destination address, which says where it is going, each Internet packet also 
contains a source address, which says where it started from, and a time-to-live (TTL). The TTL is a 
number that specifies the maximum number of “hops” that the packet can make to get to its 
destination, a hop being the traversal of one edge in the network. At every hop, the TTL is 
decreased by one, and if ever it reaches zero the packet is discarded, meaning it is deleted and not 
forwarded any further over the network. If we are using TCP, a message is also then sent back to 
the sender informing them that the packet was discarded and where it got to. (This is a part of 
TCP’s mechanism for guaranteeing the reliable transmission of data—see above.) The TTL exists 
mainly as a safeguard to prevent packets from getting lost on the Internet and wandering around 
forever, but we can make use of it to track packet progress as well. The idea is as follows. 

First, we send out a TCP packet with the destination address of the network vertex we are 
interested in and a TTL of 1. The packet makes a single hop to the first router along the way, its 
TTL is decreased to zero, the packet is discarded by the router and a message is returned to us 
telling us, among other things, the IP address of the router. We record this address and then repeat 
the process with a TTL of 2. This time the packet makes two hops before dying and the returned 
message tells us the IP address of the second router. The process is repeated with larger and larger 
TTL until the destination is reached, and the set of IP addresses received as a result specifies the 
entire route taken to get there.5 There are standard software tools that will perform the entire 
procedure automatically and print out the list of IP addresses for us. On most computers the tool 
that does this is called “traceroute.” 

We can use traceroute (or a similar tool) to probe the network structure of the Internet. The idea 
is to assemble a large data set of traceroute paths between many different pairs of points on the 
Internet. With luck, most of the edges in the network (though usually not all of them) will appear 
at least once in this set, and the union of all of them should give a reasonably complete picture of 
the network. Early studies, for the sake of expediency, limited themselves to just a few source 
computers, but more recent ones, such as the DIMES Project,6 make use of distributed collections 
of thousands of sources to develop a very complete picture of the network. 

See Section 6.7 for a discussion of tree networks. 

The paths from any single source to a set of destinations form a tree-like structure as shown 
schematically in Fig. 2.2a, b, and c.7 The source computers should, ideally, be well distributed over 
the network. If they are close together, then there may be a substantial overlap between the 
traceroute paths to distant vertices, which means that they will duplicate needlessly each other’s 
efforts, rather than returning independent measurements. 

Once one has a suitable set of traceroute data, a simple union of all the paths appearing in the 
data set gives us our snapshot of the network structure—see Fig. 2.2d. That is, we go through each 
path and record a vertex for every IP address that appears in the path and an edge between every 
pair of addresses that appear in adjacent positions. As hinted above, it is unlikely that such a 
procedure will find all the edges in the network (see Fig. 2.2d again), and for studies based on 
small numbers of sources there can be quite severe biases in the sampling of edges [3,192]. 
However, better and better data sets are becoming available as time passes, and it is believed that 
we now have a reasonably complete picture of the shape of the Internet.

 

 



In fact, it is rarely, if ever, done to record every IP address on the Internet as a separate vertex. 
There are believed to be about 2 billion unique IP addresses in use on the Internet at any one time, 
with many of those corresponding to end-user computers that appear and disappear as the 
computers are turned on or off or connections to the Internet are made or broken. Most studies of 
the Internet ignore end-user computers and restrict themselves to just the routers, in effect 
concentrating on the inner zones in Fig. 2.1 and ignoring the outermost one. We will refer to such 
maps of the Internet as representations at the router level. The vertices in the network are routers, 
and the edges between them are network connections. 

 

Figure 2.2: Reconstruction of the topology of the Internet from traceroute data. In panels (a), 
(b), and (c) we show in bold the edges in three sets of traceroute paths starting from each of the 
three highlighted source vertices. In panel (d) we form the union of these edges to make a picture 
of the overall network topology. Note that a few edges are missing from this picture (the remaining 
gray edges in panel (d)) because, by chance, they happen not to appear in any of the three 
individual traceroute data sets. 
  

It may appear strange to ignore end-user computers, since the end users are, after all, the entire 
reason for the Internet’s existence in the first place. However, it is the structure of the network at 
the router level that is responsible for most aspects of the performance, robustness, and efficiency 
of the network, that dictates the patterns of traffic flow on the network, and that forms the focus of 
most work on Internet structure and design. To the extent that these are the issues of scientific 
interest, therefore, it makes sense to concentrate our efforts on the router-level structure. 

An example of a study of the topology of the Internet at the router level is that of Faloutsos et al. 
[111], who looked at the “degree distribution” of the network and discovered it to follow, 
approximately, a power law. We discuss degree distributions and power laws in networks in more 
detail in Section 8.4. 

Even after removing all or most end-user computers from the network, the network structure at 
the router level may still be too detailed for our purposes. Often we would like a more coarse-
grained representation of the network that gives us a broader overall picture of network structure. 
Such representations are created by grouping sets of IP addresses together into single vertices. 
Three different ways of grouping addresses are in common use giving rise to three different 
coarse-grained representations, at the level of subnets, domains, and autonomous systems. 

A subnet is a group of IP addresses defined as follows. IP addresses consist of four numbers, 

 

 



each one in the range from 0 to 255 (eight bits in binary) and typically written in a string 
separated by periods or dots. For example, the IP address of the main web server at the author’s 
home institution, the University of Michigan, is 141.211.144.190. IP addresses are allocated to 
organizations in blocks. The University of Michigan, for instance, owns (among others) all the 
addresses of the form 141.211.144.xxx, where “xxx” can be any number between 0 and 255. Such 
a block, where the first three numbers in the address are fixed and the last can be anything, is 
called a class C subnet. There are also class B subnets, which have the form 141.211.xxx.yyy, and 
class A subnets, which have the form 141.xxx.yyy.zzz. 

Since all the addresses in a class C subnet are usually allocated to the same organization, a 
reasonable way of coarse-graining Internet network data is to group vertices into class C subnets. 
In most cases this will group together vertices in the same organization, although larger 
organizations, like the University of Michigan, own more than one class C subnet, so there will 
still be more than one vertex in the coarse-grained network corresponding to such organizations. 
Given the topology of the network at the router level, the level of individual IP addresses, it is easy 
to lump together into a single vertex all addresses in each class C subnet and place an edge 
between any two subnets if any router in one has a network connection to any router in the other. 
Figure 1.1 on page 4 shows an example of the network structure of the Internet represented at the 
level of class C subnets. 

The second common type of coarse-graining is coarse-graining at the domain level. A domain is 
a group of computers and routers under, usually, the control of a single organization and identified 
by a single domain name, normally the last two or three parts of a computer’s address when the 
address is written in human-readable text form (as opposed to the raw IP addresses considered 
above). For example, “umich.edu” is the domain name for the University of Michigan and “oup . 
co . uk” is the domain name for Oxford University Press. The name of the domain to which a 
computer belongs can be determined in a straightforward manner from the computer’s IP address 
by a “reverse DNS lookup,” a network service set up to provide precisely this type of information. 
Thus, given the router-level network topology, it is a simple task to determine the domain to which 
each router belongs and group vertices in the network according to their domain. An edge is then 
placed between two vertices if any router in one has a direct network connection to any router in 
the other. The study by Faloutsos et al. [111] mentioned earlier looked at the domain-level 
structure of the Internet as well as the router-level structure. 

The third common coarse-graining of the network is coarse-graining at the level of autonomous 
systems. An autonomous system is similar to a domain: it is a group of computers, usually under 
single administrative control, and it often (though not always) coincides with a domain. Coarse-
graining at the autonomous system level is not usually used with data derived from traceroute 
sampling but with data derived using an alternative method based on BGP routing tables, for 
which it forms the most natural unit of representation. The BGP method and autonomous systems 
are discussed in detail in the next section.



2.1.2 MEASURING INTERNET STRUCTURE USING ROUTING TABLES  

Internet routers maintain routing tables that allow them to decide in which direction incoming 
packets should be sent to best reach their destination. Routing tables are constructed from 
information shared between routers using the Border Gateway Protocol (BGP). They consist of 
lists of complete paths from the router in question to destinations on the Internet. When a packet 
arrives at a router, the router examines it to determine its destination and looks up that destination 
in the routing table. The first step of the path in the appropriate table entry tells the router how the 
packet should be sent on its way. Indeed, in theory routers need store only the first step on each 
path in order to route packets correctly. However, for efficient calculation of routes using BGP (the 
techniques of which we will not go into here) it is highly desirable that routers be aware of the 
entire path to each destination, and since the earliest days of the Internet all routers have operated 
in this way. We can make use of this fact to measure the structure of the Internet. 

Routing tables in routers are represented at the level of autonomous systems (ASes). An 
autonomous system is a collection of computers and routers, usually under single administrative 
control, within which data routing is handled independently of the wider Internet, hence the name 
“autonomous system.” That is, when a data packet arrives at a router within an autonomous 
system, destined for a specific computer within that same autonomous system, it is the 
responsibility of the autonomous system to get the packet the last few steps to its final destination. 
Data passing between autonomous systems, however, is handled by the Internet-wide mechanisms 
of BGP. Thus it’s necessary for BGP to know about routing only down to the level of autonomous 
systems and hence BGP tables are most conveniently represented in autonomous system terms. In 
practice, autonomous systems, of which there are (at the time of writing) about twenty thousand on 
the Internet, often coincide with domains, or nearly so. 

Autonomous systems are assigned unique identification numbers. A routing path consists of a 
sequence of these AS numbers and since router tables consist of paths to a large number of 
destinations, we can construct a picture of the Internet at the autonomous system level by 
examining them. The process is very similar to that used for the traceroute method described in the 
previous section and depicted in Fig. 2.2. We first obtain a number of router tables. This is 
normally done simply by the gracious cooperation of router operators at a variety of organizations. 
Each router table contains a large number of paths starting from a single source (the router), and 
the union of these paths gives a good but not complete network snapshot in which the vertices are 
autonomous systems and the edges are the connections between autonomous systems. As with 
traceroute, it is important that the routers used be well scattered over the network to avoid too 
much duplication of results, and the number of routers used should be as large as possible to make 
the sampling of network edges as complete as possible. For example, the Routeviews Project,8 a 
large BGP-based Internet mapping effort based at the University of Oregon, uses (again at the time 
of writing) a total of 223 source computers around the world to measure the structure of the entire 
network every two hours. 

Figure 2.3 shows a picture of the Internet at the AS level derived from routing tables. 
Qualitatively, the picture is similar to Fig. 1.1 for the class C subnet structure, but there are 
differences arising because class C subnets are smaller units than many autonomous systems and 
so Fig. 1.1 is effectively a finer-grained representation than Fig. 2.3. 

Using router-, subnet-, domain-, or AS-level structural data for the Internet, many intriguing 
features of the net’s topology have been discovered in recent years [57, 66, 111, 211, 262, 265], 
many of which are discussed in later chapters of this book.

 



Figure 2.3: The structure of the Internet at the level of autonomous systems. (See Plate III for 
color version.) The vertices in this network representation of the Internet are autonomous systems 
and the edges show the routes taken by data traveling between them. This figure is different from 
Fig. 1.1, which shows the network at the level of class C subnets. The picture was created by Hal 
Burch and Bill Cheswick. Patent(s) pending and Copyright Lumeta Corporation 2009. Reproduced 
with permission. 
  

 

 



One further aspect of the Internet worth mentioning here is the geographic location of its 
vertices on the surface of the Earth. In many of the networks that we will study in this book, 
vertices do not exist at any particular position in real space—the vertices of a citation network for 
instance are not located on any particular continent or in any particular town. Not so the Internet; 
its vertices, by and large, are quite well localized in space. Your computer sits on your desk, a 
router sits in the basement of an office building, and so forth. Things become more blurry once the 
network is coarse-grained. The domain umich. edu covers large parts of the state of Michigan. The 
domain aol. com covers most of North America. These are somewhat special cases, however, 
being unusually large domains. The majority of domains have a well-defined location at least to 
within a few miles. Furthermore, tools now exist for determining, at least approximately, the 
geographic location of a given IP address, domain, or autonomous system. Examples include 
NetGeo, NetAcuity, GeoNetMap, and many others. Geographic locations are determined primarily 
by looking them up in one of several registries that record the official addresses of the registered 
owners of domains or autonomous systems. These addresses need not in all cases correspond to the 
actual location of the corresponding computer hardware. For instance, the domain ibm. com is 
registered in New York City, but IBM’s principal operations are in California. Nonetheless, an 
approximate picture of the geographic distribution of the Internet can be derived by these methods, 
and there has been some interest in the results [332]. 

Geographic localization is a feature the Internet shares with several other technological 
networks, as we will see in the following sections, but rarely with networks of other kinds.9



2.2 THE TELEPHONE NETWORK  

The Internet is the best studied example of a technological network, at least as measured by 
volume of recent academic work. This is partly because data on Internet structure are relatively 
easy to come by and partly because of intense interest among engineers and computer scientists 
and among the public at large. Several other technological networks however are worthy of 
mention here. In this and the following sections of the chapter we look briefly at the telephone 
network and various distribution and transportation networks. A few other networks, such as 
software call graphs and electronic circuits, could also be considered technological networks and 
have been studied occasionally, but are beyond the scope of this book. 

The telephone network—meaning the network of landlines and wireless links10 that transmits 
telephone calls—is one of the oldest communication networks still in use (although the postal 
network is certainly older), but it has been little studied by network theorists, primarily because of 
a lack of good data about its structure. Of course, the structure of the phone network is known, but 
the data are largely proprietary to the telephone companies that own the network and, while not 
precisely secret, they are not openly shared with the research community in the same way that 
Internet data are. We hope that this situation will change, although the issue may become moot in 
the not too distant future, as telephone companies are sending an increasing amount of voice traffic 
over the Internet rather than over dedicated telephone lines, and it may not be long before the two 
networks merge into one. 

Some general principles of operation of the telephone network are clear however. By contrast 
with the Internet, the traditional telephone network is, as mentioned in Section 2.1, not packet 
switched. Signals sent over the phone network are not disassembled and sent as sets of discrete 
packets. Instead the telephone network is circuit switched, which means that the telephone 
company has a number of lines or circuits available to carry telephone calls between different 
points and it assigns them to individual callers when those callers place phone calls. In the earliest 
days of the telephone systems in the United States and Europe the “lines” actually were individual 
wires, one each for each call the company could carry. Increasing the capacity of the network to 
carry more calls meant putting in more wires. Since the early part of the twentieth century, 
however, phone companies have employed techniques for multiplexing phone signals, i.e., sending 
many calls down the same wire simultaneously. The exception is the “last mile” of connection to 
the individual subscriber. The phone cable entering a house usually only carries one phone call at a 
time, although even that has changed in recent years as new technology has made it possible for 
households to have more than one telephone number and place more than one call at a time. 

The basic form of the telephone network is relatively simple. Most countries with a mature 
landline (as opposed to wireless) telephone network use a three-tiered design. Individual telephone 
subscribers are connected over local lines to local telephone exchanges, which are then connected 
over shared “trunk” lines to long-distance offices, sometimes also called toll-switching offices. 
The long-distance offices are then connected among themselves by further trunk lines. See Fig. 2.4 
for a sketch of the network structure. The structure is, in many ways, rather similar to that of the 
Internet (Fig. 2.1), even though the underlying principles on which the two networks operate are 
quite different. 

 



 

Figure 2.4: A sketch of the three-tiered structure of a traditional telephone network. In a 
telephone network individual subscriber telephones are connected to local exchanges, which are 
connected in turn to long-distance offices. The long-distance offices are connected amongst 
themselves by further lines, and there may be some connections between local exchanges as well. 
  

The three-level topology of the phone network is designed to exploit the fact that most 
telephone calls in most countries are local, meaning they connect subscribers in the same town or 
region. Phone calls between subscribers connected to the same local exchange can be handled by 
that exchange alone and do not need to make use of any trunk lines at all. Such calls are usually 
referred to as local calls, while calls that pass over trunk lines are referred to as trunk or long-
distance calls. In many cases there may also be direct connections between nearby local exchanges 
that allow calls to be handled locally even when two subscribers are not technically attached to the 
same exchange. 

The telephone network has had roughly this same topology for most of the last hundred years 
and still has it today, but many of the details about how the network works have changed. In 
particular, at the trunk level some telephone networks are no longer circuit switched. Instead they 
are now digital packet switched networks that work in a manner not dissimilar from the Internet, 
with voice calls digitized, broken into packets, and transmitted over optical fiber links. Only the 
“last mile” to the subscriber’s telephone is still carried on an old-fashioned dedicated circuit, and 
even that is changing with the advent of digital and Internet telephone services. Nonetheless, in 
terms of geometry and topology the structure of the phone network is much the same as it has 
always been, being dictated in large part by the constraints of geography and the propensity for 
people to talk more often to others in their geographic vicinity than to those further away. 

 

 



2.3 POWER GRIDS  

The topology of power grids has received occasional study in the networks literature [16, 323]. A 
power grid, in this context, is the network of high-voltage transmission lines that provide long-
distance transport of electric power within and between countries. Low-voltage local power 
delivery lines are normally excluded. The vertices in a power grid correspond to generating 
stations and switching substations, and the edges correspond to the high-voltage lines. The 
topology of power grids is not difficult to determine. The networks are usually overseen by a 
single authority and complete maps of grids are readily available. Indeed, very comprehensive data 
on power grids (as well as other energy-related networks such as oil and gas pipelines) are 
available from specialist publishers, either on paper or in electronic form, if one is willing to pay 
for them. 

There is much of interest to be learned by looking at the structure of power grids. Like the 
Internet, power grids have a spatial aspect; the individual vertices each have a location somewhere 
on the globe, and their distribution in space is interesting from geographic, social, and economic 
points of view. Network statistics, both geographic and topological, may provide insight into the 
global constraints governing the shape and growth of grids. Power grids also display some unusual 
behaviors, such as cascading failures, which can give rise to surprising results such as the observed 
power-law distribution in the sizes of power outages [92]. 

However, while there is a temptation to apply simple models of the kind described in this book 
to try to explain these and other results, it is wise to be cautious. Power grids are very complicated 
systems. The flow of power is governed not only by simple physical laws, but also by precise and 
detailed control of the phases and voltages across transmission lines, monitored and adjusted on 
rapid timescales by sophisticated computer systems and on slower timescales by human operators. 
It turns out that power failures and other power-grid phenomena are influenced relatively little by 
the raw topology of the network and much more by operator actions and software design, and as a 
result network theory has not, so far, been very successful at shedding light on the behavior of 
power grids. 

 



2.4 TRANSPORTATION NETWORKS  

A moderate amount of work has been done on the structure and function of transportation 
networks such as airline routes and road and rail networks. The structure of these networks is not 
usually hard to determine, although compiling the data may be laborious. Airline networks can be 
reconstructed from published airline timetables, road and rail networks from maps. Geographic 
information systems (GIS) software can be useful for speeding the compilation of transportation 
data, and there are also a variety of online resources providing useful information such as latitude 
and longitude of airports. 

One of the earliest examples of a study of a transportation network is the study by Pitts [268] of 
waterborne transport on Russian rivers in the Middle Ages. There was also a movement among 
geographers in the 1960s and 70s to study road and rail networks, particularly focusing on the 
interplay between their economics and their physical structure. The most prominent name in the 
movement was that of Karel Kansky, and his book on transportation networks is a good point of 
entry into that body of literature [168]. 

More recently a number of authors have produced studies applying new network analysis ideas 
to road, rail, and air networks [16, 136, 294]. In most of the networks studied the vertices represent 
geographic locations and the edges routes between them. For instance, in studies of road networks 
the vertices usually represent road intersections and the edges roads. The study by Sen et al. [294] 
of the rail network of India provides an interesting counterexample. Sen et al. argue, plausibly, that 
in the context of rail travel what matters to most people is whether there is a direct train to their 
destination or, if there is not, how many trains they will have to take to get there. People do not 
care so much about how many stops there are along the way, so long as they don’t have to change 
trains. Thus, Sen et al. argue, a useful network representation in the case of rail travel is one in 
which the vertices represent locations and two vertices are connected by an edge if a single train 
runs between them. Then the distance between two vertices in the network—the number of edges 
you need to traverse to get from A to B—is equal to the number of trains you would have to take. 
A better representation still (although Sen et al. did not consider it) would be a “bipartite network,” 
a network containing two types of vertex, one representing the locations and the other representing 
train routes. Edges in the network would then join locations to the routes that run through them. 
The first, simpler representation of Sen et al. can be derived from the bipartite one by making a 
“one-mode projection” onto the locations only. Bipartite networks and their projections are 
discussed in greater detail in Section 6.6.

 



2.5 DELIVERY AND DISTRIBUTION NETWORKS  

Falling somewhere between transportation networks and power grids are the distribution networks, 
about which relatively little has been written within the field of networks research. Distribution 
networks include things like oil and gas pipelines, water and sewerage lines, and the routes used by 
the post office and package delivery and cargo companies. Figure 2.5 shows one example, the 
European gas distribution network, taken from a study by Carvalho et al. [64], who constructed the 
figure from data purchased from industry sources. In this network the edges are gas pipelines and 
the vertices are their intersections, including pumping, switching, and storage facilities and 
refineries. 

If one is willing to interpret “distribution” in a loose sense, then one class of distribution 
networks that has been relatively well studied is river networks, though if one wants to be precise 
river networks are really collection networks, rather than distribution networks. In a river network 
the edges are rivers or streams and the vertices are their intersections. Like road networks no 
special techniques are necessary to gather data on the structure of river networks—the hard work 
of surveying the land has already been done for us by surveyors and cartographers, and all we need 
do is copy the results off their maps. See Fig. 2.6 for an example of a river network. 

The topological and geographic properties of river networks have been studied in some detail 
[94, 208, 284]. Of particular note is the fact that river networks, to an excellent approximation, 
take the form of trees. That is, they contain no loops (if one disregards the occasional island 
midstream), a point that we discuss in more detail in Section 6.7. 

Similar in some respects to river networks are networks of blood vessels in animals, and their 
equivalents in plants, such as root networks. These too have been studied at some length. An early 
example of a mathematical result in this area is the formula for estimating the total geometric 
length of all edges in such a network by observing the number of times they intersect a regular 
array of straight lines [231]. This formula, whose derivation is related to the well-known “Buffon’s 
needle” experiment for determining the value of π, is most often applied to root systems, but there 
is no reason it could not also be useful in the study of river networks or, with suitable modification, 
any other type of geographic network. 

 



Figure 2.5: The network of natural gas pipelines in Europe. Thickness of lines indicates the 
sizes of the pipes. Figure created by R. Carvalho et al. [64]. Copyright 2009 American Physical 
Society. Reproduced with permission. 
  

 

 



 

Figure 2.6: Drainage basin of the Loess Plateau. The network of rivers and streams on the Loess 
Plateau in the Shanxi province of China. The tree-like structure of the network is clearly visible—
there are no loops in the network, so water at any point in the network drains off the plateau via a 
single path. Reproduced from Pelletier [266] by permission of the American Geophysical Union. 
  

Also of note in this area is work on the scaling relationships between the structure of branching 
vascular networks in organisms and metabolic processes [26, 325, 326], an impressive example of 
the way in which an understanding of network structure can be parlayed into an understanding of 
the functioning of the systems the networks represent. We will see many more examples during the 
course of this book. 

 

 



CHAPTER 3 

SOCIAL NETWORKS 

A discussion of social networks and the empirical techniques used to probe their structure 

SOCIAL networks are networks in which the vertices are people, or sometimes groups of people, 
and the edges represent some form of social interaction between them, such as friendship. 
Sociologists have developed their own language for discussing networks: they refer to the vertices, 
the people, as actors and the edges as ties. We will sometimes use these words when discussing 
social networks. 

We begin this chapter with a short summary of the origins and research focus of the field of 
social networks, before describing in detail some of the techniques used to discover social network 
structure. The material in this chapter forms the basis for understanding many of the social 
network examples that appear in the rest of the book.

 

 

 



3.1 THE EMPIRICAL STUDY OF SOCIAL NETWORKS  

To most people the words “social network,” if they mean anything, refer to online social 
networking services such as Facebook and MySpace. The study of social networks, however, goes 
back far farther than the networks’ modernday computer incarnations. Indeed, among researchers 
who study networks, sociologists have perhaps the longest and best established tradition of 
quantitative, empirical work. There are clear antecedents of social network analysis to be found in 
the literature as far back as the end of the nineteenth century. The true foundation of the field, 
however, is usually attributed to psychiatrist Jacob Moreno, a Romanian immigrant to America 
who in the 1930s became interested in the dynamics of social interactions within groups of people. 
At a medical conference in New York City in March 1933 he presented the results of a set of 
studies he had performed that may have been the first true social network studies, and the work 
attracted enough attention to merit a column in the New York Times a few days later. A year after 
that Moreno published a book entitled Who Shall Survive? [228] which, though not a rigorous 
work by modern standards, contained the seeds of the field of sociometry, which later became 
social network analysis. 

 

Figure 3.1: Friendships between schoolchildren. This early hand-drawn image of a social 
network, taken from the work of psychiatrist Jacob Moreno, depicts friendship patterns between 
the boys (triangles) and girls (circles) in a class of schoolchildren in the 1930s. Reproduced from 
[228] by kind permission of the American Society of Group Psychotherapy and Psychodrama. 
  

 

 

 



Moreno called his diagrams of human interaction sociograms, rather than social networks (a 
term not coined until about twenty years later), but in everything but name they are clearly what 
we now know as networks. Figure 3.1, for instance, shows a hand-drawn figure from Moreno’s 
book, depicting friendships within a group of schoolchildren. The triangles and circles represent 
boys and girls respectively and the figure reveals, among other things, that there are many 
friendships between two boys or two girls, but few between a boy and a girl. It is simple 
conclusions like this, that are both sociologically interesting and easy to see once one draws a 
picture of the network, that rapidly persuaded social scientists that there was merit in Moreno’s 
methods. 

One of the most important things to appreciate about social networks is that there are many 
different possible definitions of an edge in such a network and the particular definition one uses 
will depend on what questions one is interested in answering. Edges might represent friendship 
between individuals, but they could also represent professional relationships, exchange of goods or 
money, communication patterns, romantic or sexual relationships, or many other types of 
connection. If one is interested, say, in professional interactions between the boards of directors of 
Fortune 500 companies, then a network of who is dating whom or who looks at who else’s 
Facebook page is probably not of much use. Moreover, the techniques one uses to probe different 
types of social interaction can also be quite different, so that different kinds of social network 
studies are typically needed to address different kinds of questions. 

Direct questioning of experimental subjects is probably the most common method of 
determining the structure of social networks. We discuss it in detail in Section 3.2. Another 
important technique, the use of archival records (Sections 3.4 and 3.5), is illustrated by a different 
early example of a social network study. It was, apparently, a common practice in the US in the 
1930s for newspapers to report on the public appearances of society women, and Davis, Gardner, 
and Gardner made use of this in a study of a social network of 18 women in a city in the American 
south. This study, often referred to in the literature as the “Southern Women Study,” was described 
in a book by the researchers published in 1941 [86], although it was based on data from 1939. 
They took a sample of 14 social events attended by the women in question and recorded which 
women attended which events. Women in this network may be considered connected if they 
attended a common event. An alternative and more complete representation of the data is as an 
“affiliation network” or “bipartite graph,” a network with two types of vertex, representing the 
women and the events, with edges connecting each woman to the events she attended. A 
visualization of the affiliation network for the Southern Women Study is shown in Fig. 3.2. One 
reason why this study has become so well known, in addition to its antiquity, is that the women 
were found by the researchers to split into two subgroups, tightly knit clusters of acquaintances 
with only rather loose between-cluster interaction. A classic problem in social network analysis is 
to devise a method or algorithm that can discover and extract such clustering from raw network 
data, and quite a number of researchers have made use of the Southern Women data as a test case 
for the development of such methods. Affiliation networks receive further attention in Section 3.5. 

Such is the power of social network analysis that its techniques have, since Moreno and Davis et 
al., been applied to an extraordinary variety of different communities, issues, and problems, 
including friendship and acquaintance patterns in local communities and in the population at large 
[36, 37, 175, 219, 311], and among students [334] and schoolchildren [112, 225, 277], contacts 
between business people and other professionals [78, 134], boards of directors of companies [87, 
88, 207], collaborations of scientists [145, 146, 236], movie actors [16, 323], and musicians [139], 
sexual contact networks [183, 198, 272, 285] and dating patterns [34], covert and criminal 
networks such as networks of drug users [289] or terrorists [191], historical networks [259], online 
communities such as Usenet [204, 300, 312] or Facebook [196], and social networks of animals 
[205, 286, 287]. 



 

Figure 3.2: The affiliation network of the “Southern Women Study.” This network (like all 
affiliation networks) has two types of vertex, the open circles at the bottom representing the 18 
women who were the subjects of the study and the shaded circles at the top representing the social 
events they attended. The edges connect each woman to the events she attended, as deduced from 
newspaper reports. Data courtesy of L. Freeman and originally from Davis et al. [86]. 
  

We will see some examples of these and other networks throughout this book and we will give 
details as needed as we go along. The rest of the present chapter is devoted to a discussion of the 
different empirical methods used to measure social networks. The two techniques described above, 
namely direct questioning of subjects and the use of archival records, are two of the most 
important, but there are several others that find regular use. This chapter does not give a complete 
review of the subject—for that we refer the reader to specialized texts such as those of Wasserman 
and Faust [320] and Scott [293]—but we introduce as much material as will be needed for the later 
chapters of the book, while at the same time, we hope, giving some flavor for the challenges of 
empirical study in the field of social networks.

 

 



3.2 INTERVIEWS AND QUESTIONNAIRES  

The most common general method for accumulating data on social networks is simply to ask 
people questions. If you are interested in friendship networks, then you ask people who their 
friends are. If you are interested in business relationships you ask people who they do business 
with, and so forth. The asking may take the form of direct interviews with participants or the 
completion by participants of questionnaires, either on paper or electronically. Indeed many 
modern studies, particularly surveys conducted by telephone, employ a combination of both 
interviews and questionnaires, wherein a professional interviewer reads questions from a 
questionnaire to a participant. By using a questionnaire, the designers of the study can guarantee 
that questions are asked, to a good approximation, in a consistent order and with consistent 
wording. By employing an interviewer to do the asking the study gains flexibility and reliability: 
interviewees often take studies more seriously when answering questions put to them by a human 
being, and interviewers may be given some latitude to probe interviewees when they are unclear, 
unresponsive, or confused. These are important considerations, since misunderstanding and 
inconsistent interpretation of survey questions are substantial sources of error. By making 
questions as uniform as possible and giving respondents personal help in understanding them, 
these errors can be reduced. A good introduction to social survey design and implementation has 
been given by Rea and Parker [279]. 

To find out about social networks, surveys typically employ a name generator , an item or series 
of items that invite respondents to name others with whom they have contact of a specified kind. 
For example, in their classic study of friendship networks among schoolchildren, Rapoport and 
Horvath [277] asked children to complete a questionnaire that included items worded as follows: 

 

The blanks ʺ___ʺ in the questionnaire were filled in with the appropriate school name. The list 
stopped at the eighth-best friend and many children did not complete all eight. 

Ideally all students within the school would be surveyed, though Rapoport and Horvath reported 
that in their case a few were absent on the day the survey was conducted. Note that the survey 
specifically asks children to name only friends within the school. The resulting network will 
therefore record friendship ties within the school but none to individuals outside. Since all social 
network studies are limited to some community or portion of the population, and since it is highly 
unlikely that such a community will have ties solely within the community and none outside, all 
surveys must make some decision about how to deal with ties to outside individuals. Sometimes 
they are recorded. Sometimes, as here, they are not. Such details can be important since statistics 
derived from the survey results will often depend on the decisions made. 

There are some points to notice about the data produced by name generators. First, the network 
ties, friendships in the case above, are determined by one respondent nominating another by name. 
This is a fundamentally asymmetric process. Individual A identifies individual B as their friend. In 
many cases B will also identify A as their friend, but there is no guarantee that this will happen 

 

 



and it is not uncommon for nomination to go only one way. We normally think of friendship as 
a two-way type of relationship, but surveys suggest that this not always the case. As a result, data 
derived from name generators are often best represented as directed networks, networks in which 
edges run in a particular direction from one vertex to another. If two individuals nominate each 
other then we have two directed edges, one pointing in either direction. Each vertex in the network 
also has two degrees, an outdegree—the number of friends identified by the corresponding 
individual—and an in-degree—the number of others who identified the individual as a friend. 

We encountered directed networks previously in Chapter 1, in our discussion of the World 
Wide Web, and they are discussed in more detail in Section 6.4. 

This brings us to a second point about name generators. It is common, as in the example above, 
for the experimenter to place a limit on the number of names a respondent can give. In the study of 
Rapoport and Horvath, this limit was eight. Studies that impose such a limit are called fixed choice 
studies. The alternative is to impose no limit. Studies that do this are called free choice studies. 

Limits are often imposed purely for practical purposes, to reduce the work the experimenter 
must do. However, they may also help respondents understand what is required of them. In surveys 
of schoolchildren, for instance, there are some children who, when asked to name all their friends, 
will patiently name all the other children in the entire school, even if there are hundreds of them. 
Such responses are not particularly helpful in surveys—almost certainly the children in question 
are employing a definition of friendship different from that employed by most of their peers and by 
the investigators. 

However, limiting the number of responses is for most purposes undesirable. In particular, it 
clearly limits the out-degree of the vertices in the network, imposing an artificial and possibly 
unrealistic cut-off. As discussed in Chapter 1, an interesting property of many networks is the 
existence of a small number of vertices with unusually high degree, and it is known that in some 
cases these vertices, though few in number, can have a dominant effect on the behavior of the 
network as a whole. By employing a name generator that artificially cuts off the degree, any 
information about the existence of such vertices is lost. 

It is worth noticing, however, that even in a fixed-choice study there is normally no limit on the 
in-degree of vertices in the network; there is no limit to the number of times an individual can be 
nominated by others. And indeed in many networks it is found that a small number of individuals 
are nominated an unusually large number of times. Rapoport and Horvath [277] observed this in 
their friendship networks: while most children in a school are nominated as a friend of only a few 
others, a small number of popular children are nominated very many times. Rapoport and Horvath 
were some of the first scientists in any field to study quantitatively the degree distribution of a 
network, reporting and commenting extensively on the in-degrees in their friendship networks. 

Not all surveys employing name generators produce directed networks. Sometimes we are 
interested in ties that are intrinsically symmetric between the two parties involved, in which case 
the edges in the network are properly represented as undirected. An example is networks of sexual 
contact, which are widely studied to help us understand the spread of sexually transmitted diseases 
[183, 198, 272, 285]. In such networks a tie between individuals A and B means that A and B had 
sex. While participants in studies sometimes do not remember who they had sex with or may be 
unwilling to talk about it, it is at least in principal a straightforward yes-or-no question whether 
two people had sex, and the answer should not depend on which of the two you ask.12 In such 
networks therefore, ties are normally represented as undirected. 

Surveys can and often do ask respondents not just to name those with whom they have ties but 
to describe the nature of those ties as well. For instance, questions may ask respondents to name 
people they both like and dislike, or to name those with whom they have certain types of contact, 
such as socializing together, working together, or asking for advice. For example, in a study of the 
social network of a group of medical doctors, Coleman et al. [78] asked respondents the following 
questions: 

Who among your colleagues do you turn to most often for advice?

 



With whom do you most often discuss your cases in the course of an ordinary week? 

Who are the friends among your colleagues who you see most often socially? 

The names of a maximum of three doctors could be given in response to each question. A survey 
such as this, which asks about several types of interactions, effectively generates data on several 
different networks at once—the network of advice, the discussion network, and so forth. 

Surveys may also pose questions aimed at measuring the strength of ties, asking for instance 
how often people interact or for how long, and they may ask individuals to give a basic description 
of themselves: their age, income, education, and so forth. Some of the most interesting results of 
social network studies concern the extent to which people’s choice of whom they associate with 
reflects their own background and that of their associates. For instance, you might choose to 
socialize primarily with others of a similar age to yourself, but turn for advice to those who are 
older than you. 

The main disadvantages of network studies based on direct questioning of participants are that 
they are first laborious and second inaccurate. The administering of interviews or questionnaires 
and the collation of responses is a demanding job that has been only somewhat helped in recent 
years by the increasing availability of computers and the use of online survey tools. Most studies 
have been limited to a few tens or at most hundreds of respondents—the 34-vertex social network 
of Fig. 1.2 is a typical example. It is a rare study that contains more than a thousand actors, and 
studies such as the National Longitudinal Study of Adolescent Health,13 which compiled responses 
from over 90 000 participants, are very unusual and extraordinarily costly. Only a substantial 
public interest such as, in that case, the control of disease, can justify their funding. 

Data based on direct questioning are also plagued by uncontrolled biases. Answers given by 
respondents are always, to some extent, subjective. If you ask people who their friends are, 
different people will interpret “friend” in different ways and thus give different kinds of answers. 
Investigators do their best to pose questions and record answers in a uniform fashion, but it is 
inevitable that inconsistencies will be present in the final data and anyone who has ever conducted 
a survey knows this well. This problem is not unique to social network studies. Virtually all social 
surveys suffer from such problems and a large body of expertise has been developed concerning 
techniques for dealing with them. Nonetheless, one should bear in mind when dealing with any 
social network data derived from interviews or questionnaires the possibility of uncontrolled 
experimental bias in the results. 

 



3.2.1 EGO-CENTERED NETWORKS  

Studies of the type described in the previous section, in which all or nearly all of the individuals in 
a community are surveyed, are called sociometric studies, a term coined by Jacob Moreno himself 
(see the discussion at the beginning of this chapter). For the purposes of determining network 
structure, sociometric studies are desirable; unless we survey all or nearly all of the population of 
interest, there is no way we can reconstruct the complete network of ties within that population. 
However, as discussed at the end of the preceding section, sociometric studies also require a lot of 
work and for large populations may simply be infeasible. 

 

An ego-centered network consisting of an ego and five alters. 
  

At the other end of the spectrum lie studies of personal networks or ego-centered networks.14 An 
ego-centered network is the network surrounding one particular individual, meaning, usually, the 
individual surveyed and his or her immediate contacts. The individual surveyed is referred to as 
the ego and the contacts as alters. 

The typical survey of this kind is conducted using direct questioning techniques similar to those 
discussed in Section 3.2, with interviews, questionnaires, or a combination of both being the 
instruments of choice. One might, for instance, select a sample of the target population at 
random,15 and ask them to identify all those with whom they have a certain type of contact. 
Participants might also be asked to describe some characteristics both of themselves and of their 
alters, and perhaps to answer some other simple questions, such as which alters also have contact 
with one another. 

Obviously surveys of this type, and studies of ego-centered networks in general, cannot reveal 
the structure of an entire network. One receives snapshots of small local regions of the network, 
but in general those regions will not join together to form a complete social network. There are 
cases, however, where we are primarily interested in local network properties, and egocentered 
network studies can give us good data about these. For example, if we wish to know about the 
degrees of vertices in a network then a study in which a random sample of people are each asked to 
list their contacts can give us reasonable degree statistics. (Studies probing vertex degrees are 
discussed more below.) If we also gather data on the contacts between alters, we can estimate 
clustering coefficients (see Section 7.9). If we have data on characteristics of egos and alters we 
can measure assortative mixing (Sections 7.13 and 8.7). 

An example of a study gathering ego-centered network data is the General Social Survey (GSS) 
[59], a large-scale survey conducted every year in the United States since 1972 (every two years 
since 1994). The GSS is not primarily a social network study. The purpose of the study is to gather 
data about life in the United States, how it is changing, and how it differs from or relates to life in 

 

 

 



other societies. The study contains a large number of items ranging from general questions 
probing the demographics and attitudes of the participants, to specific questions about recent 
events, political topics, or quality of life. However, among these many items there are in each 
iteration of the survey a few questions about social networks. The precise number and wording of 
these questions changes from one year to another, but here some examples from the survey of 
1998, which was fairly typical: 

From time to time, most people discuss important matters with other people. Looking back 
over the last six months, who are the people with whom you discussed matters important to 
you? Do you feel equally close to all these people? 

Thinking now of close friends—not your husband or wife or partner or family members, but 
people you feel fairly close to—how many close friends would you say you have? How many 
of these close friends are people you work with now? How many of these close friends are 
your neighbors now? 

And so on. By their nature these questions are of a “free choice” type, the number of friends or 
acquaintances the respondent can name being unlimited, although (and this is a criticism that has 
been leveled at the survey) they are also quite vague in their definitions of friends and 
acquaintances, so people may give answers of widely varying kinds. 

Another example of an ego-centered network study is the study by Bernard et al. [36, 37, 175, 
213] of the degree of individuals in acquaintance networks (i.e., the number of people that people 
know). It is quite difficult to estimate how many people a person knows because most people 
cannot recall at will all those with whom they are acquainted and there is besides a large amount of 
variation in people’s subjective definition of “knowing.” Bernard et al. came up with an elegant 
experimental technique to circumvent these difficulties. They asked people to read through a list 
containing a sample of several hundred family names drawn from a telephone directory.16 
Participants counted up how many people they knew with names appearing on the list. Each 
person with a listed name was counted separately, so that two acquaintances called “Smith” would 
count as two people. They were instructed to use the following precise definition of acquaintance: 

You know the person and they know you by sight or by name; you can contact them in person 
by telephone or by mail; and you have had contact with the person in the past two years. 

(Of course, many other definitions are possible. By varying the definition, one could probe 
different social networks.) Bernard et al. then fed the counts reported by participants into a 
statistical formula to estimate the total number of acquaintances of each participant. 

Bernard et al. repeated their study with populations drawn from several different cities and the 
results varied somewhat from city to city, but overall they found that the typical number of 
acquaintances, in the sense defined above, of the average person in the United States is on the 
order of about 2000. In the city of Jacksonville, Florida, for instance, they found a figure of 1700, 
while in Orange County, California they found a figure of 2025. Many people find these numbers 
surprisingly high upon first encountering them, perhaps precisely because we are poor at recalling 
all of the many people we know. But repeated studies have confirmed figures of the same order of 
magnitude, at least in the United States. In some other countries the figures are lower. In Mexico 
City, for instance, Bernard et al. estimated that the average person knows about 570 others.

 

 



3.3 DIRECT OBSERVATION  

An obvious method for constructing social networks is direct observation. Simply by watching 
interactions between individuals one can, over a period of time, form a picture of the networks of 
unseen ties that exist between those individuals. Most of us, for instance, will be at least somewhat 
aware of friendships or enmities that exist between our friends or coworkers. In direct observation 
studies, researchers attempt to develop similar insights about the members of the population of 
interest. 

Direct observation tends to be a rather labor-intensive method of study, so its use is usually 
restricted to rather small groups, primarily ones with extensive face-to-face interactions in public 
settings. In Chapter 1 we saw one such example, the “karate club” network of Zachary [334]. 
Another example is the study by Freeman et al. [131, 132] of the social interactions of windsurfers 
on a beach. The experimenters simply watched the individuals in question and recorded the length 
in minutes of every pairwise interaction among them. A large number of direct-observation 
network data sets were compiled by Bernard and co-workers during the 1970s and 80s as part of a 
lengthy study of the accuracy of individuals’ perception of their own social situation [38, 40, 41, 
173]. These include data sets on interactions between students, faculty, and staff in a university 
department, on members of a university fraternity,17 on users of a teletype service for the deaf, and 
several other examples. 

One arena in which direct observation is essentially the only viable experimental technique is in 
studies of the social networks of animals—clearly animals cannot be surveyed using interviews or 
questionnaires. One method is to record instances of animal pairs engaging in recognizable social 
behaviors such as mutual grooming, courting, or close association and then to declare ties to exist 
between the pairs that engage in these behaviors most often [205]. Not all animal species form 
interesting or useful social networks, but informative studies have been performed of, amongst 
others, monkeys [121, 286, 287], kangaroos [143], and dolphins [80, 205]. Networks in which the 
ties represent aggressive behaviors have also been reported, such as networks of baboons [214], 
wolves [163, 316], and ants [77]. In cases where aggressive behaviors normally result in one 
animal’s establishing dominance over another the resulting networks can be regarded as directed 
and are sometimes called dominance hierarchies [90, 91, 101].

 



3.4 DATA FROM ARCHIVAL OR THIRD-PARTY RECORDS  

An increasingly important, voluminous, and often highly reliable source of social network data is 
archival records. Such records are, sometimes at least, relatively free from the vagaries of human 
memory and are often impressive in their scale, allowing us to construct networks of a size that 
would require far more effort were other techniques used. 

 

Figure 3.3: Intermarriage network of the ruling families of Florence. In this network the 
vertices represent fifteenth century Florentine families and the edges represent ties of marriage 
between them. After Padgett and Ansell [259]. 
  

A well-known small example of a study based on archival records is the study by Padgett and 
Ansell of the ruling families of Florence in the fifteenth century [259]. In this work, the 
investigators looked at contemporaneous historical records to determine which among the families 
had trade relations, marriage ties, or other forms of social contact with one another. Figure 3.3 
shows one of the resulting networks, a network of intermarriages between 15 of the families. It is 
notable that the Medici family occupies a central position in this network, having marriage ties 
with members of no fewer than six other families. Padgett and Ansell conjectured that it was by 
shrewd manipulation of social ties such as these that the Medici rose to a position of dominance in 
Florentine society. 

In recent years, with the widespread availability of computers and online databases, many more 
networks have been constructed from records of various types. A number of authors, for example, 
have looked at email networks [103, 313]. Drawing on email logs—automatic records kept by 
email servers of messages sent—it is possible to construct networks in which the vertices are 
people (or more correctly email addresses) and the directed edges between them are email 
messages. Exchange of email in such a network can be taken as a proxy for acquaintance between 
individuals, or we may be interested in the patterns of email exchange for some other reason. For 

 

 

 



instance, email messages can carry computer viruses and a knowledge of the structure of the 
network of messages may help us to predict and control the spread of those viruses. 

Another form of email network is the network formed by email address books. An email address 
book is a computer file in which a computer user stores, for convenience, the email addresses of 
his or her regular correspondents. The set of all such address books can be regarded as defining a 
network in which the vertices represent the owners of the address books, and there is a directed 
edge from vertex A to vertex B if person B’s address appears in person A’s address book. This 
network is again of interest in the study of computer viruses, since some viruses search address 
books for the addresses of new victims to infect and hence spread over the address book network. 
Similar networks can also be constructed for other forms of electronic communication that use 
address books, such as instant messaging [301]. 

Telephone call graphs are quite distinct from the physical network of telephone cables 
discussed in Section 2.2. Indeed, a call graph is to the physical telephone network roughly as 
an email network is to the Internet. 

A form of network similar to but older than the email network is the telephone call graph. In 
such a network the vertices represent telephone numbers and directed edges between them 
represent telephone calls from one number to another. Call graphs can be reconstructed from call 
logs kept by telephone companies, although such logs are generally proprietary and not easily 
available outside of those companies, and call graphs have as a result only occasionally been 
examined in the scientific literature [1, 9, 258]. 

Recent years have seen the rapid emergence of online social networking services, such as 
Facebook and Linkedln, which exist primarily to promote, document, and exploit the networks of 
contacts between individuals. As a natural part of their operation, these services build records of 
connections between their participants and hence provide, at least in principle, a rich source of 
archival network data. These data, however, like those for telephone calls, are largely proprietary 
to the companies operating the services and hence quite difficult to get hold of. So far only a few 
studies have been published of online social networks [53], but internal studies have no doubt been 
performed by the companies themselves and it is only a matter of time before more data become 
publicly available. 

A few other online communities, not explicitly oriented towards networks, have been studied 
using network techniques. For instance, Holme et al. [158] took records of interactions between 
members of a Swedish dating website and reconstructed from them the network of interactions 
between the site’s members. This study was unusual in that the network was time-resolved—the 
date and time of each interaction were recorded, allowing investigators to reconstruct after the fact 
the timing and duration of contacts between individuals. Most of the sources of network data 
considered in this book are not time-resolved, but many of the networks they correspond to do 
nonetheless change over time. Time-resolved network studies, or longitudinal studies, as they are 
called in sociology, are certainly a growth area to watch for in the future. 

Another source of network data representing online communities is the Internet newsgroup 
system Usenet, a worldwide online message-board system that allows users to post messages on a 
large variety of topics. Messages are date and time stamped and identified with the name or email 
address of the poster along with a unique reference number that allows a poster to indicate when a 
posting is a reply or follow-on to a previous posting. Thus one can reconstruct the thread of the 
conversation taking place in a newsgroup, and in particular assemble a network in which the 
vertices are posters and the edges represent a response by one poster to a posting by another. 
Studies of newsgroup networks of this kind have been performed by a number of authors [204, 
300, 312]. 

Weblogs and online journals are another source of online social network data. Online journals of 
various kinds have become popular on the World Wide Web since around the turn of the century. 
On these websites the proprietor posts whatever thoughts he or she cares to make public, along 
with links to sites maintained by others. These links form a directed network that lies, in terms of 
semantic content, somewhere between a social network and the World Wide Web; the links are 
often informational—the linker wishes to bring to his or her readers’ attention the contents of the 

 



linked site—but there is a strong social element as well, since people often link to sites operated 
by their friends or acquaintances. This trend is particularly noticeable within journal communities 
such as LiveJournal and among weblogs devoted to specific topics, such as science or politics. The 
structure of the networks of links can be extracted using “crawlers” similar to those used to search 
the Web—see Section 4.1. Studies of journals and weblogs have been performed for example by 
Adamic and Glance [4] and MacKinnon and Warren [206]. 

An interesting network that has features of both a social and a technological network is the 
network of trust formed by a set of cryptographic keys. Cryptosystems or cyphers (i.e., secret 
codes), long associated in the public mind with spies and skulduggery, have become a crucial part 
of the twenty-first-century economy, used to protect important data, particularly financial data 
such as credit card numbers, from theft and misuse. An important advance, central to the 
widespread and convenient use of cryptography, was the development in the 1970s of public-key 
cryptography. In traditional cryptosystems, two parties wishing to exchange messages must share a 
key that they use to encode and decode the messages. The key is typically a large number, which is 
used in combination with the chosen cryptosystem to dictate exactly how messages are converted 
from their original “plain text” form into code and back again. This key, which allows anyone 
possessing it to decode the messages, must be kept secret from any malicious snoopers, and this 
raises the difficult problem of how the parties in question agree on the key in the first place. 
Usually the key is generated by a computer program run by one party, but then it must be 
transmitted securely to the other party without anyone else seeing it. Sending the key over the 
Internet unencrypted would pose a significant risk of detection. Physical transmission, for example 
by conventional mail, would be reasonably secure, but would take a long time. Most customers 
buying goods over the Internet would not want to wait a week for a secret key to arrive by mail 
from their vendor. 

These problems were solved with the invention of public-key cryptography in the 1970s. Public-
key cryptosystems make use of any of several different asymmetric cyphers in which two different 
keys are used. One key, called the public key, is employed in the computer algorithm that converts 
the message from plain text into its encrypted form, but a different key, the private key, is needed 
to decrypt the message. The public key cannot be used for decryption.18 The two keys are 
generated as a pair by one of the two parties wishing to exchange information and the public key is 
sent openly over the Internet or other channel to the second party. The private key remains the 
secret property of the first party and is not shared. The second party can then send messages to the 
first by encoding them with the public key and only the first party can decode them.19 Although the 
public key can be intercepted by a third party in transmission, it will do the third party no good, 
since the public key cannot be used to decode messages, only to encode them. Indeed, in many 
cases, users of public-key systems deliberately broadcast their public keys to anyone who might 
want them, inviting the world to send them encoded messages, messages which only they can 
decode. It is from such practices that the name “public-key cryptography” arises. 

Some asymmetric cyphers can also be used in the reverse direction. That is, one can encode a 
message with the private key and it can only be decoded with the public key. Why would one want 
to do this, when everyone has the public key? The answer is that you can use it to prove your 
identity. Someone talking to you over the Internet, say, may want to be certain that you are who 
you claim to be (rather than some nefarious interloper) before they trust you with, for instance, 
their credit card number. So they send you a specific message that they choose, usually just a 
random string of digits, and ask you to encrypt it using your private key. Having done so, you send 
the encrypted message back to them and they decode it with the public key. If the decoded 
message matches the original one then they know that you are who you say you are, since no one 
else has your private key and hence no one else could have encrypted a message that decodes 
correctly with the public key.20 This “digital signature” process is a crucial part of electronic 
commerce, allowing buyers and sellers to confirm each other’s identities before doing business, 
and is used millions of times every day in transactions of every sort. 

But there is still a fundamental problem with public-key encryption, namely the problem of 
knowing that the public key you are given really was created by the person you think it was 
created by. Some malicious person could create a public/private key pair and broadcast the public 
key to the world, labeled with, say, the name of a bank or retail trader, then use that key in a digital 



signature scheme to persuade some unsuspecting victim that they are the trader and that the 
victim should send them a credit card number. 

One way around this problem is to have people sign each other’s public keys [267]. That is, 
party A takes a public key that claims to belong to party B, and that A knows in fact to be genuine, 
and encrypts it with their own private key. Now if you have A’s public key and you believe it to be 
genuine, then you can take the encrypted key and decode it with A’s public key, thereby 
recovering B’s public key, which A says is genuine. If you trust A to make this statement, then you 
can now also trust that the key you have is B’s true public key. 

But now one can repeat the process. Now that you have a genuine public key for party B, and if 
you trust B, then B can now sign the keys that they know to be genuine and you will be able to 
verify that they are genuine also. In this way, parties who trust each other can securely represent to 
one another that keys are genuine. 

The act of digitally signing someone else’s public key is equivalent to saying that you know, or 
at least believe, the public key to be genuine, belonging to the person it claims to belong to. That 
act can be represented by a directed edge in a network. The vertices in the network represent the 
parties involved and a directed edge from party A to party B indicates that A has signed B’s public 
key. The resulting directed network certainly has technological aspects but is in many ways more 
of a social network than anything else. People tend to vouch for the keys of other people they 
know, people they have communicated with or worked with frequently, so that they have both a 
good idea that the key in question is indeed genuine and a personal reason for making the effort to 
sign it. 

Since public keys and the digital signatures of the people who sign them are, by necessity, 
public, it is relatively easy to construct a key-signing network from widely available data. There 
are a number of widely used key-signing networks associated, usually, with particular commercial 
cryptography products. One of the largest, for instance, is the network associated with the 
cryptography program PGP [267]. There have been only a small number of studies so far of the 
properties of key signing networks [47, 148] but there are certainly interesting questions awaiting 
answers in this area. 



3.5 AFFILIATION NETWORKS  

An important special case of the reconstruction of networks from archival records is the affiliation 
network. An affiliation network is a network in which actors are connected via comembership of 
groups of some kind. We saw one example in the introduction to this chapter, the Southern 
Women Study of Davis et al. [86], in which the authors drew their data from newspaper reports of 
social events and the “groups” were the sets of individuals who attended particular events. As we 
saw, the most complete representation of an affiliation network is as a network with two types of 
vertex representing the actors and the groups, with edges connecting actors to the groups to which 
they belong—see Fig. 3.2 on page 39. In such a representation, called a “bipartite network” or 
“two-mode network,” there are no edges connecting actors directly to other actors (or groups to 
other groups), only actors to groups. 

We study bipartite networks in more detail in Section 6.6. 

Many examples of affiliation networks can be found in the literature. Another famous case is the 
study by Galaskiewicz [134] of the CEOs of companies in Chicago in the 1970s and their social 
interaction via clubs that they attended. In this network the CEOs are the actors and the clubs are 
the groups. Also in the business domain, quite a number of studies have been conducted of the 
boards of directors of companies [87, 88, 207]. In these networks the actors are company directors 
and the groups are the boards on which they sit. In addition to looking at the connections between 
directors in such networks, which arise as a result of their sitting on boards together, a considerable 
amount of attention has also been focused on the connections between boards (and hence between 
companies) that arise as a result of their sharing a common director, a so-called board “interlock.” 

More recently, some extremely large affiliation networks have been studied in the mathematics 
and physics literature. Perhaps the best known example is the network of collaborations of film 
actors, in which the “actors” in the network sense are actors in the dramatic sense also, and the 
groups to which they belong are the casts of films. This network is the basis, among other things, 
for a well-known parlor game, sometimes called the “Six Degrees of Kevin Bacon,” in which one 
attempts to connect pairs of actors via chains of intermediate costars in a manner reminiscent of 
the small-world experiments of Stanley Milgram, which we discuss in Section 3.6. The film actor 
network has, with the advent of the Internet, become very thoroughly documented and has 
attracted the attention of many network analysts in recent years [16, 27, 323], although it is not 
clear whether there are any conclusions of real scientific interest to be drawn from its study. 

Another example of a large affiliation network, one that holds more promise of providing useful 
results, is the coauthorship network of academics. In this network an actor is an academic author 
and a group is the set of authors of a learned paper. Like the film actor network, this network has 
become well documented in the last few years with the appearance of extensive online 
bibliographic resources covering many areas of human endeavor. Whether one is interested in 
papers published in journals or in more informal forums such as online preprint servers, excellent 
records now exist in most academic fields of authors and the papers they write, and a number of 
studies of the corresponding affiliation networks have been published [29, 89, 145, 146, 234-236].

 

 



3.6 THE SMALL-WORLD EXPERIMENT  

An unusual contribution to the social networks literature was made by the experimental 
psychologist Stanley Milgram in the 1960s with his now-famous “small-world” experiments [219, 
311]. Milgram was interested in quantifying the typical distance between actors in social networks. 
As discussed in Chapter 1, the “geodesic distance” between two vertices in a network is the 
minimum number of edges that must be traversed to travel from one vertex to the other through the 
network. Mathematical arguments suggest (as we will see later in this book) that this distance 
should be quite small for most pairs of vertices in most networks, a fact that was already well 
known in Milgram’s time.21 Milgram wanted to test this conjecture in real networks and to do this 
he concocted the following experiment.22 

Milgram sent a set of packages, 96 in all, to recipients randomly chosen from the telephone 
directory in the US town of Omaha, Nebraska. The packages contained an official-looking booklet, 
or “passport,” emblazoned with the crest of Milgram’s home institution, Harvard University. 
Written instructions were included asking the recipients to attempt to get the passport to a specified 
target individual, a friend of Milgram’s who lived in Boston, Massachusetts, over a thousand miles 
away. The only information supplied about the target was his name (and hence indirectly the fact 
that he was male), his address, and his occupation as a stockbroker. But the passport holders were 
not allowed simply to send their passport to the given address. Instead they were asked to pass it to 
someone they knew on a first-name basis and more specifically the person in this category who 
they felt would stand the best chance of getting the passport to the intended target. Thus they might 
decide to send it to someone they knew who lived in Massachusetts, or maybe someone who 
worked in the financial industry. The choice was up to them. Whoever they did send the passport 
to was then asked to repeat the process, sending it on to one of their acquaintances, so that after a 
succession of such steps the passport would, with luck, find its way into the hands of its intended 
recipient. Since every step of the process corresponded to the passport’s changing hands between a 
pair of first-name acquaintances, the entire path taken corresponded to a path along the edges of 
the social network formed by the set of all such acquaintanceships. Thus the length of the path 
taken provided an upper bound on the geodesic distance in this network between the starting and 
ending individuals in the chain. 

Of the 96 passports sent out, 18 found their way to the stockbroker target in Boston. While this 
may at first sound like a low figure, it is actually remarkably high—recent attempts to repeat 
Milgram’s work have resulted in response rates orders of magnitude lower [93]. Milgram asked 
participants to record in the passport each step of the path taken, so he knew, among other things, 
how long each path was, and he found that the mean length of completed paths from Omaha to the 
target was just 5.9 steps. This result is the origin of the idea of the “six degrees of separation,” the 
popular belief that there are only about six steps between any two people in the world.23 

There are of course many reasons why this result is only approximate. Milgram used only a 
single target in Boston, and there is no guarantee the target was in any way typical of the 
population as a whole. And all the initial recipients in the study were in a single town in the same 
country.24 (None of the completed chains that reached the target went outside the country.) Also 
there is no guarantee that chains took the shortest possible route to the target. Probably they did 
not, at least in some cases, so that the lengths of the paths found provide, as we have said, only an 
upper bound on the actual geodesic distance between vertices. And most of the chains of course 
were never completed. The passports were discarded or lost and never made their way to the 
target. It is reasonable to suppose that the chances of getting lost were greater for passports that 
took longer paths, and hence that the paths that were completed were a biased sample, having 
typical lengths shorter than the average.

 



For all these reasons and several others, Milgram’s experiments should be taken with a large 
pinch of salt. Even so, the fundamental result that vertex pairs in social networks tend on average 
to be connected by short paths is now widely accepted, and has moreover been shown to extend to 
many other kinds of networks as well. Enough experiments have confirmed the effect in enough 
networks that, whatever misgivings we may have about Milgram’s particular technique, the 
general result is not seriously called into question. 

Funneling is discussed further in Section 8.2. 

Milgram’s experiments also, as a bonus, revealed some other interesting features of 
acquaintance networks. For instance, Milgram found that most of the passports that did find their 
way to the stockbroker target did so via just three of the target’s friends. That is, a large fraction of 
the target’s connections to the outside world seemed to be through only a few of his acquaintances, 
a phenomenon sometimes referred to as the “funneling” effect. Milgram called such well-
connected acquaintances “sociometric superstars,” and their existence has occasionally been noted 
in other networks also, such as collaboration networks [234], although not in some others [93]. 

A further interesting corollary of Milgram’s experiment has been highlighted by Kleinberg [177, 
178]. (Milgram himself seems not to have appreciated the point.) The fact that a moderate number 
of the passports did find their way to the intended target person shows not only that short paths 
exist in the acquaintance network, but also that people are good at finding those paths. Upon 
reflection this is quite a surprising result. As Kleinberg has shown, it is possible and indeed 
common for a network to possess short paths between vertices but for them to be hard to find 
unless one has complete information about the structure of the entire network, which the 
participants in Milgram’s studies did not. Kleinberg has suggested a possible explanation for how 
participants found the paths they did, based on conjectures about the structure of the network. We 
discuss his ideas in detail in Section 19.3. 

Recently the small-world experiment has been repeated by Dodds et al. [93] using the modern 
medium of email. In this version of the experiment participants forwarded email messages to 
acquaintances in an effort to get them ultimately to a specified target person about whom they 
were told a few basic facts. The experiment improved on that of Milgram in terms of sheer 
volume, and also by having much more numerous and diverse target individuals and starting points 
for messages: 24 000 chains were started, most (though not all) with unique starting individuals, 
and with 18 different participating targets in 13 different countries. On the other hand, the 
experiment experienced enormously lower rates of participation than Milgram’s, perhaps because 
the public is by now quite jaded in its attitude towards unsolicited mail. Of the 24 000 chains, only 
384, or 1.5%, reached their intended targets, compared with 19% in Milgram’s case. Still, the basic 
results were similar to those of Milgram. Completed chains had an average length of just over four 
steps. Because of their better data and considerably more careful statistical analysis, Dodds et al. 
were also able to compensate for biases due to unfinished chains and estimated that the true 
average path length for the experiment was somewhere between five and seven steps—very similar 
to Milgram’s result. However, Dodds et al. observed no equivalent of the “sociometric superstars” 
of Milgram’s experiment, raising the question of whether their appearance in Milgram’s case was 
merely a fluke of the particular target individual he chose rather than a generic property of social 
networks. 

An interesting variant on the small-world experiment has been proposed by Killworth and 
Bernard [39, 174], who were interested in how people “navigate” through social networks, and 
specifically how participants in the small-world experiments decide whom to forward messages to 
in the effort to reach a specified target. They conducted what they called “reverse small-world” 
experiments25 in which they asked participants to imagine that they were taking part in a small-
world experiment. A (fictitious) message was to be communicated to a target individual and 
participants were asked what they wanted to know about the target in order to make a decision 
about whom to forward the message to. The actual passing of the message never took place; the 
experimenters merely recorded what questions participants asked about the target. They found that 
three characteristics were sought overwhelmingly more often than any others, namely the name of 
the target, their geographic location, and their occupation—the same three pieces of information 

 



that Milgram provided in his original experiment. Some other characteristics came up with 
moderate frequency, particularly when the experiment was conducted in non-Western cultures or 
among minorities: in some cultures, for instance, parentage or religion were considered important 
identifying characteristics of the target. 

The mechanisms of network search and message passing are discussed in greater detail in 
Section 19.3. 

While the reverse small-world experiments do not directly tell us about the structure of social 
networks, they do give us information about how people perceive and deal with social networks.

 



3.7 SNOWBALL SAMPLING, CONTACT TRACING, AND RANDOM WALKS 

Finally in this chapter on social networks we take a look at a class of networkbased techniques for 
sampling hidden populations. 

Studies of some populations, such as drug users or illegal immigrants, present special problems 
to the investigator because the members of these populations do not usually want to be found and 
are often wary of giving interviews. Techniques have been developed, however, to sample these 
populations by making use of the social network that connects their members together. The most 
widely used such technique is snowball sampling [108, 127, 310]. 

Note that, unlike the other experimental techniques discussed in this chapter, snowball sampling 
is not intended as a technique for probing the structure of social networks. Rather, it is a technique 
for studying hidden populations that relies on social networks for its operation. It is important to 
keep this distinction clear. To judge by the literature, some professional social network analysts do 
not, and the results are often erroneous conclusions and bad science. 

Standard techniques such as telephone surveys often do not work well when sampling hidden 
populations. An investigator calling a random telephone number and asking if anyone on the other 
end of the line uses drugs is unlikely to receive a useful answer. The target population in such 
cases is small, so the chances of finding one of its members by random search are also small, and 
when you do find one they will very likely be unwilling to discuss the highly personal and possibly 
illicit topic of the survey with an investigator they have never met before and have no reason to 
trust. 

So investigators probe the population instead by getting some of its members to provide contact 
details for others. The typical survey starts off rather like a standard ego-centered network study 
(Section 3.2.1). You find one initial member of the population of interest and interview them about 
themselves. Then, upon gaining their confidence, you invite them also to name other members of 
the target population with whom they are acquainted. Then you go and find those acquaintances 
and interview them asking them also to name further contacts, and so forth through a succession of 
“waves” of sampling. Pretty soon the process “snowballs” and you have a large sample of your 
target population to work with. 

Clearly this is a better way of finding a hidden population than random surveys, since each 
named individual is likely to be a member of the population, and you also have the advantage of an 
introduction to them from one of their acquaintances, which may make it more likely that they will 
talk to you. However, there are some serious problems with the method as well. In particular, 
snowball sampling gives highly biased samples. In the limit of a large number of waves, snowball 
sampling samples actors with probability proportional to their “eigenvector centrality” (see Section 
7.2). Unfortunately, this limit is rarely reached in practice, and in any case the eigenvector 
centrality cannot be calculated without knowledge of the complete contact network, which by 
definition we don’t have, making correction for the sampling bias difficult. In short, snowball 
sampling gives biased samples of populations and there is little we can do about it. Nonetheless, 
the technique is sufficiently useful for finding populations that are otherwise hard to pin down that 
it has been widely used, biases and all, in studies over the last few decades. 

Sometimes, in the case of small target populations, a few waves of snowball sampling may find 
essentially all members of a local population, in which case the method can be regarded as 
returning data about the structure of the social network. If the contacts of each interviewed 
participant are recorded in the study, it should be possible to reconstruct the contact network when 
the study is complete. This has occasionally been done in such studies, although as noted above the 
object is more often to exploit the social network to find the population than to study the network 
itself. 

 



A technique closely related to snowball sampling is contact tracing, which is essentially a form 
of snowball sampling applied to disease incidence. Some diseases, such as tuberculosis and HIV, 
are considered sufficiently serious that, when someone is discovered to be carrying them, an effort 
must be made to track down all those who might also have been infected. Thus, in most Western 
countries, when a patient tests positive for HIV, for instance, he or she will be questioned about 
recent sexual contacts, and possibly about other types of potentially disease-carrying contacts, such 
as needle sharing if the patient is an injection drug user. Then health authorities will make an effort 
to track down those contacts and test them also for HIV. The process is repeated with any who test 
positive, tracing their contacts as well, and so forth, until all leads have been exhausted. While the 
primary purpose of contract tracing is to curtail disease outbreaks and safeguard the health of the 
population, the process also produces data about the community through which a disease is 
spreading and such data have sometimes been used in scientific studies, particularly of sexually 
transmitted diseases, for which data may otherwise be hard to come by. Population samples 
derived from contact tracing studies display biases similar in type and magnitude to those seen in 
snowball sampling and should be treated with the same caution. Indeed, they contain extra biases 
as well, since contacts are rarely pursued when an individual tests negative for the disease in 
question, so the sample is necessarily dominated by carriers of the disease, who are themselves 
usually a biased sample of the population at large. Also, as with snowball sampling, contact tracing 
data can provide us with an experimental window on the structure of the contact network itself, but 
again we expect the data to be strongly biased, except in cases of small target populations for 
which the sampling process saturates. 

There is another variant of snowball sampling that deals to some extent with the problems of 
bias in the sample. This is random-walk sampling [182, 310]. In this method one again starts with 
a single member of the target community and interviews them and determines their contacts. Then, 
however, instead of interviewing all of those contacts, one chooses one of them at random and 
interviews only that one at the next step. If the person in question cannot be found or declines to be 
interviewed, one simply chooses another contact, and the process is repeated. Initially it appears 
that this will be a more laborious process than standard snowball sampling, since one spends a lot 
of time determining the names of individuals one never interviews, but this is not the case. In 
either method one has to determine the contacts of each person interviewed, so the total amount of 
work for a sample of a given size is the same. It is however very important that one really does 
determine all the contacts of each individual, even though most of the time only one of them is 
pursued. This is because for the method to work correctly one must make a random choice among 
those contacts, for example by rolling a die (or some modern electronic version thereof). To do this 
one must know the full set of contacts one is choosing between. 

The advantage of the random-walk sampling method is that, as shown in Section 6.14, the 
asymptotic sampling probability of vertices in a random walk is simply proportional to vertex 
degree (see Eq. (6.60)). What’s more, the asymptotic regime in such studies is, unlike snowball 
sampling, reached quite quickly for relatively small sample sizes. 26 

Knowing this, and given that we determine degree (i.e., the number of contacts an individual 
has) as a part of the interview process, we can easily compensate for sampling bias and make 
population estimates of quantities in a way that is, in theory at least, unbiased. In practice, many 
sources of bias remain, particularly those associated with participant subjectivity, inability to recall 
contacts, and non-participation of named contacts. Still, random-walk sampling is a great 
improvement on standard snowball sampling, and should be used more than it is. Its principal 
disadvantage is that it is relatively slow. Since the participants are interviewed serially, in a chain, 
rather than in parallel waves, a strict implementation of the method can take a long time to develop 
a large sample. One can get around this obstacle to some extent by running several short random 
walks in parallel instead of one long one, but the walks cannot be too short or they will not reach 
the asymptotic regime in which sampling is proportional to degree. 

Another variant of the random-walk sampling idea is used to deal with a different problem, that 
of enrolling study participants. In some cases it is considered unethical to get participants to name 
their contacts, particularly when the topic of the study is one of dubious legality, and permission to 
perform such studies may be withheld by the authorities. To circumvent this problem one can 
make use of respondent-driven sampling [289]. In this technique, participants are usually paid to 



take part, and enrollment is achieved by handing out tickets to interviewees. Rather than asking 
people to name their contacts, the interviewees are simply told that they should give the tickets to 
their friends, and that both they and the friends will receive payment if the friend brings the ticket 
to the investigator and agrees to participate in the survey. In this way, no one is ever asked to name 
names and all participants have actively volunteered their participation. In the case where a single 
ticket is given to each participant, the method is roughly equivalent to random-walk sampling and 
should in theory give a less biased sample than snowball sampling for the same reasons. In 
practice, a new bias is introduced because the recipient of the ticket is not necessarily chosen at 
random from an individual’s acquaintances. Also, tickets frequently get lost or their recipients 
decline to participate, remuneration notwithstanding, so one would normally give out more than 
one ticket to each participant, which complicates the sampling process. Even so, it is believed that 
respondent-driven sampling provides superior population samples to snowball sampling, and it is 
the method of choice for studies in which one cannot ask people to name their contacts. 



CHAPTER 4 

NETWORKS OF INFORMATION 

A description of networks of information or data, with a particular focus on the World Wide 
Web and citation networks 

THIS CHAPTER focuses on networks of information, networks consisting of items of data linked 
together in some way. Information networks are all, so far as we know, man-made, with perhaps 
the best known example being the World Wide Web, though many others exist and are worthy of 
study, particularly citation networks of various kinds. These and several other types of information 
networks are discussed in this chapter. 

In addition, there are some networks which could be considered information networks but which 
also have social aspects to them. Examples include networks of email communications, networks 
on social-networking websites such as Facebook or LinkedIn, and networks of weblogs and online 
journals. These and similar examples were discussed in the previous chapter on social networks, in 
Section 3.4, but they would have fitted perfectly well in the present chapter also. The classification 
of networks as social networks, information networks, and so forth is a fuzzy one, and there are 
plenty of examples that, like these, straddle the boundaries.

 

 

 



4.1 THE WORLD WIDE WEB  

Although by no means the first information network created, the World Wide Web is probably the 
example best known to most people and a good place to start our discussion in this chapter. 

As described in Chapter 1, the Web is a network in which the vertices are web pages consisting 
of text, pictures, or other information and the edges are the hyperlinks that allow us to navigate 
from page to page. Since hyperlinks run in one direction only, the Web is a directed network. We 
can picture the network with an arrow on each edge indicating which way it runs. Some pairs of 
web pages are connected by hyperlinks running in both directions, which can be represented by 
two directed edges, one in each direction between the corresponding vertices. Figure 4.1 shows a 
picture of a small portion of the Web network, representing the connections between a set of web 
pages on a single website. 

 

Figure 4.1: A network of pages on a corporate website. The vertices in this network represent 
pages on a website and the directed edges between them represent hyperlinks. 
  

The World Wide Web was invented in the 1980s by scientists at the CERN high-energy physics 
laboratory in Geneva as a means of exchanging information among themselves and their 
coworkers, but it rapidly became clear that its potential was much greater [159]. At that time there 
were several similar ideas competing for dominance of the rapidly growing Internet, but the Web 

 

 

 



won the battle, largely because its inventors decided to give away for free the software 
technologies on which it was based—the Hypertext Markup Language (HTML) used to specify the 
appearance of pages and the Hypertext Transport Protocol (HTTP) used to transmit pages over the 
Internet. The Web’s extraordinary rise is now a familiar story and most of us use its facilities at 
least occasionally, and in some cases daily. A crude estimate of the number of pages on the Web 
puts that number at over 25 billion at the time of the writing of this book.27 The network structure 
of the Web has only been studied in detail relatively recently however. 

Figure 4.2: The operation of a web crawler. A web crawler iteratively downloads pages from 
the Web, starting from a given initial page. URLs are copied from the link tags in that initial page 
into a store. Once all links have been copied from the initial page, the crawler takes a URL from 
the store and downloads the corresponding page, then copies links from that, and so on. 
  

Breadth-first search is discussed at length in Section 10.3. 

The structure of the Web can be measured using a crawler, a computer program that 
automatically surfs the Web looking for pages. In its simplest form, the crawler performs a so-
called breadth-first search on the Web network, as shown schematically in Fig. 4.2. One starts 
from any initial web page, downloads the text of that page over the Internet, and finds all the links 
in the text. Functionally, a link consists of an identifying “tag”—a short piece of text marking the 
link as a link—and a Uniform Resource Locator or URL, a standardized computer address that 
says how and where the linked web page can be found. By scanning for the tags and then copying 
the adjacent URLs a web crawler can rapidly extract URLs for all the links on a web page, storing 
them in memory or on a disk drive. When it is done with the current page, it removes one of the 
URLs from its store, uses it to locate a new page on the Web, and downloads the text of that page, 
and so the process repeats. If at any point the crawler encounters a URL that is the same as one 
already in its store, then that URL is ignored and not added to the store again, to avoid duplicate 
entries. Only URLs that are different from all those seen before are added to the store. 

By repeating the process of downloading and URL extraction for a suitably long period of time 

 

 

 



one can find a significant portion of the pages on the entire Web. In practice, however, no web 
crawler actually finds all the pages on the Web. There are a number of reasons for this. First, some 
websites forbid crawlers to crawl their pages. Websites can place a file called robots . txt in their 
root directory that specifies which files, if any, crawlers can look at and may optionally specify 
that some crawlers are allowed to look at files while others are not. Compliance with the 
restrictions specified in a robots . txt file is voluntary, but in practice many crawlers do comply. 

Second, many pages on the Web are dynamically generated: they are created on the fly by 
special software using, for instance, data from a database. Many corporate websites, as well as the 
web pages generated by search engines or directory services, fall into this category. The number of 
possible web pages that can be displayed as a result of a search using the Google search engine, for 
example, is so large as to be effectively infinite; it would not be possible (or sensible) for a crawler 
to crawl all of these pages. The crawler therefore has to make some choice about what counts as a 
web page and what does not. One choice would be to restrict oneself to static web pages—ones 
that are not generated on the fly. But it’s not always simple to tell which pages are static, and 
besides, much useful information resides in the dynamic pages. In practice, the decisions made by 
crawlers about which pages to include tend to be fairly arbitrary, and it is not easy to guess which 
pages will be included in a crawl and which will not. But one can say with certainty that many will 
not and in this sense the crawl is always incomplete. 

However, perhaps the most important reason why web crawls do not reach all the pages on the 
Web is that the network structure of the Web does not allow it. Since the Web is a directed 
network, not all pages are reachable from a given starting point. In particular, it is clear that pages 
that have no incoming hyperlinks—pages that no one links to—can never be found by a crawler 
that blindly follows links. Taking that idea one step further, it is also the case that a page will never 
be found if it is only linked to by pages that themselves have no incoming links. And so forth. In 
fact, the Web, and directed networks in general, have a special “component” structure, which we 
will examine in detail in Section 6.11.1, and most crawlers only find one part of that structure, the 
“giant out-component.” In the case of the World Wide Web the giant out-component constitutes 
only about a half of all web pages and the other half of the Web is unreachable.28 

Although we are interested in web crawlers as a tool for probing the structure of the Web so that 
we can study its network properties, this is not their main purpose. The primary use of web 
crawlers is to construct directories of web pages for search purposes. Web search engines such as 
Google indulge in web crawling on a massive scale to find web pages, parse their content, and 
construct indexes of the words and pictures they contain that can later be searched offline by fast 
database engines to find pages of interest to searchers. Because their primary interest is in 
indexing, rather than in reconstructing the network structure of the Web, search engine companies 
don’t have any particular reason to take a good statistical sample of the Web and in network terms 
their crawls are probably quite biased. Still, many of them have graciously made their data 
available to academic researchers interested in web structure, and the data are good enough to give 
us a rough picture of what is going on. We will study a variety of features of the Web network in 
subsequent chapters. 

Web searching, which itself raises some interesting network questions, is discussed in Section 
19.1. 

It isn’t entirely necessary that we rely on search engine companies or other web enterprises for 
data on the structure of the Web. One can also perform one’s own web crawls. There are a number 
of excellent web crawlers available for free, including wget, Nutch, GRUB, Larbin, WebSPHINX, 
and ht://Dig. While most of us don’t have the time and network bandwidth to crawl billions of web 
pages, these programs can be useful for crawling single websites, and much useful insight and 
information can be acquired by doing so.

 



4.2 CITATION NETWORKS  

A less well-known but much older information network is the network of citations between 
academic papers. Most papers refer to one or more other previous papers, usually in a bibliography 
at the end of the paper, and one can construct a network in which the vertices are papers and there 
is a directed edge from paper A to paper B if A cites B in its bibliography. There are many reasons 
why one paper might cite another—to point out information that may be useful to the reader, to 
give credit for prior work, to indicate influences on current work, or to disagree with the content of 
a paper. In general, however, if one paper cites another it is usually an indication that the contents 
of the earlier paper are relevant in some way to those of the later one, and hence citation networks 
are networks of relatedness of subject matter. 

Quantitative studies of citation networks go back to the 1960s. The earliest seems to be the 1965 
study by Price [274] (which is also the earliest study we know of to find a “power-law degree 
distribution,” of which we talk in detail in Section 8.4). Studies such as this usually fall within the 
field formerly known as “library science” but now more often called “information science.” The 
branch of information science dealing specifically with the statistical study of publications and 
citations is called bibliometrics. 

The most common way to assemble citation data is to do it by hand, simply typing in all the 
entries in the bibliographies of papers to create a database that can then be used to assemble the 
network. In the 1960s when Price carried out his study, such databases were just starting to be 
created and he made use of an early version of what would later become the Science Citation 
Index. The Science Citation Index (along with its sister publications, the Social Science Citation 
Index and the Arts and Humanities Citation Index) is now one of the primary and most widely 
used sources of citation data. Another database, Scopus, provides a competing but largely similar 
service. Both are hand-maintained by professional staff and their coverage of the literature is 
reasonably complete and accurate, although the data are also quite expensive to purchase. Still, if 
one has the money, creating a citation network is only a matter of deciding which papers one 
wishes to include, using one of the databases to find the citations between those papers, and adding 
the appropriate directed edges to the network until it is complete. 

See Section 4.1 for a discussion of web crawlers. 

More recently, automated citation indexing by computer has started to become more common. 
For instance, the website Citeseer, maintained by Pennsylvania State University, performs citation 
indexing of papers in computer science and information science by crawling the Web to find freely 
available manuscripts of papers in electronic form, and then searching through those manuscripts 
to identify citations to other papers. This is a somewhat hit-ormiss operation because many papers 
are not on the Web or are not freely available, citations in papers have a wide variety of different 
formats and may include errors, and the same paper may exist in more than one place on the Web 
as well as in journals or books, and possibly in more than one different version. Nonetheless, 
enough progress has been made for Citeseer to become a useful tool in the computer science 
community. Other automatic citation indexing projects include Citebase, which indexes physics 
papers, and Google Scholar. 

As with web crawls, the primary purpose of citation indexes is not to allow us to study the 
network structure of citation. Citation indexes are primarily research tools that allow researchers to 
discover by whom a paper has been cited, and hence to find research related to a topic of interest. 
Nonetheless, data from citation indices have been widely used to reconstruct the underlying 
networks and study their properties. 

 

 



Citation networks are in many ways similar to the World Wide Web. The vertices of the 
network hold information in the form of text and pictures, just as web pages do, and the links from 
one paper to another play a role similar to hyperlinks on web pages, alerting the reader when 
information relevant to the topic of one paper can be found in another.29 Papers with many 
citations are often more influential and widely read than those with few, just as is the case with 
web pages, and one can “surf ” the citation network by following a succession of citations from 
paper to paper just as computer users surf the Web. 

Acyclic networks are discussed further in Section 6.4.2. 

There is, however, at least one important difference between a citation network and the Web: a 
citation network is acyclic, while the Web is not. An acyclic network is one in which there are no 
closed loops of directed edges. On the World Wide Web, it is entirely possible to follow a 
succession of hyperlinks and end up back at the page you started at. Indeed this happens often. On 
a citation network, by contrast, it is essentially impossible. The reason is that in order to cite a 
paper, that paper must already have been written. One cannot cite a paper that doesn’t exist yet. 
Thus all the directed edges in a citation network point backward in time, from newer papers to 
older ones. If we follow a path of such edges from paper to paper, we will therefore find ourselves 
going backward in time, but there is no way to go forward again, so we cannot close the loop and 
return to where we started.30 

See Fig. 6.3 for an illustration of a small acyclic network. 

Citation networks have some surprising statistics. About 47% of all papers in the Science 
Citation Index have never been cited at all. Of the remainder, 9% have one citation, 6% have two, 
and it goes down quickly after that. Only 21% of all papers have 10 or more citations, and just 1% 
have 100 or more. These figures are a consequence of the power-law degree distribution of the 
network mentioned above and discussed more in Section 8.4. 

The most highly cited paper in the Science Citation Index is a paper by Lowry et al. [202], 
which has been cited more than a quarter of a million times.31 Like most very highly cited papers, 
it is a methodological paper in molecular biology. 

Citation networks of the type described so far are the simplest but not the only possible network 
representation of citation patterns. An alternative and widely studied representation is the 
cocitation network. Two papers are said to be cocited if they are both cited by the same third 
paper. Cocitation is often taken as an indicator that papers deal with related topics and there is 
good evidence that this is a reasonable assumption in many cases. 

A cocitation network is a network in which the vertices represent papers and the edges represent 
cocitation of pairs of papers. By contrast with ordinary citation networks, the edges in a cocitation 
network are normally considered undirected, since cocitation is a symmetric relationship. One can 
also define a strength for the cocitation between two papers as the number of other papers that cite 
both and one can create weighted cocitation networks in which the strengths of the edges are equal 
to this cocitation strength. 

Another related concept, although one that is less often used, is bibliographic coupling. Two 
papers are said to be bibliographically coupled if they cite the same other papers (rather than being 
cited by the same papers). Bibliographic coupling, like cocitation, can be taken as an indicator that 
papers deal with related material and one can define a strength or weight of coupling by the 
number of common citations between two papers. From the bibliographic coupling figures one can 
then assemble a bibliographic coupling network, either weighted or not, in which the vertices are 
papers and the undirected edges indicate bibliographic coupling. 

Cocitation and bibliographic coupling are discussed in more detail in Section 6.4.1. 

 

 



4.2.1 PATENT AND LEGAL CITATIONS  

Our discussions of citation networks have so far focused on citations between academic papers, 
but there are other types of citation also. Two of particular importance are citations between 
patents and between legal opinions. 

Patents are temporary grants of ownership for inventions, which give their holders the right to 
take legal action against others who attempt to profit without permission from the protected 
inventions. They are typically issued to inventors—either individuals or corporations—by national 
governments after a review process to determine whether the invention in question is original and 
has not previously been invented by someone else. In applying for a patent, an inventor must 
describe his or her invention in sufficient detail to make adequate review possible and present the 
case that the invention is worthy of patent protection. A part of this case typically involves 
detailing the relationship between the invention and previously patented inventions, and in doing 
so the inventor will usually cite one or more previous patents. Citations may highlight 
dependencies between technologies, such as one invention depending for its operation on another, 
but more often patent citations are “defensive,” meaning that the inventor cites the patent for a 
previous technology and then presents an argument for why the new technology is sufficiently 
different from the old one to merit its own patent. Governments, in the process of examining patent 
applications, will routinely consider their similarity to previous inventions, and defensive citations 
are one way in which an inventor can fend off in advance possible objections that might be raised. 
Typically there are a number of rounds of communication, back and forth between the government 
patent examiner and the inventor, before a patent application is finally accepted or rejected. During 
this process extra citations are often added to the application, either by the inventor or by the 
examiner, to document the further points discussed in their communications. 

If and when a patent is finally granted, it is published, citations and all, so that the public may 
know which technologies have patent protection. These published patents provide a source of 
citation data that we can use to construct networks similar to the networks for citations between 
papers. In these networks the vertices are patents, each identified by a unique patent number, and 
the directed edges between them are citations of one patent by another. Like academic citation 
networks, patent networks are mostly acyclic, with edges running from more recent patents to 
older ones, although short loops can arise in the network in the not uncommon case that an 
inventor simultaneously patents a number of mutually dependent technologies. The structure of 
patent networks reflects the organization of human technology in much the same way that 
academic citations reflect the structure of research knowledge. Patent networks have been studied 
far less than academic citation networks, but studies have been growing in the last few years with 
the appearance of high-quality data sets, particularly for US patents [161], and there are a number 
of important technological and legal questions, for instance concerning antitrust policy, that can be 
addressed by examining their structure [69]. 

Another class of citation network that has begun to attract attention in recent years is that of 
legal citation networks. In countries where law cases can be heard by judges rather than juries, 
such as civil cases or appeals in Europe or the US, a judge will frequently issue an “opinion” after 
deciding a case, a narrative essay explaining his or her reasoning and conclusions. It is common 
practice in writing such an opinion to cite previous opinions issued in other cases in order to 
establish precedent, or occasionally to argue against it. Thus, like academic papers and patents, 
legal opinions form a citation network, with opinions being the vertices and citations being the 
directed edges. Again the network is approximately acyclic, as with the other networks in this 
section. The legal profession has long maintained indexes of citations between opinions for use by 
lawyers, judges, scholars, and others, and in recent years those indexes have made the jump to 
electronic form and are now available online. In the United States, for instance, two commercial 

 



services, LexisNexis and Westlaw,32 provide thorough and detailed data on legal opinions and 
their citations via online services. In the last few years a number of studies have been published of 
the structure of legal citation networks using data derived from these services [125, 126, 194]. 

In principle it would be possible also to construct networks of cocitation or bibliographic 
coupling between either patents or legal opinions, but the author is not aware of any studies yet 
published of such networks. 



4.3 OTHER INFORMATION NETWORKS  

There are many other networks of information, although none have received the same level of 
study as the Web and citation networks. In the remainder of this chapter we briefly discuss a few 
examples of other networks. 

 



4.3.1 PEER-TO-PEER NETWORKS  

Peer-to-peer (P2P) file-sharing networks have become popular and widespread in the last decade 
or so. A peer-to-peer network is a network in which the nodes are computers containing 
information in the form, usually, of discrete files, and the edges between them are virtual links 
established for the purpose of sharing the contents of those files. The links exist only in software—
they indicate only the intention of one computer to communicate with another should the need 
arise. 

Peer-to-peer networks are typically used as a vehicle for distributed databases, particularly for 
the storage and distribution, often illegally, of music and movies, although there are substantial 
legal uses as well, such as local sharing of files on corporate networks or the distribution of open-
source software. (The network of router-to-router communications using the Border Gateway 
Protocol described in Section 2.1 is another less obvious example of a legitimate and useful peer-
to-peer network.) 

The point of a peer-to-peer network is that data is transferred directly between computers 
belonging to two end users of the network, two “peers.” This contrasts with the more common 
server-client model, such as that used by the World Wide Web, in which central server computers 
supply requested data to a large number of client machines. The peer-to-peer model is favored 
particularly for illicit sharing of copyrighted material because the owners of a centralized server 
can easily be obliged to turn off the server by legal or lawenforcement action, but such actions are 
much more difficult when no central server exists. 

On most peer-to-peer networks each computer is home to some information, but no computer 
has all the information in the network. If the user of a computer requires information stored on 
another computer, that information can be transmitted simply and directly over the Internet or over 
a local area network. This is a peer-to-peer transfer, but no special infrastructure is necessary to 
accomplish it—standard Internet protocols are perfectly adequate to the task. Things get 
interesting, however, when one wants to find which other computer has the desired information. 
One way to do that is to have a central server containing none of the information but just an index 
of which information is on which computers. Such a system was employed by the early file-
sharing network Napster, but the central index server is, once again, susceptible to legal and other 
challenges, and such challenges were in the end responsible for shutting Napster down.33 

To avoid this problem, developers have turned to distributed schemes for searching and this is 
where network concepts come into play. An illustrative example of a peer-to-peer system with 
distributed search is the Gnutella network, which underlies a number of popular file-sharing 
programs including LimeWire and the now-defunct Morpheus. In the simplest incarnation of this 
system (more sophisticated ones are in use now) computers form links to some number of their 
peers in such a way that all the computers form a connected network. Again, a link here is purely a 
software construct—a computer ’s network neighbors in the peer-to-peer sense are merely those 
others with which it intends to communicate when the need arises. 

When a user instructs his or her computer to search the network for a specific file the computer 
sends out a message to its network neighbors asking whether they have that file. If they do, they 
arrange to transmit it back to the first computer. If they do not, they pass the message on to their 
neighbors, and so forth until the file is found. As pointed out in Section 19.2, where we discuss 
search strategies on peer-to-peer networks at some length, this algorithm works, but only on 
relatively small networks. Since it requires messages to be passed between many computers for 
each individual search, the algorithm does not scale well as the network becomes large, the volume 
of network traffic eventually swamping the available data bandwidth. To get around this problem, 
modern peer-to-peer networks, including recent versions of Gnutella, employ a two-tiered network 
topology of nodes and “supernodes,” in which searches are performed only among the supernodes 

 



and ordinary nodes contact them directly to request searches be performed. More details are 
given in Section 19.2. 

So what is the structure of a peer-to-peer network like? In many cases, unfortunately, not a lot is 
known since the software is proprietary and its owners are reluctant to share operational details. 
The Gnutella system is more promising, being so-called open-source software, meaning that the 
original computer code for the software and the specification of the protocols it uses are freely 
available. By exploiting certain details of these protocols, particularly the ability for computers in 
the Gnutella network to “ping” one another (i.e., ask each other to identify themselves), a number 
of authors have been able to discover structures for Gnutella networks [282, 308]. The networks 
appear to have approximately power-law degree distributions and it has been suggested that this 
property could be exploited to improve search performance [6].



4.3.2 RECOMMENDER NETWORKS  

A type of information network important for technology and commerce is the recommender 
network. Recommender networks represent people’s preferences for things, such as for certain 
products sold by a retailer. Online merchants, for instance, usually keep records of which 
customers bought which products and sometimes ask them whether they liked the products or not. 
Many large supermarket chains record the purchases made by each of their regular customers 
(usually identified by a small card with a barcode on it that is scanned when purchases are made) 
and so can work out which products each customer buys frequently. 

The fundamental representation of a recommender network is as a “bipartite network,” a 
network with two types of vertex, one representing the products or other items and the other 
representing the people, with edges connecting people to the items they buy or like. One can also 
add strengths or weights to the edges to indicate, for instance, how often a person has bought an 
item or how much he or she likes it, or the strengths could be made negative to indicate dislikes. 

We encountered bipartite networks previously in Section 3.5 and will study them further in 
Section 6.6. 

Recommender networks have been studied for many types of goods and products, including 
books, music, films, and others. The primary commercial interest in recommender networks arises 
from their use in collaborative filtering systems, also sometimes called recommender systems, 
which are computer algorithms that attempt to guess items that people will like by comparing a 
person’s known preferences with those of other people. If person A likes many of the same things 
as persons B, C, and D, and if persons B, C, and D all like some further item that A has never 
expressed an opinion about, then maybe (the theory goes) A would like that item too. A wide 
variety of computer algorithms have been developed for extracting conclusions of this type from 
recommender networks and are used extensively by retailers to suggest possible purchases to their 
customers, in the hope of drumming up business. The website of the online bookseller 
Amazon.com, for instance, has a feature that lists recommended book titles to customers based on 
their previously expressed preferences and purchases. And many supermarkets now print out 
discount coupons after customers have completed their purchases, coupons for products that the 
customer has not bought in the past but might be interested to try. 

Research on recommender networks has in the past focused mainly on the development of new 
collaborative filtering algorithms, but it is reasonable to suppose that the success of these 
algorithms should depend to some extent on the structure of the recommender network itself, and 
there is therefore good reason to also study that structure. A few such studies have been published 
in the scientific literature [63, 147], but there is clearly room for further work. 

 

 



4.3.3 KEYWORD INDEXES  

Another type of information network, also bipartite in form, is the keyword index. Consider, for 
instance, a set of documents containing information on various topics. One can construct an index 
to that set so that one can look up words in that index and the index will list important occurrences 
of those words in the documents. Such indexes have historically appeared, of course, in books, as 
guides to their content, but more recently indexes have regularly been constructed as guides to 
other information collections, including sets of academic papers and the World Wide Web. The 
index constructed by a web search engine, as discussed in Section 4.1, is a good example; it 
consists, at a minimum, of a list of words or phrases, with each word or phrase accompanied by a 
list of the web pages on which it occurs. 

Such indexes can be represented as a bipartite network in which one of the two types of vertex 
represents words in the index and the other represents documents or pages. Then one places an 
edge between each word and the documents in which it occurs. Although such networks can be 
constructed for, amongst other things, the Web or collections of academic papers, they should not 
be confused with the networks of web links or citations discussed earlier in this chapter. Those are 
also networks of web pages and documents, but they are different from a keyword index. Those 
networks were networks of direct links between documents. An index is a network of links 
between index entries and the documents they point to. 

Indexes are of practical importance as a method for searching large bodies of information. Web 
search engines, for example, rely heavily on them to quickly find web pages that correspond to a 
particular query. However, indexes also have other, more sophisticated applications. They are 
used, for example, as a basis for techniques that attempt to find documents or pages that are similar 
to one another. If one has a keyword index to a set of documents and finds that two documents 
share a lot of the same keywords, it may be an indication that the two cover similar topics. A 
variety of computer algorithms for spotting such connections have been developed, typically 
making use of ideas very similar to those used in the recommender systems discussed above—the 
problem of finding documents with similar keywords is in many ways similar to the problem of 
finding buyers who like similar products. 

The identification of similar documents can be useful, for example, when searching through a 
body of knowledge. In a standard index search, one typically types in a set of keywords and gets 
back a list of documents containing those words. Search engines that can tell when documents are 
similar to each other may be able to respond more usefully to such queries because they can return 
documents that do not in fact contain the keywords entered, but which are similar to documents 
that do. In cases where a single concept is called by more than one name, this may be a very 
effective strategy for finding all of the relevant documents. 

In the context of document retrieval, the classic method for determining document similarity and 
performing generalized searches of this type is latent semantic indexing, which is based on the 
application of the matrix technique known as singular value decomposition to the bipartite network 
of keywords and documents. The interested reader can find a discussion of latent semantic 
indexing in Ref. [193]. 

As with recommender systems, it is reasonable to suppose that the success of methods for 
finding similar documents or improving searches using similarity information depends on the 
structure of the bipartite keyword/document network, and hence that studies of that structure could 
generate useful insights. There has been relatively little interest in the problem within the network 
community so far and again there is plenty of room for future work.

 



CHAPTER 5 

BIOLOGICAL NETWORKS 

A discussion of various networks of interest in biology, including biochemical networks, 
neural networks, and ecological networks 

NETWORKS are widely used in many branches of biology as a convenient representation of 
patterns of interaction between appropriate biological elements. Molecular biologists, for example, 
use networks to represent the patterns of chemical reactions among chemicals in the cell, while 
neuroscientists use them to represent patterns of connections between brain cells, and ecologists 
study the networks of interactions between species in ecosystems, such as predation or 
cooperation. In this chapter we describe the commonest kinds of biological networks and discuss 
methods for determining their structure.

 

 

 



5.1 BIOCHEMICAL NETWORKS  

Among the biological networks those attracting the most attention in recent years have been 
biochemical networks, networks that represent the molecularlevel patterns of interaction and 
mechanisms of control in the biological cell. The principal types of networks studied in this area 
are metabolic networks, protein-protein interaction networks, and genetic regulatory networks.

 



5.1.1 METABOLIC NETWORKS  

Metabolism is the chemical process by which cells break down food or nutrients into usable 
building blocks (so-called catabolic metabolism) and then reassemble those building blocks to 
form the biological molecules the cell needs to complete its other tasks (anabolic metabolism). 
Typically this breakdown and reassembly involves chains or pathways, sets of successive chemical 
reactions that convert initial inputs into useful end products by a series of steps. The complete set 
of all reactions in all pathways forms a metabolic network. 

The vertices in a metabolic network are the chemicals produced and consumed by the reactions. 
These chemicals are known generically as metabolites. By convention the definition of a 
metabolite is limited to small molecules, meaning things like carbohydrates (such as sugars) and 
lipids (such as fats), as well as amino acids and nucleotides. Amino acids and nucleotides are 
themselves the building blocks for larger polymerized macromolecules such as DNA, RNA, and 
proteins, but the macromolecules are not themselves considered metabolites—they are not 
produced by simple chemical reactions but by more complex molecular machinery within the cell, 
and hence are treated separately. (We discuss some of the mechanisms by which macromolecules 
are produced in Section 5.1.3.) 

Although the fundamental purpose of metabolism is to turn food into useful biomolecules, one 
should be wary of thinking of it simply as an assembly line, even a very complicated one. 
Metabolism is not just a network of conveyor belts in which one reaction feeds another until the 
final products fall out the end; it is a dynamic process in which the concentrations of metabolites 
can change widely and rapidly, and the cell has mechanisms for turning on and off the production 
of particular metabolites or even entire portions of the network. Metabolism is a complex machine 
that reacts to conditions both within and outside the cell and generates a broad variety of chemical 
responses. A primary reason for the high level of scientific interest in metabolic networks is their 
importance as a stepping stone on the path towards an understanding of the chemical dynamics of 
the cell. 

Generically, an individual chemical reaction in the cell involves the consumption of one or more 
metabolites that are broken down or combined to produce one or more others. The metabolites 
consumed are called the substrates of the reaction, while those produced are called the products. 

The situation is complicated by the fact that most metabolic reactions do not occur 
spontaneously, or do so only at a very low rate. To make reactions occur at a usable rate, the cell 
employs an array of chemical catalysts, referred to as enzymes. Unlike metabolites, enzymes are 
mostly macromolecules, usually proteins but occasionally RNAs. Like all catalysts, enzymes are 
not consumed in the reactions they catalyze but they play an important role in metabolism 
nonetheless. Not only do they enable reactions that would otherwise be thermodynamically 
disfavored or too slow to be useful, but they also provide one of the mechanisms by which the cell 
controls its metabolism. By increasing or decreasing the concentration of the enzyme that catalyzes 
a particular reaction, the cell can turn that reaction on or off, or moderate its speed. Enzymes tend 
to be highly specific to the reactions they catalyze, each one enabling only one or a small number 
of reactions. Thousands of enzymes are known and many more are no doubt waiting to be 
discovered, and this large array of highly specific catalysts allows for a fine degree of control over 
the processes of the cell. 

The details of metabolic networks vary between different species of organisms but, amongst 
animals at least, large parts are common to all or most species. Many important pathways, cycles, 
or other subportions of metabolic networks are essentially unchanged across the entire animal 
kingdom. For this reason one often refers simply to “metabolism” without specifying a particular 
species of interest; with minor variations, observations made in one species often apply to others. 

The most correct representation of a metabolic network is as a bipartite network. We 

 



encountered bipartite networks previously in Section 3.5 on social affiliation networks and in 
Section 4.3.2 on recommender networks. A bipartite network has two distinct types of vertex, with 
edges running only between vertices of unlike kinds. In the case of affiliation networks, for 
example, the two types of vertex represented people and the groups they belonged to. In the case 
of a metabolic network they represent metabolites and metabolic reactions, with edges joining each 
metabolite to the reactions in which it participates. In fact, a metabolic network is really a directed 
bipartite network, since some metabolites go into the reaction (the substrates) and some come out 
of it (the products). By placing arrows on the edges we can distinguish between the ingoing and 
outgoing metabolites. An example is sketched in Fig. 5.1a.34 

This bipartite representation of a metabolic network does not include any way of representing 
enzymes, which, though not metabolites themselves, are still an important part of the metabolism. 
Although it’s not often done, one can in principle incorporate the enzymes by introducing a third 
class of vertex to represent them, with edges connecting them to the reactions they catalyze. Since 
enzymes are not consumed in reactions, these edges are undirected—running neither into nor out 
of the reactions they participate in. An example of such a network is sketched in Fig. 5.1b. 
Technically this is now a tripartite network, partly directed and partly undirected.35 

Correct and potentially useful though they may be, however, neither of these representations is 
very often used for metabolic networks. The most common representations of metabolic networks 
project the network onto just one set of vertices, either the metabolites or the reactions, with the 
former being the more popular choice. In one approach the vertices in the network represent 
metabolites and there is an undirected edge between any two metabolites that participate in the 
same reaction, either as substrates or as products. Clearly this projection loses much of the 
information contained in the full bipartite network, but, as we have said, it is nonetheless widely 
used. Another approach, probably the most common, is to represent the network as a directed 
network with a single type of vertex representing metabolites and a directed edge from one 
metabolite to another if there is a reaction in which the first metabolite appears as a substrate and 
the second as a product. This representation contains more of the information from the full 
network, but is still somewhat unsatisfactory since a reaction with many substrates or many 
products appears as many edges, with no easy way to tell that these edges represent aspects of the 
same reaction. The popularity of this representation arises from the fact that for many metabolic 
reactions only one product and one substrate are known or are considered important, and therefore 
the reaction can be represented by only a single directed edge with no confusion arising. A number 
of companies produce large charts showing the most important parts of the metabolic network in 
this representation. An example is shown in Fig. 5.2. Such charts have become quite popular as 
wall decorations in the offices of molecular biologists and biochemists, although whether they are 
actually useful in practice is unclear. 

 

Figure 5.1: Bipartite and tripartite representations of a portion of a metabolic network. (a) A 

 



metabolic network can be represented as a directed bipartite network with vertices for the 
metabolites (circles) and reactions (squares) and directed edges indicating which metabolites are 
substrates (inputs) and products (outputs) of which reactions. (b) A third type of vertex (triangles) 
can be introduced to represent enzymes, with undirected edges linking them to the reactions they 
catalyze. The resulting network is a mixed directed/undirected tripartite network. 
  

Projections of bipartite networks and the associated loss of information are discussed further 
in Section 6.6. 

The experimental measurement of metabolic networks is a complex and laborious process, 
although it has been made somewhat easier in recent years with the introduction of new techniques 
from molecular genetics. Experiments tend to focus neither on whole networks nor on individual 
reactions but on metabolic pathways. A number of tools are available to probe the details of 
individual pathways. Perhaps the most common is the use of radioactive isotopes to trace the 
intermediate products along a pathway. In this technique, the organism or cell under study is 
injected with a substrate for the pathway of interest in which one or more of the atoms has been 
replaced by a radioisotope. Typically this has little or no effect on the metabolic chemistry, but as 
the reactions of the pathway proceed, the radioactive atoms move from metabolite to metabolite. 
Metabolites can then be refined, for example by mass spectroscopy or chromatography, and tested 
for radioactivity. Those that show it can be assumed to be “downstream” products in the pathway 
fed by the initial radioactive substrate. 

This method tells us the products along a metabolic pathway, but of itself does not tell us the 
order of the reactions making up the pathway. Knowledge of the relevant biochemistry—which 
metabolites can be transformed into which others by some chemical reaction—can often identify 
the ordering or at least narrow down the possibilities. Careful measurement of the strength of 
radioactivity of different metabolites, coupled with a knowledge of the half-life of the isotope 
used, can also give some information about pathway structure as well as rates of reactions. 

Notice, however, that there is no way to tell if any of the reactions discovered have substrates 
other than those tagged with the radioisotope. If new substrates enter the pathway at intermediate 
steps (that is, they are not produced by earlier reactions in the pathway) they will not be 
radioactive and so will not be measured. Similarly, if there are reaction products that by chance do 
not contain the radioactive marker they too will not be measured. 

An alternative approach to probing metabolic pathways is simply to increase the level of a 
substrate or enzyme for a particular reaction in the cell, thereby increasing the levels of the 
products of that reaction and those downstream of it in the relevant pathway or pathways, increases 
that can be measured to determine the constituents of the pathway. This technique has the 
advantage of being able to detect products other than those that carry a particular radioactive 
marker inherited from a substrate, but it is still incapable of identifying substrates other than those 
produced as products along the pathway.

 

 



 

Figure 5.2: A metabolic network. (See Plate IV for color version.) A wallchart showing the 
network formed by the major metabolic pathways. Created by Donald Nicholson. Copyright of the 
International Union of Biochemistry and Molecular Biology. Reproduced with permission. 
  

A complementary experimental technique that can probe the substrates of reactions is reaction 
inhibition, in which a reaction in a pathway is prevented from taking place or its rate is reduced. 
Over time, this results in a build-up in the cell of the substrates for that reaction, since they are no 
longer being used up. By watching for this build-up one can determine the reaction substrates. In 
principle the same method could also be used to determine the products of the reaction, since their 
concentration would decrease because they are not being produced any longer, but in practice this 
turns out to be a difficult measurement and is rarely done. 

The inhibition of a reaction is usually achieved by disabling or removing an enzyme necessary 
for the reaction. This can be done in a couple of different ways. One can use enzyme inhibitors, 
which are chemicals that bind to an enzyme and prevent it from performing its normal function as 
a catalyst, or one can genetically alter the organism under study to remove or impair its ability to 
produce the enzyme (a so-called knockout experiment). The same techniques can also be used to 

 

 



determine which reactions are catalyzed by which enzymes in the first place, and hence to 
discover the structure of the third, enzymatic part of the tripartite metabolic network pictured in 
Fig. 5.1b. 

The construction of a complete or partial picture of a metabolic network involves the 
combination of data from many different pathways, almost certainly derived from experiments 
performed by many different experimenters using many different techniques. There are now a 
number of public databases of metabolic pathway data from which one can draw to assemble 
networks, the best known being KEGG and MetaCyc. Assembling the network itself is a non-
trivial task. Because the data are drawn from many sources, careful checking against the 
experimental literature (or “curation,” as the lingo goes) is necessary to insure consistent and 
reliable inputs to the process, and missing steps in metabolic pathways must often be filled in by 
guesswork based on biochemistry and a knowledge of the genetics. A number of computer 
software packages have been developed that can reconstruct networks from raw metabolic data in 
an automated fashion, but the quality of the networks they create is generally thought to be poorer 
than that of networks created by knowledgeable human scientists (although the computers are 
much faster). 



5.1.2 PROTEIN-PROTEIN INTERACTION NETWORKS  

The metabolic networks of the previous section describe the patterns of chemical reactions that 
turn one chemical into another in the cell. As we have noted, the traditional definition of 
metabolism is restricted to small molecules and does not include proteins or other large molecules, 
except in the role of enzymes, in which they catalyze metabolic reactions but do not take part as 
reactants themselves. 

Proteins do however interact with one another and with other biomolecules, both large and 
small, but the interactions are not purely chemical. Proteins sometimes interact chemically with 
other molecules—exchanging small subgroups, for example, such as the exchange of a phosphate 
group in the process known as phosphorylation. But the primary mode of protein-protein 
interaction—interactions of proteins with other proteins—is physical, their complicated folded 
shapes interlocking to create so-called protein complexes (see Fig. 5.3) but without the exchange 
of particles or subunits that defines chemical reactions. 

 

Figure 5.3: Two proteins joined to form a protein complex. Protein molecules can have 
complicated shapes that interlock with one another to form protein complexes. 
  

The set of all protein-protein interactions forms a protein-protein interaction network, in which 
the vertices are proteins and two vertices are connected by an undirected edge if the corresponding 
proteins interact. Although this representation of the network is the one commonly used, it omits 
much useful information about the interactions. Interactions that involve three or more proteins, for 
instance, are represented by multiple edges, and there is no way to tell from the network itself that 
such edges represent aspects of the same interaction. This problem could be addressed by adopting 
a bipartite representation of the network similar to the one we sketched for metabolic networks in 
Fig. 5.1, with two kinds of vertex representing proteins and interactions, and undirected edges 
connecting proteins to the interactions in which they participate. Such representations, however, 
are rarely used. 

 

 

 



There are a number of experimental techniques available to probe for interactions between 
proteins. One of the most reliable and trusted is co-immunoprecipitation. Immunoprecipitation 
(without the “co-”) is a technique for extracting a single protein species from a sample containing 
more than one. The technique borrows from the immune system, which produces antibodies, 
specialized proteins that attach or bind to a specific other target protein when the two encounter 
each other. The immune system uses antibodies to neutralize proteins, complexes, or larger 
structures that are harmful to the body, but experimentalists have appropriated them for use in the 
laboratory. Immunoprecipitation involves attaching an antibody to a solid surface, such as the 
surface of a glass bead, then passing a solution containing the target protein (as well as others, in 
most cases) over the surface. The antibody and the target protein bind together, effectively 
attaching the protein to the surface via the antibody. The rest of the solution is then washed away, 
leaving the target protein to be recovered from the surface. 

 

In immunoprecipitation, antibodies attached to a solid surface bind to a specific protein, 
represented here by the circles, pulling it out of the solution. 
  

There are known naturally occurring antibodies for many proteins of scientific interest, but 
researchers also routinely create antibodies for specific proteins by injecting those proteins (or 
more often a portion of a protein) into an animal to provoke its immune system to generate the 
appropriate antibody. 

Co-immunoprecipitation is an extension of the same method to the identification of protein 
interactions. An antibody is again attached to a suitable solid surface and binds to a known protein 
in a sample. If that protein is attached to others, forming a protein complex, then the entire 
complex will end up attached to the surface and will remain after the solution is washed away. 
Then the complex can be recovered from the surface and the different proteins that make it up 
individually identified, typically by testing to see if they bind to other known antibodies (a 
technique known as a Western blot). 

Although well-established and reliable, co-immunoprecipitation is an impractical approach for 
reconstructing entire interaction networks, since individual experiments, each taking days, have to 
be performed for every interaction identified. If appropriate antibodies also have to be created the 
process would take even longer; the creation of a single antibody involves weeks or months of 
work, and costs a considerable amount of money too. As a result, the large-scale study of protein-
protein interaction networks did not really take off until the adoption in the 1990s and early 2000s 
of so-called high-throughput methods for discovering interactions, methods that can identify 
interactions quickly and in a semi-automated fashion. 

Transcription factors are discussed in more detail in Section 5.1.3. 

The oldest and best established of the high-throughput methods for protein interactions is the 
two-hybrid screen, invented by Fields and Song in 1989 [119].36 This method relies on the actions 

 

 

 



of a specialized protein known as a transcription factor, which, if present in a cell, turns on the 
production of another protein, referred to as a reporter. The presence of the reporter can be 
detected by the experimenter by any of a number of relatively simple means. The idea of the two-
hybrid screen is to arrange things so that the transcription factor is created when two proteins of 
interest interact, thereby turning on the reporter, which tells us that the interaction has taken place. 

The two-hybrid screen relies on the fact that transcription factors are typically composed of two 
distinct parts, a so-called binding domain and an activation domain. It turns out that most 
transcription factors do not require the binding and activation domains to be actually attached to 
one another for the transcription factor to work. If they are merely in close enough proximity 
production of the reporter will be activated. 

In a two-hybrid screen, a cell, usually a yeast cell, is persuaded to produce two proteins of 
interest, each with one of the domains of the transcription factor attached to it. This is done by 
introducing plasmids into the cell, fragments of DNA that code for the proteins and domains. 
Then, if the two proteins in question interact and form a complex, the two domains of the 
transcription factor will be brought together and, with luck, will activate production of the reporter. 

See Section 5.1.3 for a discussion of DNA coding of proteins. 

In a typical two-hybrid experiment, the protein attached to the binding domain of the 
transcription factor is a known protein (called the bait protein) whose interactions the experimenter 
wants to probe. Plasmids coding for a large number of other proteins (called prey) attached to 
copies of the activation domain are created, resulting in a so-called library of possible interaction 
targets for the bait. The plasmids for the bait and the library of prey are then introduced into a 
culture of yeast cells, with the concentration of prey carefully calibrated so that at most one prey 
plasmid enters each cell in most cases. Cells observed to produce the reporter are then assumed to 
contain plasmids coding for prey proteins that interact with the bait and the plasmids are recovered 
from those cells and analyzed to determine the proteins they correspond to. 

The two-hybrid screen has two important advantages over older methods like co-
immunoprecipitation. First, one can employ a large library of prey and hence test for interactions 
with many proteins in a single experiment, and second, the method is substantially cheaper and 
faster than co-immunoprecipitation per interaction detected. Where co-immunoprecipitation 
requires one to obtain or create antibodies for every protein tested, the two-hybrid screen requires 
only the creation of DNA plasmids and their later sequence analysis, both relatively simple 
operations for an experimenter armed with the machinery of modern genetic engineering. 

One disadvantage of the two-hybrid screen is that the presence of the two domains of the 
transcription factor attached to the bait and prey proteins can get in the way of their interacting 
with one another and prevent the formation of a protein complex, meaning that some legitimate 
protein-protein interactions will not take place under the conditions of the experiment. 

The principal disadvantage of the method, however, is that it is simply unreliable. It produces 
high rates of both false positive results—apparent interactions between proteins that in fact do not 
interact—and false negative results—failure to detect true interactions. By some estimates the rate 
of false positives may be as high as 50%, meaning that fully half of all interactions detected by the 
method are not real. This has not stopped a number of researchers from performing analyses on the 
interaction networks reconstructed from two-hybrid screen data, but the results should be viewed 
with caution. It is certainly possible that many or even most of the conclusions of such studies are 
substantially inaccurate. 

An alternative and more accurate class of methods for high-throughput detection of protein 
interactions are the affinity purification methods (also sometimes called affinity precipitation 
methods). These methods are in some ways similar to the co-immunoprecipitation method 
described previously, but avoid the need to develop antibodies for each protein probed. In an 
affinity purification method, a protein of interest is “tagged” by adding a portion of another protein 
to it, typically by introducing a plasmid that codes for the protein plus tag, in a manner similar to 
the introduction of plasmids in the two-hybrid screen. Then the protein is given the opportunity to 
interact with a suitable library of other proteins and a solution containing the resulting protein 
complexes (if any) passed over a surface to which are attached antibodies that bind to the tag. As a 

 



result, the tag, the attached protein, and its interaction partners are bound to the surface while the 
rest of the solution is washed away. Then, as in co-immunoprecipitation, the resulting complex or 
complexes can be analyzed to determine the identities of the interaction partners. 

The advantage of this method is that it requires only a single antibody that binds to a known tag, 
and the same tag-antibody pair can be used in different experiments to bind different proteins. 
Thus, as with the two-hybrid screen, one need only generate new plasmids for each experiment, 
which is relatively easy, as opposed to generating new antibodies, which is slow and difficult. 
Some implementations of the method have a reliability comparable to that of co-
immunoprecipitation. Of particular note is the method known as tandem affinity purification, 
which combines two separate purification stages and generates correspondingly higher-quality 
results. Tandem affinity purification is the source for some of the most reliable current data for 
protein-protein interaction networks. 

As with metabolic reactions, there are now substantial databases of protein interactions available 
online, of which the most extensive are IntAct, MINT, and DIP, and from these databases 
interaction networks can be constructed for analysis. An example is shown in Fig. 5.4. 

 

Figure 5.4: A protein-protein interaction network for yeast. A network of interactions between 

 



proteins in the single-celled organism Saccharomyces cerevisiae (bakerʹs yeast), as determined 
using, primarily, two-hybrid screen experiments. From Jeong et al. [164]. Copyright Macmillan 
Publishers Ltd. Reproduced by permission. 
  
 



5.1.3 GENETIC REGULATORY NETWORKS  

As discussed in Section 5.1.1, the small molecules needed by biological organisms, such as sugars 
and fats, are manufactured in the cell by the chemical reactions of metabolism. Proteins, however, 
which are much larger molecules, are manufactured in a different manner, following recipes 
recorded in the cell’s genetic material, DNA. 

Proteins are biological polymers, long-chain molecules formed by the concatenation of a series 
of basic units called amino acids. The individual amino acids themselves are manufactured by 
metabolic processes, but their assembly into complete proteins is accomplished by the machinery 
of genetics. There are 20 distinct amino acids that are used by all living organisms to build 
proteins, and different species of proteins are distinguished from one another by the particular 
sequence of amino acids that make them up. Once created, a protein does not stay in a loose chain-
like form, but folds up on itself under the influence of thermodynamic forces and mechanical 
constraints, reliably producing a specific folded form or conformation whose detailed shape 
depends on the amino acid sequence—see Fig. 5.5. A protein’s conformation dictates the physical 
interactions it can have with other molecules and can expose particular chemical groups or active 
sites on the surface of the protein that contribute to its biological function within the organism. 

 

Figure 5.5: Protein folding. Proteins, which are long-chain polymers of amino acids, do not 
naturally remain in an open state (left), but collapse upon themselves to form a more compact 
folded state (right). 
  

A protein’s amino acid sequence is determined by a corresponding sequence stored in the DNA 
of the cell in which the protein is synthesized. This is the primary function of DNA in living 
matter, to act as an information storage medium containing the sequences of proteins needed by 
the cell. DNA is itself a long-chain polymer made up of units called nucleotides, of which there are 
four distinct species, adenine, cytosine, guanine, and thymine, commonly denoted A, C, G, and T, 
respectively.37 The amino acids in proteins are encoded in DNA as trios of consecutive nucleotides 
called codons, such as ACG or TTT, and a succession of such codons spells out the complete 
sequence of amino acids in a protein. A single strand of DNA can code for many proteins—
hundreds or thousands of them—and two special codons, called the start and stop codons, are used 
to signal the beginning and end within the larger DNA strand of the sequence coding for a protein. 
The DNA code for a single protein, from start codon to stop codon, is called a gene. 

Proteins are created in the cell by a mechanism that operates in two stages. In the first stage, 
known as transcription, an enzyme called RNA polymerase makes a copy of the coding sequence 

 

 

 



of a single gene. The copy is made of RNA, another information-bearing biopolymer, 
chemically similar but not identical to DNA. RNA copies of this type are called messenger RNAs. 
In the second stage, called translation, the protein is assembled, step by step, from the RNA 
sequence by an ingenious piece of molecular machinery known as a ribosome, a complex of 
interacting proteins and RNA. The translation process involves the use of transfer RNAs, short 
molecules of RNA that have a region at one end that recognizes and binds to a codon in the 
messenger RNA and a region at the other end that pulls the required amino acid into the correct 
place in the growing protein. The end result is a protein, assembled following the exact 
prescription spelled out in the corresponding gene. In the jargon of molecular biology, one says 
that the gene has been expressed. 

The cell does not, in general, need to produce at all times every possible protein for which it 
contains a gene. Individual proteins serve specific purposes, such as catalyzing metabolic 
reactions, and it is important for the cell to be able to respond to its environment and circumstances 
by turning on or off the production of individual proteins as required. It does this by the use of 
transcription factors, which are themselves proteins and whose job is to control the transcription 
process by which DNA sequences are copied to RNA. 

Transcription is performed by the enzyme RNA polymerase, which works by attaching to a 
DNA strand and moving along it, copying nucleotides one by one. The RNA polymerase doesn’t 
just attach spontaneously, however, but is aided by a transcription factor. Transcription factors are 
specific to particular genes or sets of genes and regulate transcription in a variety of ways, but 
most commonly by binding to a recognized sub-sequence in the DNA, called a promoter region, 
which is adjacent to the beginning of the gene. The binding of the transcription factor to the 
promoter region makes it thermodynamically favorable for the RNA polymerase to attach to the 
DNA at that point and start transcribing the gene. (The end of the gene is marked by a stop codon 
and upon encountering this codon the RNA polymerase automatically detaches from the DNA 
strand and transcription ends.) Thus the presence in the cell of the transcription factor for the gene 
turns on or enhances the expression of that gene. We encountered an example of a transcription 
factor previously in our discussion of the two-hybrid screen in Section 5.1.2. 

There are also transcription factors that inhibit expression by binding to a DNA strand in such a 
way as to prevent RNA polymerase from attaching to the strand and hence prevent transcription 
and the production of the corresponding protein. 

But now here is the interesting point: being proteins, transcription factors are themselves 
produced by transcription from genes. Thus the protein encoded in a given gene can act as a 
transcription factor promoting or inhibiting production of one or more other proteins, which 
themselves can act as transcription factors for further proteins and so forth. The complete set of 
such interactions forms a genetic regulatory network. The vertices in this network are proteins or 
equivalently the genes that code for them and a directed edge from gene A to gene B indicates that 
A regulates the expression of B. A slightly more sophisticated representation of the network 
distinguishes between promoting and inhibiting transcription factors, giving the network two 
distinct types of edge. 

The experimental determination of the structure of genetic regulatory networks involves 
identifying transcription factors and the genes that they regulate. The process has several steps. To 
begin with, one first confirms that a given candidate protein does bind to DNA roughly in the 
region of a gene of interest. The commonest technique for establishing the occurrence of such a 
binding is the electrophoretic mobility shift assay.38 In this technique one creates strands of DNA 
containing the sequence to be tested and mixes them in solution with the candidate protein. If the 
two indeed bind, then the combined DNA/protein complex can be detected by gel electrophoresis, 
a technique in which one measures the speed of migration of electrically charged molecules or 
complexes through an agarose or polyacrylamide gel in an imposed electric field. In the present 
case the binding of the DNA and protein hinders the motion of the resulting complex through the 
gel, measurably reducing its speed when compared with unbound DNA strands. Typically one runs 
two experiments side by side, one with protein and one without, and compares the rate of 
migration to determine whether the protein binds to the DNA. One can also run parallel 
experiments using many different DNA sequences to test which (if any) bind to the protein. 

An alternative though less sensitive technique for detecting binding is the deoxyribonuclease 



footprinting assay. Deoxyribonucleases (also called DNases for short) are enzymes that, upon 
encountering DNA strands, cut them into shorter strands. There are many different DNases, some 
of which cut DNA only in particular places according to the sequence of nucleotides, but the 
footprinting technique uses a relatively indiscriminate DNase that will cut DNA at any point. If, 
however, a protein binds to a DNA strand at a particular location it will often (though not always) 
prevent the DNase from cutting the DNA at or close to that location. Footprinting makes use of 
this by mixing strands of DNA containing the sequence to be tested with the DNase and observing 
the resulting mix of strand lengths after the DNase has cut the DNA samples into pieces in a 
variety of different ways. Repeating the experiment with the protein present will result in a 
different mix of strand length if the protein binds to the DNA and prevents it from being cut in 
certain places. The mix is usually determined again by gel electrophoresis (strands of different 
lengths move at different speeds under the influence of the electric field) and one again runs side-
by-side gel experiments with and without the protein to look for the effects of binding. 

Both the mobility shift and footprinting assays can tell us if a protein binds somewhere on a 
given DNA sequence. To pin down exactly where it binds one typically must do some further 
work. For instance, one can create short strands of DNA, called oligonucleotides, containing 
possible sequences that the protein might bind to, and add them to the mix. If they bind to the 
protein then this will reduce the extent to which the longer DNAs bind and visibly affect the 
outcome of the experiment. By a combination of such experiments, along with computer-aided 
guesswork about which oligonucleotides are likely to work best, one can determine the precise 
sub-sequence to which a particular protein binds. 

While these techniques can tell us the DNA sequence to which a protein binds, they cannot tell 
us which gene’s promoter region that sequence belongs to (if any), whether the protein actually 
affects transcription of that gene, or, if it does, whether the transcription is promoted or inhibited. 
Further investigations are needed to address these issues. 

Identification of the gene is typically done not by experiment but by computational means and 
requires a knowledge of the sequence of the DNA in the region where the protein binds. If we 
know the DNA sequence then we can search it for occurrences of the sub-sequence to which our 
protein binds, and then examine the vicinity to determine what gene or genes are there, looking for 
example for start and stop codons in the region and then recording the sequence of other codons 
that falls between them. Complete DNA sequences are now known for a number of organisms as a 
result of sequencing experiments starting in the late 1990s, and the identification of genes is as a 
result a relatively straightforward task. 

Finally, we need to establish whether or not our protein actually acts as a transcription factor, 
which can be done either computationally or experimentally. The computational approach involves 
determining whether the sub-sequence to which the protein binds is indeed a promoter region for 
the identified gene. (It is possible for a protein to bind near a gene but not act as a transcription 
factor because the point at which it binds has no effect on transcription.) This is a substantially 
harder task than simply identifying nearby genes. The structure of promoter regions is, 
unfortunately, quite complex and varies widely, but computer algorithms have been developed that 
can identify them with some reliability. 

Alternatively, one can perform an experiment to measure directly the concentration of the 
messenger RNA produced when the gene is transcribed. This can be achieved for example by 
using a microarray (colloquially known as a “DNA chip”), tiny dots of DNA strands attached in a 
grid-like array to a solid surface. RNA will bind to a dot if a part of its sequence matches the 
sequence of the dot’s DNA and this binding can be measured using a fluorescence technique. By 
observing the simultaneous changes in binding on all the dots of the microarray, one can determine 
with some accuracy the change in concentration of any specific RNA and hence quantify the effect 
of the transcription factor. This technique can also be used to determine whether a transcription 
factor is a promoter or an inhibitor, something that is currently not easy using computational 
methods. 

As with metabolic pathways and protein-protein interactions, there now exist electronic 
databases of genes and transcription factors, such as EcoCyc, from which it is possible to assemble 
snapshots of genetic regulatory networks. Current data on gene regulation are substantially 
incomplete and hence so are our networks, but more data are being added to the databases all the 



time. 



5.2 NEURAL NETWORKS  

A completely different use of networks in biology arises in the study of the brain and central 
nervous system in animals. One of the main functions of the brain is to process information and the 
primary information processing element is the neuron, a specialized brain cell that combines 
(usually) several inputs to generate a single output. Depending on the animal, an entire brain can 
contain anywhere from a handful of neurons to more than a hundred billion, wired together, the 
output of one cell feeding the input of another, to create a neural network capable of remarkable 
feats of calculation and decision making. 

Figure 5.6 shows a sketch of a typical neuron, which consists of a cell body or soma, along with 
a number of protruding tentacles, which are essentially wires for carrying signals in and out of the 
cell. Most of the wires are inputs, called dendrites, of which a neuron may have just one or two, or 
as many as a thousand or more. Most neurons have only one main output, called the axon, which is 
typically longer than the dendrites and may in some cases extend over large distances to connect 
the cell to others some way away. Although there is just one axon, it usually branches near its end 
to allow the output of the cell to feed the inputs of several others. The tip of each branch ends at an 
axon terminal that abuts the tip of the input dendrite of another neuron. There is a small gap, called 
a synapse, between terminal and dendrite across which the output signal of the first (presynaptic) 
neuron must be conveyed in order to reach the second (postsynaptic) neuron. The synapse plays an 
important role in the function of the brain, allowing transmission from cell to cell to be regulated 
by chemically modifying the properties of the gap.39 

 

Figure 5.6: The structure of a neuron. A typical neuron is composed of a cell body or soma with 
many dendrites that act as inputs and a single axon that acts as an output. Towards its tip, the axon 
branches to allow it to connect to the inputs of several other neurons. 
  

The actual signals that travel within neurons are electrochemical in nature. They consist of 
traveling waves of electrical voltage created by the motion of positively charged sodium and 
potassium ions in and out of the cell. These waves are called action potentials and typically consist 
of voltages on the order of tens of millivolts traveling at tens of meters per second. When an action 
potential reaches a synapse, it cannot cross the gap between the axon terminal and the opposing 
dendrite and the signal is instead transmitted chemically; the arrival of the action potential 
stimulates the production of a chemical neurotransmitter by the terminal, and the neurotransmitter 

 

 

 



diffuses across the gap and is detected by receptor molecules on the dendrite at the other side. 
This in turn causes ions to move in and out of the dendrite, changing its voltage. 

These voltage changes, however, do not yet give rise to another traveling wave. The soma of the 
postsynaptic neuron sums the inputs from its dendrites and as a result may (or may not) send an 
output signal down its own axon. The neuron is stable against perturbations caused by voltages at a 
small number of its inputs, but if enough inputs are excited they can collectively drive the neuron 
into an unstable runaway state in which it “fires,” generating a large electrochemical pulse that 
starts a new action potential traveling down the cell’s axon and so a signal is passed on to the next 
neuron or neurons in the network. Thus the neuron acts as a switch or gate that aggregates the 
signals at its inputs and only fires when enough inputs are excited. 

As described, inputs to neurons are excitatory, increasing the chance of firing of the neuron, but 
inputs can also be inhibiting—signals received at inhibiting inputs make the receiving neuron less 
likely to fire. Excitatory and inhibiting inputs can be combined in a single neuron and the 
combination allows neurons to perform quite complex information processing tasks all on their 
own, while an entire brain or brain region consisting of many neurons can perform tasks of 
extraordinary complexity. Current science cannot yet tell us exactly how the brain performs the 
more sophisticated cognitive tasks that allow animals to survive and thrive, but it is known that the 
brain constantly changes the pattern of wiring between neurons in response to inputs and 
experiences, and it is presumed that this pattern—the neural network—holds much of the secret. 
An understanding of the structure of neural networks is thus crucial if we are ever to explain the 
higher-level functions of the brain. 

 

A wiring diagram for a small neural network. 
  

At the simplest level, a neuron can be thought of as a unit that accepts a number of inputs, either 
excitatory or inhibiting, combines them, and generates an output result that is sent to one or more 
further neurons. In network terms, a neural network can thus be represented as a set of vertices—
the neurons—connected by two types of directed edges, one for excitatory inputs and one for 
inhibiting inputs. By convention, excitatory connections are denoted by an edge ending with an 
arrow , while inhibiting connections are denoted by an edge ending with a bar . 

In practice, neurons are not all the same. They come in a variety of different types and even 
relatively small regions or circuits in the brain may contain many types. This variation can be 
encoded in our network representation by different types of vertex. Visually the types are often 
denoted by using different shapes for the vertices or by labeling. In functional terms, neurons can 
differ in a variety of ways, including the number and type of their inputs and outputs, the nature 
and speed of their response to their inputs, whether and to what extent they can fire spontaneously 
without receiving inputs, and many other things besides. 

Experimental determination of the structure of neural networks is difficult and the lack of 
straightforward experimental techniques for probing network structure is a major impediment to 
current progress in neuroscience. Some useful techniques do exist, however, although their 
application can be extremely laborious. 

The basic tool for structure determination is microscopy, either optical or electronic. One 

 

 



relatively simple approach works with cultured neurons on flat dishes. Neurons taken from 
animal brains at an early stage of embryonic development can be successfully cultured in a suitable 
nutrient medium and will, without prompting, grow synaptic connections to form a network. If 
cultured on a flat surface, the network is then roughly two-dimensional and its structure can be 
determined with reasonable reliability by simple optical microscopy. The advantage of this 
approach is that it is quick and inexpensive, but it has the substantial disadvantage that the 
networks studied are not the networks of real living animals and their structure is probably not 
very similar to that of a functional brain circuit. 

In this respect, studies of real brains are much more satisfactory and likely to lead to greater 
insight, but they are also far harder, because real brains are three-dimensional and we do not 
currently have any form of microscopy suitable for probing such three-dimensional structures. 
Instead, therefore, researchers have resorted to cutting suitably preserved brains or brain regions 
into thin slices, whose structure is then determined by electron microscopy. Given the structure of 
an entire set of consecutive slices, one can, at least in principle, reconstruct the three-dimensional 
structure, identifying different types of neurons by their appearance, where possible. In the early 
days of such studies, most reconstruction was done by hand but more recently researchers have 
developed computer programs that can significantly speed the reconstruction process. Nonetheless, 
studies of this kind are very laborious and can take months or years to complete, depending on the 
size and complexity of the network studied. 

Figure 5.7 shows an example of a “wiring diagram” of a neural network, reconstructed by hand 
from electron microscope studies of this type. The network in question is the neural network of the 
worm Caenorhabditis elegans, one of the best studied organisms in biology. The brain of C. 
elegans is simple—it has less than 300 neurons and essentially every specimen of the worm has 
the same wiring pattern. Several types of neuron, denoted by shapes and labels, are shown in the 
figure, along with a number of different types of connection, both excitatory and inhibiting. Some 
of the connections run out of the figure or enter from somewhere off the page. These are 
connections that run to or from other parts of the network not shown. The original experimenters 
determined the structure of the entire network and presented it as set of interconnected wiring 
diagrams like this one [328]. 

 

Figure 5.7: A diagram of a part of the brain circuitry of a worm. A portion of the neural 

 



circuitry of the nematode Caenorhabditis elegans, reconstructed by hand from electron 
micrographs of slices through the worm’s brain. Reproduced from White et al. [328]. Copyright of 
the Royal Society. Reproduced by permission. 
  
 



5.3 ECOLOGICAL NETWORKS  

The final class of biological network that we consider in this chapter is networks of ecological 
interactions between species. Species in an ecosystem can interact in a number of different ways. 
They can eat one another, they can parasitize one another, they can compete for resources, or they 
can have any of a variety of mutually advantageous interactions, such as pollination or seed 
dispersal. Although in principle the patterns of interactions of all of these types could be 
represented in a combined “interaction network” with several different edge types, ecologists have 
traditionally separated interaction types into different networks. Food webs, for example—
networks of predator-prey interactions (i.e., who eats whom)—have a long history of study. 
Networks of hosts and parasites or of mutualistic interactions are less well studied, but have 
nonetheless received significant attention in recent years.

 



5.3.1 FOOD WEBS  

The biological organisms on our planet can be divided into ecosystems, groups of organisms that 
interact with one another and with elements of their environment such as sources of material, 
nutrients, and energy. Mountains, valleys, lakes, islands, and larger regions of land or water can all 
be home to ecosystems composed of many organisms each. Within ecological theory, ecosystems 
are usually treated as self-contained units with no outside interactions, although in reality perfect 
isolation is rare and many ecosystems are only approximately self-contained. Nonetheless, the 
ecosystem concept is one of significant practical utility for understanding ecological dynamics. 

A food web is a directed network that represents which species prey on which others in a given 
ecosystem.40 The vertices in the network correspond to species and the directed edges to predator-
prey interactions. Figure 5.8 shows a small example, representing predation among species living 
in Antarctica. There are several points worth noticing about this figure. First, notice that not all of 
the vertices actually represent single species in this case. Some of them do—the vertices for sperm 
whales and humans, for instance. But some of them represent collections of species, such as birds 
or fish. This is common practice in the network representation of food webs. If a set of species 
such as birds all prey upon and are preyed on by the same other species, then the network can be 
simplified by representing them as a single vertex, without losing any information about who preys 
on whom. Indeed, even in cases where a set of species only have mostly, but not exactly, the same 
predators and prey we still sometimes group them, if we feel the benefits of the resulting 
simplification are worth a small loss of information. A set of species with the same or similar 
predators and prey is sometimes referred to as a trophic species. 

 

 

 



Figure 5.8: A food web of species in Antarctica. Vertices in a food web represent species or 
sometimes, as with some of the vertices in this diagram, groups of related species, such as fish or 
birds. Directed edges represent predator-prey interactions and run in the direction of energy flow, 
i.e., from prey to predator. 
  

Second, notice the direction of the edges in the network. One might imagine that the edges 
would point from predators to prey, but ecologists conventionally draw them in the opposite 
direction, from prey to predator. Thus the edge representing the eating of fish by birds runs from 
the fish vertex to the bird vertex. The reason for this apparently odd choice is that ecologists view 
food webs as representations of the flow of energy (or sometimes carbon) within ecosystems. The 
arrow from fish to birds indicates that the population of birds gains energy from the population of 
fish when the birds eat the fish. 

Third, notice that almost all the arrows in the figure run up the page. Directed networks with this 
property—that they can be drawn so that the edges all run in one direction—are called acyclic 
networks. We encountered acyclic networks previously in our discussion of citation networks in 
Section 4.2. Food webs are usually only approximately acyclic. There are usually a few edges that 
do not run in the right direction,41 but it is often a useful approximation to assume that the network 
is acyclic. 

Acyclic networks are discussed in more detail in Section 6.4.2. 

The acyclic nature of food webs indicates that there is an intrinsic pecking order among the 
species in ecosystems. Those higher up the order (which means higher up the page in Fig. 5.8) 
prey on those lower down, but not vice versa. A species’ position in this pecking order is called by 
ecologists its trophic level. Species at the very bottom of the food web, of which there is just one 
in our example—the phytoplankton—have trophic level 1. Those that prey on them—krill, 
herbivorous plankton—have trophic level 2, and so forth all the way up to the species at the top of 
the web, which have no predators at all. In our antarctic example there are two species that have no 
predators, humans and small whales. (Note however that although such species are all, in a sense, 
at “the top of the food chain” they need not have the same trophic level.) 

Trophic level is a useful general guide to the roles that species play in ecosystems, those in 
lower trophic levels tending to be smaller, more abundant species that are prey to other species 
higher up the food web, while those in higher trophic levels are predators, usually larger-bodied 
and less numerous. Calculating a species’ trophic level, however, is not always easy. In principle, 
the rule is simple: a species’ trophic level is 1 greater than the trophic level of its prey. Thus the 
herbivorous plankton and krill in our example have trophic level 2, because their prey has trophic 
level 1, and the carnivorous plankton have trophic level 3. On the other hand, the squid in our 
example prey on species at two different levels, levels 2 and 3, so it is unclear what level they 
belong to. A variety of mathematical definitions have been proposed to resolve this issue. One 
strategy is to define trophic level to be 1 greater than the mean of the trophic levels of the prey. 
There is, however, no accepted standard definition, and the only indisputable statement one can 
make is that in most food webs some species have ill-defined or mixed trophic level. 

The food webs appearing in the ecological literature come in two basic types. Community food 
webs are complete webs for an entire ecosystem, as in Fig. 5.8—they represent, at least in theory, 
every predator-prey interaction in the system. Source food webs and sink food webs are subsets of 
complete webs that focus on species connected, directly or indirectly, to a specific prey or 
predator. In a source food web, for instance, one records all species that derive energy from a 
particular source species, such as grass. Our food web of antarctic species is, in fact, both a 
community food web and a source food web, since all of the species in the network derive their 
energy ultimately from phytoplankton. Phytoplankton is the source in this example, and the 
species above it (all of the species in this case) form the corresponding source web. A sink food 
web is the equivalent construct for a particular top predator in the network. In the antarctic 
example, for instance, humans consume the sperm and baleen whales and elephant seals, which in 

 

 



turn derive their energy from fish, squid, plankton, krill, and ultimately phytoplankton. This 
subset of species, therefore, constitutes the sink food web for humans—the web that specifies 
through which species or species groups the energy consumed by humans passes. 

The experimental determination of the structure of food webs is typically done in one of two 
different ways, or sometimes a mixture of both. The first and most straightforward method is direct 
measurement. Having settled on the ecosystem to be studied, one first assembles a list of the 
species in that ecosystem and then determines their predator-prey interactions. For large-bodied 
animals such as mammals, birds, or larger fish, some predation can be established simply by 
observation in the field—we see a bird eating a fish and the presence of the corresponding edge is 
thereby established. More often, however, and particularly with smaller-bodied animals, 
interactions are established by catching and dissecting the animals in question and examining the 
contents of their stomachs to determine what they have been eating. 

The second primary method of constructing food webs is by compilation from existing 
literature. Many predator-prey interactions are already known and have been recorded in the 
scientific literature, but not in the context of the larger food web, and one can often reconstruct a 
complete or partial picture of a food web by searching the literature for such records. Many of the 
currently available food web data sets were assembled in this way from preexisting data, and some 
others were assembled by a combination of experimental measurement and literature searches. 

In some cases attempts have also been made to measure not merely the presence (or absence) of 
interactions between species but also the strength of those interactions. One can quantify 
interaction strength by the fraction of its energy a species derives from each of its predators, or by 
the total rate of energy flow between a prey species and a predator. The result is a weighted 
directed network that sheds considerably more light on the flow of energy through an ecosystem 
than the more conventional unweighted food web. Measurements of interaction strength are, 
however, time-consuming, difficult, and yield uncertain results, so the current data on weighted 
food webs should be treated with caution. 

Food web data from a variety of sources have been assembled into publicly available databases, 
starting in the late 1980s. Examples include the Ecoweb database [73] and the web-based 
collection at www.foodwebs.org. 



5.3.2 OTHER ECOLOGICAL NETWORKS  

Two other types of ecological network have received significant attention in the scientific literature 
(although less than has been paid to food webs). Host- parasite networks are networks of parasitic 
relationships between organisms, such as the relationship between a large-bodied animal and the 
insects and microorganisms that live on and inside it. In a sense parasitic relations are a form of 
predation—one species eating another—but in practical terms they are quite distinct from 
traditional predator-prey interactions. Parasites, for example, tend to be smaller-bodied than their 
hosts where predators tend to be larger, and parasites can live off their hosts for long, sometimes 
indefinite, periods of time without killing them, where predation usually results in the death of the 
prey. 

Parasitic interactions, however, do form networks that are somewhat similar to traditional food 
webs. Parasites themselves frequently play host to still smaller parasites (called “hyperparasites”), 
which may have their own still smaller ones, and so forth through several levels.42 There is a 
modest but growing literature on host-parasite networks, much of it based on research within the 
agriculture community, a primary reason for interest in parasites being their prevalence in and 
effects on livestock and crop species. 

The other main class of ecological networks is that of mutualistic networks, meaning networks 
of mutually beneficial interactions between species. Three specific types of mutualistic network 
that have received attention in the ecological literature are networks of plants and the animals 
(primarily insects) that pollinate them, networks of plants and the animals (such as birds) that 
disperse their seeds, and networks of ant species and the plants that they protect and eat. Since the 
benefit of a mutualistic interaction runs, by definition, in both directions between a pair of species, 
mutualistic networks are undirected networks (or bidirectional, if you prefer), in contrast with the 
directed interactions of food webs and host-parasite networks. Most mutualistic networks studied 
are also bipartite, consisting of two distinct, non-overlapping sets of species (such as plants and 
ants), with interactions only between members of different sets. In principle, however, non-
bipartite mutualistic networks are also possible. 

See Section 6.6 for a discussion of bipartite networks. 
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FUNDAMENTALS OF NETWORK THEORY 

 

 



CHAPTER 6 

MATHEMATICS OF NETWORKS 

An introduction to the mathematical tools used in the study of networks, tools that will be 
important to many subsequent developments 

IN THE next three chapters we introduce the fundamental quantitative foundations of the study of 
networks, concepts that are crucial for essentially all later developments in this book. In this 
chapter we introduce the basic theoretical tools used to describe and analyze networks, most of 
which come from graph theory, the branch of mathematics that deals with networks. Graph theory 
is a large field containing many results and we describe only a small fraction of those results here, 
focusing on the ones most relevant to the study of real-world networks. Readers interested in 
pursuing the study of graph theory further might like to look at the books by Harary [155] or West 
[324]. 

In the two chapters after this one we look first at measures and metrics for quantifying network 
structure (Chapter 7) and then at some of the remarkable patterns revealed in real-world networks 
when we apply the mathematics and metrics we have developed to their analysis (Chapter 8).

 

 

 



6.1 NETWORKS AND THEIR REPRESENTATION  

To begin at the beginning, a network—also called a graph in the mathematical literature—is, as we 
have said, a collection of vertices joined by edges. Vertices and edges are also called nodes and 
links in computer science, sites and bonds in physics, and actors43 and ties in sociology. Table 6.1 
gives some examples of vertices and edges in particular networks. 

 

Table 6.1: Vertices and edges in networks. Some examples of vertices and edges in particular 
networks. 
  

Throughout this book we will normally denote the number of vertices in a network by n and the 
number of edges by m, which is a common notation in the mathematical literature. 

Most of the networks we will study in this book have at most a single edge between any pair of 
vertices. In the rare cases where there can be more than one edge between the same pair of vertices 
we refer to those edges collectively as a multiedge. In most of the networks we will study there are 
also no edges that connect vertices to themselves, although such edges will occur in a few 
instances. Such edges are called self-edges or self-loops. 

A network that has neither self-edges nor multiedges is called a simple network or simple graph. 
A network with multiedges is called a multigraph.44 Figure 6.1 shows examples of (a) a simple 
graph and (b) a non-simple graph having both multiedges and self-edges.

 

 

 



6.2 THE ADJACENCY MATRIX  

There are a number of different ways to represent a network mathematically. Consider an 
undirected network with n vertices and let us label the vertices with integer labels 1 . . . n, as we 
have, for instance, for the network in Fig. 6.1a. It does not matter which vertex gets which label, 
only that each label is unique, so that we can use the labels to refer to any vertex unambiguously. 

If we denote an edge between vertices i and j by (i,j) then the complete network can be specified 
by giving the value of n and a list of all the edges. For example, the network in Fig. 6.1a has n = 6 
vertices and edges (1,2), (1,5), (2,3), (2,4), (3,4), (3,5), and (3,6). Such a specification is called an 
edge list. Edge lists are sometimes used to store the structure of networks on computers, but for 
mathematical developments like those in this chapter they are rather cumbersome. 

 

Figure 6.1: Two small networks. (a) A simple graph, i.e., one having no multiedges or self-edges. 
(b) A network with both multiedges and self-edges. 
  

A better representation of a network for present purposes is the adjacency matrix. The adjacency 
matrix A of a simple graph is the matrix with elements Aij such that 

 

(6.1) 
  

For example, the adjacency matrix of the network in Fig. 6.1a is 

 

 

 

 

 



 

(6.2) 
  

Two points to notice about the adjacency matrix are that, first, for a network with no self-edges 
such as this one the diagonal matrix elements are all zero, and second that it is symmetric, since if 
there is an edge between i and j then there is an edge between j and i. 

It is also possible to represent multiedges and self-edges using an adjacency matrix. A multiedge 
is represented by setting the corresponding matrix element Aij equal to the multiplicity of the edge. 
For example, a double edge between vertices i and j is represented by Aij = Aji = 2. 

Self-edges are a little more complicated. A single self-edge from vertex i to itself is represented 
by setting the corresponding diagonal element Aii of the matrix equal to 2. Why 2 and not 1? 
Essentially it is because every self-edge from i to i has two ends, both of which are connected to 
vertex i. We will find that many of our mathematical results concerning the adjacency matrix work 
equally well for networks with and without self-edges, but only if we are careful to count both 
ends of every edge, including the self-edges, by making the diagonal matrix elements equal to 2 
rather than 1.45 

Another way to look at this is that non-self-edges appear twice in the adjacency matrix—an edge 
from i to j means that both Aij and Aji are 1. To count edges equally, self-edges should also appear 
twice, and since there is only one diagonal matrix element Aii , we need to record both appearances 
there. 

To give an example, the adjacency matrix for the multigraph in Fig. 6.1b is 

 

(6.3) 
  

One can also have multiple self-edges (or “multi-self-edges” perhaps). Such edges are 
represented by setting the corresponding diagonal element of the adjacency matrix equal to twice 
the multiplicity of the edge. 

 

 

 

 



6.3 WEIGHTED NETWORKS  

Many of the networks we will study have edges that form simple on/off connections between 
vertices. Either they are there or they are not. In some situations, however, it is useful to represent 
edges as having a strength, weight, or value to them, usually a real number. Thus in the Internet 
edges might have weights representing the amount of data flowing along them or their bandwidth. 
In a food web predator-prey interactions might have weights measuring total energy flow between 
prey and predator. In a social network connections might have weights representing frequency of 
contact between actors. Such weighted or valued networks can be represented by giving the 
elements of the adjacency matrix values equal to the weights of the corresponding connections. 
Thus the adjacency matrix 

 

(6.4) 
  

represents a weighted network in which the connection between vertices 1 and 2 is twice as strong 
as that between 1 and 3, which in turn is twice as strong as that between 2 and 3.46 

We have now seen two different types of network where the adjacency matrix can have off-
diagonal elements with values other than 0 and 1, networks with weighted edges and networks 
with multiedges.47 Indeed, if the weights in a weighted network are all integers it is possible to 
create a network with multiedges that has the exact same adjacency matrix, by simply choosing the 
multiplicities of the multiedges equal to the corresponding weights. This connection comes in 
handy sometimes. In some circumstances it is easier to reason about the behavior of a multigraph 
than a weighted network, or vice versa, and switching between the two can be a useful aid to 
analysis [242]. 

The weights in a weighted network are usually positive numbers, but there is no reason in theory 
why they should not be negative. For example, it is common in social network theory to construct 
networks of social relations between people in which positive edge weights denote friendship or 
other cordial relationships and negative ones represent animosity. We discuss such networks 
further in Section 7.11 when we consider the concept of structural balance. 

Given that edges can have weights on them, it is not a huge leap to consider weights on vertices 
too, or to consider more exotic variables on either edges or vertices, such as vectors or discrete 
enumerative variables like colors. Many such variations have been considered in the networks 
literature and we will discuss some of them later in the book. There is one case of variables on 
edges, however, that is so central to the study of networks that we discuss it straight away.

 

 



6.4 DIRECTED NETWORKS  

A directed network or directed graph, also called a digraph for short, is a network in which each 
edge has a direction, pointing from one vertex to another. Such edges are themselves called 
directed edges, and can be represented by lines with arrows on them—see Fig. 6.2. 

 

Figure 6.2: A directed network. A small directed network with arrows indicating the directions 
of the edges. 
  

We encountered a number of examples of directed networks in previous chapters, including the 
World Wide Web, in which hyperlinks run in one direction from one web page to another, food 
webs, in which energy flows from prey to predators, and citation networks, in which citations point 
from one paper to another. 

The adjacency matrix of a directed network has matrix elements 

 

(6.5) 
  

Notice the direction of the edge here—it runs from the second index to the first. This is slightly 
counter-intuitive, but it turns out to be convenient mathematically and it is the convention we 
adopt in this book. 

As an example, the adjacency matrix of the small network in Fig. 6.2 is 

 

 

 

 

 



 

(6.6) 
  

Note that this matrix is not symmetric. In general the adjacency matrix of a directed network is 
asymmetric. 

We can, if we wish, think of undirected networks as directed networks in which each undirected 
edge has been replaced with two directed ones running in opposite directions between the same 
pair of vertices. The adjacency matrix for such a network is then symmetric and exactly the same 
as for the original undirected network. 

Like their undirected counterparts, directed networks can have multiedges and self-edges, which 
are represented in the adjacency matrix by elements with values greater than 1 and by non-zero 
diagonal elements, respectively. An important point however is that self-edges in a directed 
network are represented by setting the corresponding diagonal element of the adjacency matrix to 
1, not 2 as in the undirected case.48 With this choice the same formulas and results, in terms of the 
adjacency matrix, apply for networks with and without self-edges.

 

 



6.4.1 COCITATION AND BIBLIOGRAPHIC COUPLING  

It is sometimes convenient to turn a directed network into an undirected one for the purposes of 
analysis—there are many useful analytic techniques for undirected networks that do not have 
directed counterparts (or at least not yet). 

One simple way to make a directed network undirected is just to ignore the edge directions 
entirely, an approach that can work in some cases, but inevitably throws out a lot of potentially 
useful information about the network’s structure. A more sophisticated approach is to use 
“cocitation” or “bibliographic coupling,” two different but related ideas that derive their names 
from their widespread use in the analysis of citation networks. 

We briefly discussed cocitation in the context of citation networks in Section 4.2. 

The cocitation of two vertices i and j in a directed network is the number of vertices that have 
outgoing edges pointing to both i and j. In the language of citation networks, for instance, the 
cocitation of two papers is the number of other papers that cite both. Given the definition above of 
the adjacency matrix of a directed network (Eq. (6.5)), we can see that AikAjk = 1 if i and j are both 
cited by k and zero otherwise. Summing over all k, the cocitation Cij of i and j is 

 

(6.7) 
  

where  is an element of the transpose of A. We can define the cocitation matrix C to be the n 
× n matrix with elements Cij , which is thus given by 

 

(6.8) 
  

 

Vertices i and j are cited by three common papers, so their cocitation is 3.

 

 

 

 

 

 



  

Note that C is a symmetric matrix, since CT = (AAT )T = AAT = C.
 

Now we can define a cocitation network in which there is an edge between i and j if Cij > 0, for i 
≠ j, i.e., an edge between any two vertices that are cocited in the original directed network. (We 
enforce the constraint that i ≠ j because the cocitation network is conventionally defined to have no 
self-edges, even though the diagonal elements of the cocitation matrix are in general nonzero—see 
below.) Better still, we can make the cocitation network a weighted network with positive integer 
weights on the edges equal to the corresponding elements Cij. Then vertex pairs cited by more 
common neighbors have a stronger connection than those cited by fewer. Since the cocitation 
matrix is symmetric, the cocitation network is undirected, making it easier to deal with in many 
respects than the original directed network from which it was constructed. 

The cocitation network turns out to make a lot of sense in many cases. In citation networks of 
academic papers, for instance, strong cocitation between papers is often a good indicator of papers 
that deal with related topics—if two papers are often cited together in the same bibliography they 
probably have something in common. And the more often they are cited together, the more likely it 
is that they are related. 

The cocitation matrix thus plays a role similar to an adjacency matrix for the cocitation network. 
There is however one aspect in which the cocitation matrix differs from an adjacency matrix: its 
diagonal elements. The diagonal elements of the cocitation matrix are given by 

 

(6.9) 
  

where we have assumed that the directed network is a simple graph, with no multiedges, so that 
all elements Aik of the adjacency matrix are zero or one. Thus Cii is equal to the total number of 
edges pointing to i—the total number of papers citing i in the citation network language. In 
constructing the cocitation network we ignore these diagonal elements, meaning that the network’s 
adjacency matrix is equal to the cocitation matrix but with all the diagonal elements set to zero. 

 

Vertices i and j cite three of the same papers and so have a bibliographic coupling of 3. 
  

Bibliographic coupling is similar to cocitation. The bibliographic coupling of two vertices in a 
directed network is the number of other vertices to which both point. In a citation network, for 
instance, the bibliographic coupling of two papers i and j is the number of other papers that are 
cited by both i and j. Noting that AkiAkj = 1 if i and j both cite k and zero otherwise, the 
bibliographic coupling of i and j is 

 

 

 

 



 

(6.10) 
  

and we define the bibliographic coupling matrix B to be the n × n matrix with elements Bij so 
that 

 

(6.11) 
  

The bibliographic coupling matrix is again a symmetric matrix and the off-diagonal elements can 
be used to define a weighted undirected network, the bibliographic coupling network, in which 
there is an edge with weight Bij between any vertex pair i, j for which Bij > 0. The diagonal 
elements of B are 

 

(6.12) 
  

Thus Bii is equal to the number of other vertices that vertex i points to—the number of papers i 
cites, in the citation language. 

Bibliographic coupling, like cocitation, can be a useful measure of connection between vertices. 
In a citation network, for example, if two papers cite many of the same other papers it is often a 
good indication that they deal with similar subject matter, and the number of common papers cited 
can be an indicator of how strongly they overlap. 

Although cocitation and bibliographic coupling are mathematically similar measures they can in 
practice give noticeably different results. In particular, they are affected strongly by the number of 
ingoing and outgoing edges that vertices have. For two vertices to have strong cocitation—to be 
pointed to by many of the same other vertices—they must both have a lot of incoming edges in the 
first place. In a citation network, for instance, two papers can only have strong cocitation if they 
are both well cited and hence strong cocitation is limited to influential papers, review articles, 
books, and similar highly cited items. Conversely, two papers can only have strong bibliographic 
coupling if they both cite many others, i.e., if they have large bibliographies. In practice, the sizes 
of bibliographies vary less than the number of citations papers receive, and hence bibliographic 
coupling is a more uniform indicator of similarity between papers than cocitation. The Science 
Citation Index, for example, makes use of bibliographic coupling in its “Related Records” feature, 
which allows users to find papers similar to a given paper. Cocitation would be less appropriate in 
this situation, since it tends not to work well for papers with few citations.

 

 

 

 

 



Bibliographic coupling also has the advantage that it can be computed as soon as a paper is 
published and the contents of the paper’s bibliography are known. Cocitation, on the other hand, 
cannot be computed until a paper has been cited by other papers, which usually doesn’t happen 
until at least a few months after publication, and sometimes years. Furthermore, the cocitation of 
two papers can change over time as the papers receive new citations, whereas bibliographic 
coupling is fixed from the moment the papers are published. (This could be an advantage or a 
disadvantage—there are situations in which changes in cocitation could reveal interesting 
information about the papers that cannot be gleaned from an unchanging measure like 
bibliographic coupling.) 

In addition to their use as measures of vertex similarity, the cocitation and bibliographic 
coupling matrices are also used in search algorithms for directed networks, and in particular in the 
so-called HITS algorithm, which we describe in Section 7.5.



6.4.2 ACYCLIC DIRECTED NETWORKS  

A cycle in a directed network is a closed loop of edges with the arrows on each of the edges 
pointing the same way around the loop. Networks like the World Wide Web have many such 
cycles in them. Some directed networks however have no cycles and these are called acyclic 
networks.49 Ones with cycles are called cyclic. A self-edge—an edge connecting a vertex to 
itself—counts as a cycle, and so an acyclic network also has no self-edges. 

 

A cycle in a directed network. 
  

The classic example of an acyclic directed network is a citation network of papers, as discussed 
in Section 4.2. When writing a paper you can only cite another paper if it has already been written, 
which means that all the directed edges in a citation network point backward in time. Graphically 
we can depict such a network as in Fig. 6.3, with the vertices time-ordered—running from bottom 
to top of the picture in this case—so that all the edges representing the citations point downward in 
the picture.50 There can be no closed cycles in such a network because any cycle would have to go 
down the picture and then come back up again to get back to where it started and there are no 
upward edges with which to achieve this. 

 

Figure 6.3: An acyclic directed network. In this network the vertices are laid out in such a way 
that all edges point downward. Networks that can be laid out in this way are called acyclic, since 
they possess no closed cycles of edges. An example of an acyclic network is a citation network of 
citations between papers, in which the vertical axis would represent date of publication, running up 

 

 

 

 



the figure, and all citations would necessarily point from later papers to earlier ones. 
  

It is less obvious but still true that if a network is acyclic it can be drawn in the manner of Fig. 
6.3 with all edges pointing downward. The proof that this can be done turns out to be useful, 
because it also provides us with a method for determining whether a given network is acyclic. 

Suppose we have an acyclic directed network of n vertices. There must be at least one vertex 
somewhere on the network that has ingoing edges only and no outgoing ones. To see this consider 
starting from any vertex in the network and making a path across the network by following edges, 
each in the correct direction denoted by its arrow. Either such a path will eventually encounter a 
vertex with no outgoing edges, in which case we are done, or each vertex it encounters has one or 
more outgoing edges, in which case we choose one such edge and continue our path. If the path 
never reaches a vertex with no outgoing edges, then it must eventually arrive back at a vertex that 
has been visited previously—at most we can visit all n vertices in the network once before the path 
either terminates or we are forced to revisit a vertex. However if we revisit a vertex then we have 
gone around a cycle in the network, which cannot be since the network is acyclic. Thus we must 
always in the end find a vertex with no outgoing edges and hence at least one such vertex always 
exists. 

In practice, it is not necessary to actually construct the paths through the network to find a 
vertex with no outgoing edges—since we know that such a vertex exists, we can simply look 
through each vertex in turn until we find one. 

We now take this vertex with no outgoing edges and draw it at the bottom of our picture. We 
remove this vertex from the network, along with any edges attached to it, and repeat the process, 
finding another vertex with no outgoing edges in the remaining network. We draw this second 
vertex above the first one in the figure, remove it from the network and repeat again. And so forth. 

When we have drawn all vertices, we then add the directed edges between them to the picture. 
Since each edge, by definition, has incoming edges only from vertices drawn after it—and 
therefore above it—all edges in the final picture must be pointing downward. Note that the 
particular order in which we draw the vertices, and hence the picture we produce, is not necessarily 
unique. If at any stage in the process of drawing the vertices there is more than one vertex with no 
outgoing edges then we have a choice about which one we pick and hence a choice between 
overall vertex orders. 

This process is a useful one for visualizing acyclic networks. Most computer algorithms for 
drawing such networks work by arranging the vertices in order along one axis in just this way, and 
then moving them around along the other axis to make the network structure as clear and visually 
pleasing as possible (which usually means minimizing the number of times that edges cross). 

The process is useful for another reason too: it will break down if the network is cyclic, and 
therefore it gives us a way to test whether a given network is acyclic. If a network contains a cycle, 
then none of the vertices in that cycle will ever be removed during our process: none of them will 
be without outgoing edges until one of the others in the cycle is removed, and hence none of them 
can ever be removed. Thus, if the network contains a cycle there must come a point in our process 
where there are still vertices left in the network but all of them have outgoing edges. So a simple 
algorithm for determining whether a network is acyclic is: 

1. Find a vertex with no outgoing edges. 
2. If no such vertex exists, the network is cyclic. Otherwise, if such a vertex does exist, 

remove it and all its ingoing edges from the network. 
3. If all vertices have been removed, the network is acyclic. Otherwise go back to step 1. 

The adjacency matrix of an acyclic directed network has interesting properties. Suppose we 
construct an ordering of the vertices of an acyclic network as described above, so that all edges 
point in one direction, and suppose we then label the vertices in that order. Then there can be an 
edge from vertex j to vertex i only if j > i. Put another way, the adjacency matrix A (whose 
element Aij records the presence of an edge from j to i) has all its non-zero elements above the 
diagonal—it is upper triangular. For instance, the adjacency matrix of the network shown in Fig. 

 

 



6.3 is 

 

(6.13) 
  

Note also that the diagonal elements of the adjacency matrix are necessarily zero, since an acyclic 
network has no self-edges. Triangular matrices with zeros on the diagonal are called strictly 
triangular. 

If the vertices of an acyclic network are not numbered in order as described above, then the 
adjacency matrix will not be triangular. (Imagine swapping rows and columns of the matrix above, 
for instance.) However, we can say that for every acyclic directed network there exists at least one 
labeling of the vertices such that the adjacency matrix will be strictly upper triangular. 

The adjacency matrix also has the property that all of its eigenvalues are zero if and only if the 
network is acyclic. To demonstrate this, we must demonstrate the correspondence in both 
directions, i.e., that the adjacency matrix of an acyclic network has all eigenvalues zero and also 
that a network is acyclic if its adjacency matrix has all eigenvalues zero. 

The former is the easier to prove. If a network is acyclic then we can order and label the vertices 
as described above and hence write the adjacency matrix in strictly upper triangular form. The 
diagonal elements of a triangular matrix, however, are its eigenvalues, and since these are all zero 
it follows immediately that all eigenvalues are zero for an acyclic network. 

To show the converse, that the network is acyclic if the eigenvalues are all zero, it suffices to 
demonstrate that any cyclic network must have at least one non-zero eigenvalue. To demonstrate 
this we make use of a result derived in Section 6.10. There we show that the total number Lr of 
cycles of length r in a network is 

 

(6.14) 
  

where κi is the ith eigenvalue of the adjacency matrix. Suppose a network is cyclic. Let r be the 
length of one of the cycles it contains. Then by definition Lr > 0 for this network. However, this 
can only be the case if at least one of the terms in the sum on the right-hand side of Eq. (6.14) is 
greater than zero, and hence the adjacency matrix has at least one non-zero eigenvalue. If all 
eigenvalues are zero, therefore, the network cannot be cyclic.

 

 

 



 

Figure 6.4: A hypergraph and corresponding bipartite graph. These two networks show the 
same information—the membership of five vertices in four different groups. (a) The hypergraph 
representation in which the groups are represented as hyperedges, denoted by the loops circling 
sets of vertices. (b) The bipartite representation in which we introduce four new vertices (open 
circles) representing the four groups, with edges connecting each vertex to the groups to which it 
belongs. 
  

Matrices with all eigenvalues zero are called nilpotent matrices. Thus one could also say that a 
network is acyclic if and only if it has a nilpotent adjacency matrix.

 

 



6.5 HYPERGRAPHS  

In some kinds of network the links join more than two vertices at a time. For example, we might 
want to create a social network representing families in a larger community of people. Families 
can have more than two people in them and the best way to represent family ties in such families is 
to use a generalized kind of edge that joins more than two vertices.51 Such an edge is called a 
hyperedge and a network with hyperedges is called a hypergraph. Figure 6.4a shows a small 
example of a hypergraph in which the hyperedges are denoted by loops. 

 

Table 6.2: Hypergraphs and bipartite graphs. Examples of networks that can be represented as 
hypergraphs or equivalently as bipartite graphs. The last column gives the section of this book in 
which each network is discussed. 
  

Many of the networks that we will encounter in this book can be presented as hypergraphs. In 
particular, any network in which the vertices are connected together by common membership of 
groups of some kind can be represented in this way. In sociology such networks are called 
“affiliation networks” and we saw several examples of them in Section 3.5. Directors sitting on 
the boards of companies, scientists coauthoring papers, and film actors appearing together in films 
are all examples of such networks (see Table 6.2). 

We will however talk very little about hypergraphs in this book, because there is another way of 
representing the same information that is more convenient for our purposes—the bipartite network.

 

 

 



6.6 BIPARTITE NETWORKS  

The membership of vertices in groups represented by hyperedges in a hypergraph can equally and 
often more conveniently be represented as a bipartite network, also called a two-mode network in 
the sociology literature. In such a network there are two kinds of vertices, one representing the 
original vertices and the other representing the groups to which they belong. We discussed 
bipartite networks previously in the context of affiliation networks in Section 3.5 and of 
recommender networks in Section 4.3.2. For example, we can represent the network of film actors 
discussed in Section 3.5 as a bipartite network in which the two types of vertex are the actors 
themselves and the films in which they appear. The edges in a bipartite network run only between 
vertices of unlike types: in the film network they would run only between actors and films, and 
each actor would be connected by an edge to each film in which he or she appeared. A small 
example of a bipartite network is shown in Fig. 6.4b. This example network in fact portrays 
exactly the same set of group memberships as the hypergraph of Fig. 6.4a; the two are entirely 
equivalent. 

Bipartite networks occur occasionally in contexts other than membership of groups. For 
example, if we were to construct a network of who is or has been married to whom within a 
population, that network would be bipartite, the two kinds of vertex corresponding to men and 
women and the edges between them marriages.52 

The equivalent of an adjacency matrix for a bipartite network is a rectangular matrix called an 
incidence matrix. If n is the number of people or other participants in the network and g is the 
number of groups, then the incidence matrix B is a g × n matrix having elements Bij such that 

 

(6.15) 
  

For instance, the 4 × 5 incidence matrix of the network shown in Fig. 6.4b is 

 

(6.16) 
  

Although a bipartite network may give the most complete representation of a particular network 
it is often convenient to work with direct connections between vertices of just one type. We can 
use the bipartite network to infer such connections, creating a one-mode projection from the two-

 

 

 

 

 



mode bipartite form. As an example, consider again the case of the films and actors. We can 
perform a projection onto the actors alone by constructing the n-vertex network in which the 
vertices represent actors and two actors are connected by an edge if they have appeared together in 
a film. The corresponding one-mode projection onto the films would be the g-vertex network 
where the vertices represent films and two films are connected if they share a common actor. 
Figure 6.5 shows the two one-mode projections of a small bipartite network. 

When we form a one-mode projection each group in the bipartite network results in a cluster of 
vertices in the one-mode projection that are all connected to each other—a “clique” in network 
jargon (see Section 7.8.1). For instance, if a group contains four members in the bipartite network, 
then each of those four is connected to each of the others in the one-mode projection by virtue of 
common membership in that group. (Such a clique of four vertices is visible in the center of the 
lower projection in Fig. 6.5.) Thus the projection is, generically, the union of a number of cliques, 
one for each group in the original bipartite network. The same goes for the other projection onto 
the groups. 

 

Figure 6.5: The two one-mode projections of a bipartite network. The central portion of this 
figure shows a bipartite network with four vertices of one type (open circles labeled A to D) and 
seven of another (filled circles, 1 to 7). At the top and bottom we show the one-mode projections 
of the network onto the two sets of vertices. 
  

The one-mode projection, as we have described it, is often useful and is widely employed, but 
its construction discards a lot of the information present in the structure of the original bipartite 
network and hence it is, in a sense, a less powerful representation of our data. For example, the 
projection loses any information about how many groups two vertices share in common. In the 
case of the actors and films, for instance, there are some pairs of actors who have appeared in 
many films together—Fred Astaire and Ginger Rogers, say, or William Shatner and Leonard 
Nimoy—and it’s reasonable to suppose this indicates a stronger connection than between actors 
who appeared together only once. 

 

 



We can capture information of this kind in our projection by making the projection weighted, 
giving each edge between two vertices in the projected network a weight equal to the number of 
common groups the vertices share. This weighted network still does not capture all the information 
in the bipartite original—it doesn’t record the number of groups or the exact membership of each 
group for instance—but it is an improvement on the unweighted version and is quite widely used. 

Mathematically the projection can be written in terms of the incidence matrix B as follows. The 
product BkiBkj will be 1 if and only if i and j both belong to the same group k in the bipartite 
network. Thus, the total number Pij of groups to which both i and j belong is 

 

(6.17) 
  

where  is an element of the transpose BT of B. The n × n matrix P = BTB is similar to an 
adjacency matrix for the weighted one-mode projection onto the n vertices. Its off-diagonal 
elements are equal to the weights in that network, the number of common groups shared by each 
vertex pair. P is not quite an adjacency matrix, however, since its diagonal elements are non-zero, 
even though the network itself, by definition, has no self-edges. (In this respect P is somewhat 
similar to the cocitation matrix of Section 6.4.1.) The diagonal elements have values 

 

(6.18) 
  

where we have made use of the fact that Bki only takes the values 0 or 1. Thus Pii is equal to the 
number of groups to which vertex i belongs. 

Thus to derive the adjacency matrix of the weighted one-mode projection, we would calculate 
the matrix P = BTB and set the diagonal elements equal to zero. And to derive the adjacency matrix 
of the unweighted projection, we would take the adjacency matrix of the weighted version and 
replace every non-zero matrix element with a 1. 

The other one-mode projection, onto the groups, can be represented by a g × g matrix Pʹ = BBT, 

whose off-diagonal element  gives the number of common members of groups i and j, and 
whose diagonal element  gives the number of members of group i. 

One occasionally also comes across bipartite networks that are directed. For example, the 
metabolic networks discussed in Section 5.1.1 can be represented as directed bipartite networks—
see Fig. 5.1a. A variety of more complex types of projection are possible in this case, although 
their use is rare and we won’t spend time on them here. Weighted bipartite networks are also 
possible in principle, although no examples will come up in this book.

 

 



 

Figure 6.6: Two sketches of the same tree. The two panels here show two different depictions of 
a tree, a network with no closed loops. In (a) the vertices are positioned on the page in any 
convenient position. In (b) the tree is a laid out in a “rooted” fashion, with a root node at the top 
and branches leading down to “leaves” at the bottom. 
  

 

 



6.7 TREES  

A tree is a connected, undirected network that contains no closed loops—see Fig. 6.6a.53 By 
“connected” we mean that every vertex in the network is reachable from every other via some 
path through the network. A network can also consist of two or more parts, disconnected from one 
another,54 and if an individual part has no loops it is also called a tree. If all the parts of the 
network are trees, the complete network is called a forest. 

Trees are often drawn in a rooted manner, as shown in Fig. 6.6b, with a root node at the top and 
a branching structure going down. The vertices at the bottom that are connected to only one other 
vertex are called leaves.55 Topologically, a tree has no particular root—the same tree can be drawn 
with any node, including a leaf, as the root node, but in some applications there are other reasons 
for designating a root. A dendrogram is one example (see below). 

Not very many of the real-world networks that we will encounter in this book are trees, although 
a few are. A river network is an example of a naturally occurring tree (see Fig. 2.6, for instance). 
Trees do nonetheless play several important roles in the study of networks. In Chapter 12 for 
instance we will study the network model known as the “random graph.” In this model local 
groups of vertices—the so-called small components in the network—form trees, and we can 
exploit this property to derive a variety of mathematical results about random graphs. In Section 
11.11.1 we introduce the “dendrogram,” a useful tool that portrays a hierarchical decomposition of 
a network as a tree. Trees also occur commonly in computer science, where they are used as a 
basic building block for data structures such as AVL trees and heaps (see Sections 9.5 and 9.7 and 
Refs. [8, 81]) and in other theoretical contexts like minimum spanning trees [81], Cayley trees or 
Bethe lattices [269], and hierarchical models of networks (see Section 19.3.2 and Refs. [70, 179, 
322]). 

Perhaps the most important property of trees for our purposes is that, since they have no closed 
loops, there is exactly one path between any pair of vertices. (In a forest there is at most one path, 
but there may be none.) This is clear since if there were two paths between a pair of vertices A and 
B then we could go from A to B along one path and back along the other, making a loop, which is 
forbidden. 

This property of trees makes certain kinds of calculation particularly simple, and trees are 
sometimes used as a basic model of a network for this reason. For instance, the calculation of a 
network’s diameter (Section 6.10.1), the betweenness centrality of a vertex (Section 7.7), and 
certain other properties based on shortest paths are all relatively easy with a tree. 

Another useful property of trees is that a tree of n vertices always has exactly n— 1 edges. To 
see this, consider building up a tree by adding vertices one by one. Starting with a single vertex 
and no edges, we add a second vertex and one edge to connect it to the first. Similarly when we 
add a third vertex we need at least one edge to connect it one of the others, and so forth. For every 
vertex we must add at least one edge to keep the network connected. This means that the number 
of edges must always be at least one less than the number of vertices. In mathematical terms, n − 1 
is a lower bound on the number of edges. 

But it is also an upper bound, because if we add more than one edge when we add a new vertex 
then we create a loop: the first edge connects the added vertex to the rest of the network and the 
second then connects together two vertices that are already part of the network. But adding an edge 
between two vertices that are already connected via the network necessarily creates a loop. Hence 
we are not allowed to add more than one edge per vertex if the network is to remain free of loops. 

Thus the number of edges in a tree cannot be either more or less than n − 1, and hence is exactly 
n − 1. 

The reverse is also true, that any connected network with n vertices and n − 1 edges is a tree. If 

 



such a network were not a tree then there must be a loop in the network somewhere, implying 
that we could remove an edge without disconnecting any part of the network. Doing this 
repeatedly until no loops are left, we would end up with a tree, but one with less than n − 1 edges, 
which cannot be. Hence we must have had a tree to begin with. As a corollary, this implies that the 
connected network on n vertices with the minimum number of edges is always a tree, since no 
connected network has less than n − 1 edges and all networks with n − 1 edges are trees. 

 

Adding an extra edge (gray) between any two vertices of a tree creates a loop. 
  

 

 



6.8 PLANAR NETWORKS  

A planar network is a network that can be drawn on a plane without having any edges cross.56 
Figure 6.7a shows a small planar network. Note that it is in most cases possible to find a way to 
draw a planar network so that some edges do cross (Fig. 6.7b). The definition of planarity only 
specifies that at least one arrangement of the vertices exists that results in no crossing. 

Most of the networks we will encounter in this book are not planar, either because there is no 
relevant two-dimensional geometry to which the network is confined (e.g., citation networks, 
metabolic networks, collaboration networks), or else there is but there is nothing to stop edges 
from crossing on it (e.g., the Internet, airline route maps, email networks). However, there are a 
few important examples of networks that are planar. First of all, all trees are planar. For some 
trees, such as river networks, this is obvious. Rivers never cross one another; they only flow 
together. In other cases, such as the trees used in computer data structures, there is no obvious two-
dimensional surface onto which the network falls but it is planar nonetheless. 

Among non-tree-like networks, some are planar for physical reasons. A good example is a road 
network. Because roads are confined to the Earth’s surface they form a roughly planar network. It 
does happen sometimes that roads meet without intersecting, one passing over the other on a 
bridge, so that in fact, if one wishes to be precise, the road network is not planar. However, such 
instances are rare (in the sense that there are far more places where roads intersect than there are 
bridges where they don’t) and the network is planar to a good approximation. 

 

Figure 6.7: Two drawings of a planar graph. (a) A small planar graph with four vertices and six 
edges. It is self-evident that the graph is planar, since in this depiction it has no edges that cross. 
(b) The same graph redrawn with two of its edges crossing. Even though the edges cross, the graph 
is still planar—a graph is planar if it can be drawn without crossing edges. 
  

Another example is the network of shared borders between countries, states, or provinces—see 
Fig. 6.8. We can take a map depicting any set of contiguous regions, represent each by a vertex, 
and draw an edge between any two that share a border. It is easy to see that the resulting network 
can always be drawn without crossing edges provided the regions in question are formed of 
contiguous landmasses. 

Networks of this type, representing regions on a map, play an important role in the four-color 
theorem, a theorem that states that it is possible to color any set of regions on a two-dimensional 
map, real or imagined, with at most four colors such that no two adjacent regions have the same 
color, no matter how many regions there are or of what size or shape.57 By constructing the 
network corresponding to the map in question, this problem can be converted into a problem of 

 

 

 



coloring the vertices of a planar graph in such a way that no two vertices connected by an edge 
have the same color. The number of colors required to color a graph in this way is called the 
chromatic number of the graph and many mathematical results are known about chromatic 
numbers. The proof of the four-color theorem—the proof that the chromatic number of a planar 
graph is always four or less—is one of the triumphs of traditional graph theory and was first given 
by Appel and Haken [20-22] in 1976 after more than a hundred years of valiant effort within the 
mathematics community.58 

 

Figure 6.8: Graph of the adjacencies of the lower 48 United States. In this network each of the 
lower 48 states in the US is represented as a vertex and there is an edge between any two vertices 
if the corresponding states share a border. The resulting graph is planar, and indeed any set of 
states, countries, or other regions on a two-dimensional map can be turned into a planar graph in 
this way. 
  

An important question that arises in graph theory is how to determine, given a particular 
network, whether that network is planar or not. For a small network it is a straightforward matter 
to draw a picture and play around with the positions of the vertices to see if one can find an 
arrangement in which no edges cross, but for a large network this is impractical and a more general 
method of determining planarity is needed. Luckily a straightforward one exists. We will only 
describe the method here, not prove why it works, since the proof is long and technical and not 
particularly relevant to the study of real-world networks. For those interested in seeing a proof, one 
is given by West [324]. 

Figure 6.9 shows two small networks, conventionally denoted K5 and UG, that are definitely not 
planar.59 Neither of these networks can be drawn without edges crossing. It immediately follows 
that any network that contains a subset of vertices, or subgraph, in the form of K5 or UG, is also 
not planar. 

 

 



 

An expansion of K5.
 

  

 

Figure 6.9: The fundamental non-planar graphs K5and UG employed in Kuratowski’s 
theorem. These two small graphs are non-planar and Kuratowski’s theorem states that any non-
planar graph contains at least one subgraph that is an expansion of K5 or UG. 
  

An expansion is a network derived by adding extra vertices in the middle of edges in another 
network. No such added vertices, however numerous, will ever make a non-planar network planar, 
so it is also the case that any expansion of K5 or UG is non-planar, and hence that any network 
containing an expansion of K5 or UG, is also non-planar. 

Kuratowski’s theorem (sometimes also called the Kuratowski reduction theorem) states that the 
converse is also true: 

Every non-planar network contains at least one subgraph that is an expansion of K5 or UG.
 

“Expansion” should be taken here to include the null expansions, i.e., the graphs K5 and UG 
themselves. 

This theorem, first proved by Pontryagin in 1927 but named after Kuratowski who gave an 
independent proof a few years later,60 provides us with a way of determining whether a graph is 
planar. If it contains a subgraph that is an expansion of K5 or UG it is not, otherwise it is. 

Kuratowski’s theorem is not, however, particularly useful for the analysis of real-world 
networks, because such networks are rarely precisely planar. (And if they are, then, as in the case 
of the shared border network of countries or states, it is usually clear for other reasons that they are 

 

 

 

 

 



planar and hence Kuratowski’s theorem is unnecessary.) More often, like the road network, they 
are very nearly planar, but have a few edge crossings somewhere in the network. For such a 
network, Kuratowski’s theorem would tell us, correctly, that the network was not planar, but we 
would be missing the point. 

What we would really like is some measure of the degree of planarity of a network, a measure 
that could tell us, for example, that the road network of a country is 99% planar, even though there 
are a few bridges or tunnels here and there. One possible such measure is the minimum number of 
edge crossings with which the network can be drawn. This however would be a difficult measure 
to determine since, at least in the simplest approach, its evaluation would require us to try every 
possible way of drawing the network. Perhaps another approach would be to look at the number of 
subgraphs in a network that are expansions of K5 or UG. So far, however, no widely accepted 
metric for degree of planarity has emerged. If such a measure were to gain currency it might well 
find occasional use in the study of real-world networks.



6.9 DEGREE  

The degree of a vertex in a graph is the number of edges connected to it. We will denote the degree 
of vertex i by ki. For an undirected graph of n vertices the degree can be written in terms of the 
adjacency matrix as 

 

(6.19) 
  

Every edge in an undirected graph has two ends and if there are m edges in total then there are 
2m ends of edges. But the number of ends of edges is also equal to the sum of the degrees of all the 
vertices, so 

 

(6.20) 
  

or 

 

(6.21) 
  

a result that we will use many times throughout this book. 
The mean degree c of a vertex in an undirected graph is 

 

(6.22) 
  

 

 

 

 

 

 



and combining this with Eq. (6.20) we get 

 

(6.23) 
  

This relation too will come up repeatedly throughout the book. 
The maximum possible number of edges in a simple graph (i.e., one with no multiedges or self-

edges) is . The connectance or density ρ of a graph is the fraction of these edges 
that are actually present: 

 

(6.24) 
  

where we have made use of Eq. (6.23).62 The density lies strictly in the range 0 ≤ ρ ≤ 1. Most of 
the networks we are interested in are sufficiently large that Eq. (6.24) can be safely approximated 
as ρ = c/n. 

A network for which the density ρ tends to a constant as n → ∞ is said to be dense. In such a 
network the fraction of non-zero elements in the adjacency matrix remains constant as the network 
becomes large. A network in which ρ → 0 as n → ∞ is said to be sparse, and the fraction of non-
zero elements in the adjacency matrix also tends to zero. In particular, a network is sparse if c 
tends to a constant as n becomes large. These definitions of dense and sparse networks can, 
however, be applied only if one can actually take the limit n → ∞, which is fine for theoretical 
model networks but doesn’t work in most practical situations. You cannot for example take the 
limit as an empirical metabolic network or food web becomes large—you are stuck with the 
network nature gives you and it can’t easily be changed. 

In some cases real-world networks do change their sizes and by making measurements for 
different sizes we can make a guess as to whether they are best regarded as sparse or dense. The 
Internet and the World Wide Web are two examples of networks whose growth over time allows 
us to say with some conviction that they are best regarded as sparse. In other cases there may be 
independent reasons for regarding a network to be sparse or dense. In a friendship network, for 
instance, it seems unlikely that the number of a person’s friends will double solely because the 
population of the world doubles. How many friends a person has is more a function of how much 
time they have to devote to the maintenance of friendships than it is a function of how many 
people are being born. Friendship networks therefore are usually regarded as sparse. 

In fact, almost of all of the networks we consider in this book are considered to be sparse 
networks. This will be important when we look at the expected running time of network algorithms 
in Chapters 9 to 11 and when we construct mathematical models of networks in Chapters 12 to 15. 
One possible exception to the pattern is food webs. Studies comparing ecosystems of different 
sizes seem to show that the density of food webs is roughly constant, regardless of their size, 
indicating that food webs may be dense networks [102, 210]. 

Occasionally we will come across networks in which all vertices have the same degree. In graph 
theory, such networks are called regular graphs. A regular graph in which all vertices have degree 

 

 

 



k is sometimes called k-regular. An example of a regular graph is a periodic lattice such as a 
square or triangular lattice. On the square lattice, for instance, every vertex has degree four. 

 

An infinite square lattice is an example of a 4-regular graph. 
  

Vertex degrees are more complicated in directed networks. In a directed network each vertex 
has two degrees. The in-degree is the number of ingoing edges connected to a vertex and the out-
degree is the number of outgoing edges. Bearing in mind that the adjacency matrix of a directed 
network has element Aij = 1 if there is an edge from j to i, in- and out-degrees can be written 

 

(6.25) 
  

The number of edges m in a directed network is equal to the total number of ingoing ends of edges 
at all vertices, or equivalently to the total number of outgoing ends of edges, so 

 

(6.26) 
  

Thus the mean in-degree cin and the mean out-degree cout of every directed network are equal: 

 

 

 

 

 

 

 

 



(6.27) 
  

For simplicity we will just denote both by c, and combining Eqs. (6.26) and (6.27) we get 

 

(6.28) 
  

Note that this differs by a factor of two from the equivalent result for an undirected network, Eq. 
(6.23). 

 

 

 



6.10 PATHS  

A path in a network is any sequence of vertices such that every consecutive pair of vertices in the 
sequence is connected by an edge in the network. In laymanʹs terms a path is a route across the 
network that runs from vertex to vertex along the edges of the network. Paths can be defined for 
both directed and undirected networks. In a directed network, each edge traversed by a path must 
be traversed in the correct direction for that edge. In an undirected network edges can be traversed 
in either direction. 

 

A path of length three in a network. 
  

In general a path can intersect itself, visiting again a vertex it has visited before, or even running 
along an edge or set of edges more than once. Paths that do not intersect themselves are called self-
avoiding paths and are important in some areas of network theory. Geodesic paths and 
Hamiltonian paths are two special cases of self-avoiding paths that we will study in this book. 

The length of a path in a network is the number of edges traversed along the path (not the 
number of vertices). Edges can be traversed more than once, and if they are they are counted 
separately each time they are traversed. Again in layman’s terms, the length of a path is the 
number of “hops” the path makes from vertex to adjacent vertex. 

It is straightforward to calculate the number of paths of a given length r on a network. For either 
a directed or an undirected simple graph the element Aij is 1 if there is an edge from vertex j to 
vertex i, and 0 otherwise. (We will consider only simple graphs for now, although the 
developments generalize easily to non-simple graphs.) Then the product AikAkj is 1 if there is a path 

of length 2 from j to i via k, and 0 otherwise. And the total number  of paths of length two from 
j to i, via any other vertex, is 

 

(6.29) 
  

 

 

 

 



where [. . .]ij denotes the ijth element of a matrix.
Similarly the product AikAklAlj is 1 if there is a path of length three from j to i via l and k, in that 

order, and 0 otherwise, and hence the total number of paths of length three is 

 

(6.30) 
  

Generalizing to paths of arbitrary length r, we see that 

 

(6.31) 
  

A special case of this result is that the number of paths of length r that start and end at the same 
vertex i is [Ar]ii. These paths are just loops in the network, what we called “cycles” in our 
discussion of acyclic graphs in Section 6.1. The total number Lr of loops of length r anywhere in a 
network is the sum of this quantity over all possible starting points i: 

 

(6.32) 
  

Note that this expression counts separately loops consisting of the same vertices in the same order 
but with different starting points.64 Thus the loop 1 → 2 → 3 → 1 is considered different from the 
loop 2 → 3 → 1 → 2. The expression also counts separately loops that consist of the same vertices 
but traversed in opposite directions, so that 1 → 2 → 3 → 1 and 1 → 3 → 2 → 1 are distinct. 

Equation (6.32) can also be expressed in terms of the eigenvalues of the adjacency matrix. Let 
us consider the case of an undirected graph first. In this case, the adjacency matrix is symmetric, 
which means that it has n real non-negative eigenvalues, the eigenvectors have real elements, and 
the matrix can always be written in the form A = UKUT, where U is the orthogonal matrix of 
eigenvectors and K is the diagonal matrix of eigenvalues. Then Ar = (UKUT)r = UKrUT and the 
number of loops is 

 

 

 

 

 

 

 

 



(6.33) 
  

where κi is the ith eigenvalue of the adjacency matrix and we have made use of the fact that the 
trace of a matrix product is invariant under cyclic permutations of the product. 

For directed networks the situation is more complicated. In some cases the same line of proof 
works and we can again demonstrate that Eq. (6.33) is true, but in other cases the proof breaks 
down. Recall that directed graphs have, in general, asymmetric adjacency matrices, and some 
asymmetric matrices cannot be diagonalized.65 An example is the matrix 

 

This matrix has only a single (right) eigenvector (1, 0), and thus one cannot form an orthogonal 
matrix of eigenvectors with which to diagonalize it. Nonetheless Eq. (6.33) is still true even in 
such cases, but a different method of proof is needed, as follows. 

Every real matrix, whether diagonalizable or not, can be written in the form A = QTQT, where 
Q is an orthogonal matrix and T is an upper triangular matrix. This form is called the Schur 
decomposition of A [217]. 

Since T is triangular, its diagonal elements are its eigenvalues. Furthermore those eigenvalues 
are the same as the eigenvalues of A. To see this, let x be a right eigenvector of A with eigenvalue 
κ. Then QTQTx = Ax = κx, and multiplying throughout by QT, bearing in mind that Q is 
orthogonal, gives 

 

(6.34) 
  

and hence QTx is an eigenvector of T with the same eigenvalue κ as the adjacency matrix.66 
Then 

 

(6.35) 
  

the final equality following because the diagonal elements of any power of a triangular matrix T 
are Tʹs diagonal elements raised to the same power. 

This demonstration works for any graph, whatever the properties of its adjacency matrix, and 
hence Eq. (6.35) is always true. We used this result in Eq. (6.14) to show that the graph described 
by a nilpotent adjacency matrix (i.e., a matrix whose eigenvalues are all zero) must be acyclic. (All 
such matrices are non-diagonalizable, so one must use Eq. (6.35) in that case.) 

Since the adjacency matrix of a directed graph is, in general, asymmetric it may have complex 

 

 

 



eigenvalues. But the number of loops Lr above is nonetheless always real, as it must be. The 
eigenvalues of the adjacency matrix are the roots of the characteristic polynomial det(κI − A), 
which has real coefficients, and all roots of such a polynomial are either themselves real or come 
in complex-conjugate pairs. Thus, while there may be complex terms in the sum in Eq. (6.33), 
each such term is complemented by another that is its complex conjugate and the sum itself is 
always real. 



6.10.1 GEODESIC PATHS  

A geodesic path, also called simply a shortest path, is a path between two vertices such that no 
shorter path exists: 

 

A geodesic path of length two between two vertices. 
  

The length of a geodesic path, often called the geodesic distance or shortest distance , is thus the 
shortest network distance between the vertices in question. In mathematical terms, the geodesic 
distance between vertices i and j is the smallest value of r such that [Ar]ij > 0. In practice however 
there are much better ways of calculating geodesic distances than by employing this formula. We 
will study some of them in Section 10.3. 

It is possible for there to be no geodesic path between two vertices if the vertices are not 
connected together by any route though the network (i.e., if they are in different “components”—
see Section 6.11). In this case one sometimes says that the geodesic distance between the vertices 
is infinite, although this is mostly just convention—it doesn’t really mean very much beyond the 
fact that the vertices are not connected. 

Geodesic paths are necessarily self-avoiding. If a path intersects itself then it contains a loop and 
can be shortened by removing that loop while still connecting the same start and end points, and 
hence self-intersecting paths are never geodesic paths. 

 

Figure 6.10: Vertices i and j have three geodesic paths between them of length three. 
  

Geodesic paths are not necessarily unique, however. It is perfectly possible to have two or more 

 

 

 

 

 



paths of equal length between a given pair of vertices. The paths may even overlap along some 
portion of their length—see Fig. 6.10. 

The diameter of a graph is the length of the longest geodesic path between any pair of vertices 
in the network for which a path actually exists. (If the diameter were merely the length of the 
longest geodesic path then it would be formally infinite in a network with more than one 
component if we adopted the convention above that vertices connected by no path have infinite 
geodesic distance. One can also talk about the diameters of the individual components separately, 
this being a perfectly well-defined concept whatever convention we adopt for unconnected 
vertices.) 



6.10.2 EULERIAN AND HAMILTONIAN PATHS  

An Eulerian path is a path that traverses each edge in a network exactly once. A Hamiltonian path 
is a path that visits each vertex exactly once. A network can have one or many Eulerian or 
Hamiltonian paths, or none. A Hamiltonian path is by definition self-avoiding, but an Eulerian 
path need not be. Indeed if there are any vertices of degree greater than two in a network an 
Eulerian path will have to visit those vertices more than once in order to traverse all their edges. 

 

Examples of Eulerian and Hamiltonian paths in a small network. 
  

Eulerian paths form the basis of one of the oldest proofs in graph theory, which dates from 
1736. Around that time the great mathematician Leonard Euler became interested the mathematical 
riddle now known as the Königsberg Bridge Problem. The city of Königsberg (now Kaliningrad) 
was built on the banks of the river Pregel, and on two islands that lie midstream. Seven bridges 
connected the land masses, as shown in Fig. 6.11a. The riddle asked, “Does there exist any 
walking route that crosses all seven bridges exactly once each?” Legend has it that the people of 
Königsberg spent many fruitless hours trying to find such a route, before Euler proved the 
impossibility of its existence.67 The proof, which perhaps seems rather trivial now, but which 
apparently wasn’t obvious in 1736, involved constructing a network (technically a multigraph) 
with four vertices representing the four land masses and seven edges joining them in the pattern of 
the Königsberg bridges (Fig. 6.11b). Then the bridge problem becomes a problem of finding an 
Eulerian path on this network (and indeed the Eulerian path is named in honor of Euler for his 
work on this problem). Euler observed that, since any Eulerian path must both enter and leave 
every vertex it passes through except the first and last, there can at most be two vertices in the 
network with odd degree if such a path is to exist. Since all four vertices in the Königsberg 
network have odd degree, the bridge problem necessarily has no solution.

 

 

 



 

Figure 6.11: The Königsberg bridges. (a) In the eighteenth century the Prussian city of 
Königsberg, built on four landmasses around the river Pregel, was connected by seven bridges as 
shown. (b) The topology of the landmasses and bridges can be represented as a multigraph with 
four vertices and seven edges. 
  

More precisely a network can have an Eulerian path only if there are exactly two or zero vertices 
of odd degree—zero in the case where the path starts and ends at the same vertex. This is not a 
sufficient condition for an Eulerian path, however. One can easily find networks that satisfy it and 
yet have no Eulerian path. The general problem of finding either an Eulerian or Hamiltonian path 
on a network, or proving that none exists, is a hard one and significant work is still being done on 
particular cases. 

Eulerian and Hamiltonian paths have a number of practical applications in computer science, in 
job sequencing, “garbage collection,” and parallel programming [81]. A Hamiltonian path problem 
was also, famously, the first problem solved using a DNA-based computer [7]. 

 

 



6.11 COMPONENTS  

It is possible for there to be no path at all between a given pair of vertices in a network. The 
network shown in Fig. 6.12, for example, is divided into two subgroups of vertices, with no 
connections between the two, so that there is no path from any vertex in the left subgroup to any 
vertex in the right. For instance, there is no path from the vertex labeled A to the vertex labeled B. 
A network of this kind is said to be disconnected. Conversely, if there is a path from every vertex 
in a network to every other the network is connected. 

The subgroups in a network like that of Fig. 6.12 are called components. Technically a 
component is a subset of the vertices of a network such that there exists at least one path from each 
member of that subset to each other member, and such that no other vertex in the network can be 
added to the subset while preserving this property. (Subsets like this, to which no other vertex can 
be added while preserving a given property, are called maximal subsets.) The network in Fig. 6.12 
has two components of three and four vertices respectively. A connected network necessarily has 
only one component. A singleton vertex that is connected to no others is considered to be a 
component of size one, and every vertex belongs to exactly one component. 

The adjacency matrix of a network with more than one component can be written in block 
diagonal form, meaning that the non-zero elements of the matrix are confined to square blocks 
along the diagonal of the matrix, with all other elements being zero: 

 

(6.36) 
  

Note, however, that the vertex labels must be chosen correctly to produce this form. The visual 
appearance of blocks in the adjacency matrix depends on the vertices of each component being 
represented by adjacent rows and columns and choices of labels that don’t achieve this will 
produce non-block-diagonal matrices, even though the choice of labels has no effect on the 
structure of the network itself. Thus, depending on the labeling, it may not always be immediately 
obvious from the adjacency matrix that a network has separate components. There do, however, 
exist computer algorithms, such as the “breadth-first search” algorithm described in Section 10.3, 
that can take a network with arbitrary vertex labels and quickly determine its components. 

 

 

 

 



Figure 6.12: A network with two components. This undirected network contains two 
components of three and four vertices respectively. There is no path between pairs of vertices like 
A and B that lie in different components. 
  

 

 



6.11.1 COMPONENTS IN DIRECTED NETWORKS  

When we look at directed networks the definition of components becomes more complicated. The 
situation is worth looking at in some detail, because it assumes some practical importance in 
networks like the World Wide Web. Consider the directed network shown in Fig. 6.13. If we 
ignore the directed nature of the edges, considering them instead to be undirected, then the network 
has two components of four vertices each. In the jargon of graph theory these are called weakly 
connected components. Two vertices are in the same weakly connected component if they are 
connected by one or more paths through the network, where paths are allowed to go either way 
along any edge. 

In many practical situations, however, this is not what we care about. For example, the edges in 
the World Wide Web are directed hyperlinks that allow Web users to surf from one page to 
another, but only in one direction. This means it is possible to reach one web page from another by 
surfing only if there is a directed path between them, i.e., a path in which we follow edges only in 
the forward direction. It would be useful to define components for directed networks based on such 
directed paths, but this raises some problems. It is certainly possible for there to be a directed path 
from vertex A to vertex B but no path back from B to A. Should we then consider A and B to be 
connected? Are they in the same component or not? 

 

Figure 6.13: Components in a directed network. This network has two weakly connected 
components of four vertices each, and five strongly connected components (shaded). 
  

Clearly there are various answers one could give to these questions. One possibility is that we 
define A and B to be connected if and only if there exists both a directed path from A to B and a 
directed path from B to A. A and B are then said to be strongly connected. We can define 
components for a directed network using this definition of connection and these are called strongly 
connected components. Technically, a strongly connected component is a maximal subset of 
vertices such that there is a directed path in both directions between every pair in the subset. The 
strongly connected components of the network in Fig. 6.13 are highlighted by the shaded regions. 
Note that there can be strongly connected components consisting of just a single vertex and, as 
with the undirected case, each vertex belongs to exactly one strongly connected component. Note 
also that every strongly connected component with more than one vertex must contain at least one 
cycle. Indeed every vertex in such a component must belong to at least one cycle, since there is by 
definition a directed path from that vertex to every other in the component and a directed path back 
again, and the two paths together constitute a cycle. (A corollary of this observation is that acyclic 
directed graphs have no strongly connected components with more than one vertex, since if they 
did they wouldn’t be acyclic.) 

 

 

 



Strongly and weakly connected components are not the only useful definitions of components in 
a directed network. On the Web it could be useful to know what pages you can reach by surfing 
from a given starting point, but you might not care so much whether it’s possible to surf back the 
other way. Considerations of this kind lead us to define the out-component, which is the set of 
vertices that are reachable via directed paths starting at a specified vertex A, and including A itself. 

An out-component has the property that edges connecting it to other vertices (ones not in the 
out-component) only point inward towards the members of component, and never outward (since 
if they pointed outward then the vertices they connected to would by definition be members of the 
out-component). 

Note that the members of an out-component depend on the choice of the starting vertex. Choose 
a different starting vertex and the set of reachable vertices may change. Thus an out-component is 
a property of the network structure and the starting vertex, and not (as with strongly and weakly 
connected components) of the network structure alone. This means, among other things, that a 
vertex can belong to more than one different out-component. In Fig. 6.14, for instance, we show 
the out-components of two different starting vertices, A and B. Vertices X and Y belong to both. 

A few other points are worth noticing. First, it is self-evident that all the members of the 
strongly connected component to which a vertex A belongs are also members of A’s out-
component. Furthermore, all vertices that are reachable from A are necessarily also reachable from 
all the other vertices in the strongly connected component. Thus it follows that the out-components 
of all members of a strongly connected component are identical. It would be reasonable to say that 
out-components really “belong” not to individual vertices, but to strongly connected components. 

 

Figure 6.14: Out-components in a directed network. (a) The out-component of vertex A, which 
is the subset of vertices reachable by directed paths from A. (b) The out-component of vertex B. 
Vertices X and Y belong to both out-components. 
  

Very similar arguments apply to vertices from which a particular vertex can be reached. The in-
component of a specified vertex A is the set of all vertices from which there is a directed path to A, 
including A itself. In-components depend on the choice of the specified vertex, and a vertex can 
belong to more than one in-component, but all vertices in the same strongly connected component 
have the same in-component. Furthermore, the strongly connected component to which a vertex 
belongs is a subset of its in-component, and indeed a vertex that is in both the in- and out-
components of A is necessarily in the same strongly connected component as A (since paths exist 
in both directions) and hence A’s strongly connected component is equal to the intersection of its 
in- and out-components.

 

 



 

The in- and out-components of a vertex A in a small directed network. 
  

 

 



6.12 INDEPENDENT PATHS, CONNECTIVITY, AND CUT SETS  

A pair of vertices in a network will typically be connected by many paths of many different 
lengths. These paths will usually not be independent however. That is, they will share some 
vertices or edges, as in Fig. 6.10 for instance (page 140). If we restrict ourselves to independent 
paths, then the number of paths between a given pair of vertices is much smaller. The number of 
independent paths between vertices gives a simple measure of how strongly the vertices are 
connected to one another, and has been the topic of much study in the graph theory literature. 

 

Figure 6.15: Edge independent paths. (a) There are two edge-independent paths from A to B in 
this figure, as denoted by the arrows, but there is only one vertex-independent path, because all 
paths must pass through the center vertex C. (b) The edge-independent paths are not unique; there 
are two different ways of choosing two independent paths from A to B in this case. 
  

There are two species of independent path: edge-independent and vertex-independent. Two 
paths connecting a given pair of vertices are edge-independent if they share no edges. Two paths 
are vertex-independent (or node-independent) if they share no vertices other than the starting and 
ending vertices. If two paths are vertex-independent then they are also edge-independent, but the 
reverse is not true: it is possible to be edge-independent but not vertex-independent. For instance, 
the network shown in Fig. 6.15a has two edge-independent paths from A to B, as denoted by the 
arrows, but only one vertex-independent path—the two edge-independent paths are not vertex-
independent because they share the intermediate vertex C. 

Independent paths are also sometimes called disjoint paths, primarily in the mathematical 
literature. One also sees the terms edge-disjoint and vertexdisjoint , describing edge and vertex 
independence. 

The edge- or vertex-independent paths between two vertices are not necessarily unique. There 
may be more than one way of choosing a set of independent paths. For instance Fig. 6.15b shows 
the same network as Fig. 6.15a, but with the two paths chosen a different way, so that they cross 
over as they pass through the central vertex C. 

It takes only a moment’s reflection to convince oneself that there can be only a finite number of 
independent paths between any two vertices in a finite network. Each path must contain at least 
one edge and no two paths can share an edge, so the number of independent paths cannot exceed 
the number of edges in the network. 

The number of independent paths between a pair of vertices is called the connectivity of the 
vertices.68 If we wish to be explicit about whether we are considering edge- or vertex-
independence, we refer to edge or vertex connectivity . The vertices A and B in Fig. 6.15 have edge 
connectivity 2 but vertex connectivity 1 (since there is only one vertex-independent path between 

 

 

 



them). 
The connectivity of a pair of vertices can be thought of as a measure of how strongly connected 

those vertices are. A pair that have only a single independent path between them are perhaps more 
tenuously connected than a pair that have many paths. This idea is sometimes exploited in the 
analysis of networks, for instance in algorithmic methods for discovering clusters or communities 
of strongly linked vertices within networks [122]. 

Connectivity can also be visualized in terms of “bottlenecks” between vertices. Vertices A and 
B in Fig. 6.15, for instance, are connected by only one vertex-independent path because vertex C 
forms a bottleneck through which only one path can go. This idea of bottlenecks is formalized by 
the notion of cut sets as follows. 

Consider an undirected network. (In fact the developments here apply equally to directed ones, 
but for simplicity let us stick with the undirected case for now.) A cut set, or more properly a 
vertex cut set, is a set of vertices whose removal will disconnect a specified pair of vertices. For 
example, the central vertex C in Fig. 6.15 forms a cut set of size 1 for the vertices A and B. If it is 
removed, there will be no path from A to B. There are also other cut sets for A and B in this 
network, although all the others are larger than size 1. 

An edge cut set is the equivalent construct for edges—it is a set of edges whose removal will 
disconnect a specified pair of vertices. 

A minimum cut set is the smallest cut set that will disconnect a specified pair of vertices. In Fig. 
6.15 the single vertex C is a minimum vertex cut set for vertices A and B. A minimum cut set need 
not be unique. For instance, there is a variety of minimum vertex cut sets of size two between the 
vertices A and B in this network: 

 

{W,Y}, {W,Z}, {X,Y}, and {X,Z} are all minimum cut sets for this network. (There are also many 
different minimum edge cut sets.) Of course all the minimum cut sets must have the same size. 

An important early theorem in graph theory addresses the size of cut sets. Menger’s theorem 
states: 

If there is no cut set of size less than n between a given pair of vertices, then there are at least 
n independent paths between the same vertices. 

The theorem applies both to edges and to vertices and was first proved by Karl Menger [216] for 
the vertex case, although many other proofs have been given since. A simple one can be found in 
Ref. [324]. 

To understand why Menger’s theorem is important, consider the following argument. If the 
minimum vertex cut set between two vertices has size n, Menger’s theorem tells us that there must 
be at least n vertex-independent paths between those vertices. That is, the number of vertex-
independent paths is greater than or equal to the size of the minimum cut set. Conversely, if we 
know there to be exactly n vertex-independent paths between two vertices, then, at the very least, 
we have to remove one vertex from each path in order to disconnect the two vertices, so the size of 
the minimum cut set must be at least n. We thus conclude that the number of vertex-independent 
paths must be both greater than or equal to and less than or equal to the size of the minimum cut 
set, which can only be true if the two are in fact equal. Thus Menger’s theorem implies that: 

The size of the minimum vertex cut set that disconnects a given pair of vertices in a network 

 

 



is equal to the vertex connectivity of the same vertices.

Given that Menger’s theorem also applies for edges, a similar argument can be used to show that 
the same result also applies for edge cut sets and edge connectivity. 

The edge version of Menger’s theorem has a further corollary that will be of some importance to 
us when we come to study computer algorithms for analyzing networks. It concerns the idea of 
maximum flow. Imagine a network of water pipes in the shape of some network of interest. The 
edges of the network correspond to the pipes and the vertices to junctions between pipes. Suppose 
that there is a maximum rate r, in terms of volume per unit time, at which water can flow through 
any pipe. What then is the maximum rate at which water than can flow through the network from 
one vertex, A, to another, B? The answer is that this maximum flow is equal to the number of 
edge-independent paths times the pipe capacity r. 

We can construct a proof of this result starting from Menger’s theorem. First, we observe that if 
there are n independent paths between A and B, each of which can carry water at rate r, then the 
network as a whole can carry a flow of at least nr between A and B, i.e., nr is a lower bound on the 
maximum flow. 

At the same time, by Menger’s theorem, we know that there exists a cut set of n edges between 
A and B. If we push the maximum flow (whatever it is) through the network from A to B and then 
remove one of the edges in this cut set, the maximum flow will be reduced by at most r, since that 
is the maximum flow an edge can carry. Thus if we remove all n edges in the cut set one by one, 
we remove at most nr of flow. But, since the cut set disconnects the vertices A and B, this removal 
must stop all of the flow. Hence the total capacity is at most nr, i.e., nr is an upper bound on the 
maximum flow. 

Thus nr is both an upper and a lower bound on the maximum flow, and hence the maximum 
flow must in fact be exactly equal to nr. 

This in outline is a proof of the max-flow/min-cut theorem, in the special case in which each 
pipe can carry the same fixed flow. The theorem says that the maximum flow between two vertices 
is always equal to the size of the minimum cut set times the capacity of a single pipe. The full 
max-flow/min-cut theorem applies also to weighted networks in which individual pipes can have 
different capacities. We look at this more general case in the following section. 

In combination, Menger’s theorem for edges and the max-flow/min-cut theorem show that for a 
pair of vertices in an undirected network three quantities are all numerically equal to each other: 
the edge connectivity of the pair (i.e., the number of edge-independent paths connecting them), the 
size of the minimum edge cut set (i.e., the number of edges that must be removed to disconnect 
them), and the maximum flow between the vertices if each edge in the network can carry at most 
one unit of flow. Although we have stated these results for the undirected case, nothing in any of 
the proofs demands an undirected network, and these three quantities are equal for directed 
networks as well. 

The equality of the maximum flow, the connectivity, and the cut set size has an important 
practical consequence. There are simple computer algorithms, such as the augmenting path 
algorithm of Section 10.5.1, that can calculate maximum flows quite quickly (in polynomial time) 
for any given network, and the equality means that we can use these same algorithms to quickly 
calculate a connectivity or the size of a cut set as well. Maximum flow algorithms are now the 
standard numerical method for connectivities and cut sets.

 



6.12.1 MAXIMUM FLOWS AND CUT SETS ON WEIGHTED NETWORKS  

As discussed in Section 6.3, networks can have weights on their edges that indicate that some 
edges are stronger or more prominent than others. In some cases these weights can represent 
capacities of the edges to conduct a flow of some kind. For example, they might represent 
maximum traffic throughput on the roads of a road network or maximum data capacity of Internet 
lines. We can ask questions about network flows on such networks similar to those we asked in the 
last section, but with the added twist that different edges can now have different capacities. For 
example, we can ask what the maximum possible flow is between a specified pair of vertices. We 
can also ask about cut sets. An edge cut set is defined as before to be a set of edges whose removal 
from the network would disconnect the specified pair of vertices. A minimum edge cut set is 
defined as being a cut set such that the sum of the weights on the edges of the set has the minimum 
possible value. Note that it is not now the number of edges that is minimized, but their weight. 
Nonetheless, this definition is a proper generalization of the one we had before—we can think of 
the unweighted case as being a special case of the weighted one in which the weights on all edges 
are equal, and the sum of the weights in the cut set is then simply proportional to the number of 
edges in the set. 

Maximum flows and minimum cut sets on weighted networks are related by the max-flow/min-
cut theorem in its most general form: 

The maximum flow between a given pair of vertices in a network is equal to the sum of the 
weights on the edges of the minimum edge cut set that separates the same two vertices. 

We can prove this theorem using the results of the previous section.69
 

Consider first the special case in which the capacities of all the edges in our network are integer 
multiples of some fixed capacity r. We then transform our network by replacing each edge of 
capacity kr (with k integer) by k parallel edges of capacity r each. For instance, if r = 1 we would 
have something like this: 

 

It is clear that the maximum flow between any two vertices in the transformed network is the 
same as that between the corresponding vertices in the original. At the same time the transformed 
network now has the form of a simple unweighted network of the type considered in Section 6.12, 
and hence, from the results of that section, we can immediately say that the maximum flow in the 
network is equal to the size in unit edges of the minimum edge cut set. 

We note also that the minimum cut set on the transformed network must include either all or 
none of the parallel edges between any adjacent pair of vertices; there is no point cutting one such 
edge unless you cut all of the others as well—you have to cut all of them to disconnect the 
vertices. Thus the minimum cut set on the transformed network is also a cut set on the original 
network. And it is a minimum cut set on the original network, because every cut set on the original 
network is also a cut set with the same weight on the transformed network, and if there were any 
smaller cut set on the original network then there would be a corresponding one on the transformed 
network, which, by hypothesis, there is not.

 

 

 



Thus the maximum flows on the two networks are the same, the minimum cuts are also the 
same, and the maximum flow and minimum cut are equal on the transformed network. It therefore 
follows that the maximum flow and minimum cut are equal on the original network. 

This demonstrates the theorem for the case where all edges are constrained to have weights that 
are integer multiples of r. This constraint can now be removed, however, by simply allowing r to 
tend to zero. This makes the units in which we measure edge weights smaller and smaller, and in 
the limit r → 0 the edges can have any weight—any weight can be represented as a (very large) 
integer multiple of r—and hence the max-flow/min-cut theorem in the form presented above must 
be generally true. 

Again there exist efficient computer algorithms for calculating maximum flows on weighted 
networks, so the max-flow/min-cut theorem allows us to calculate minimum cut weights 
efficiently also, and this is now the standard way of performing such calculations.70 



6.13 THE GRAPH LAPLACIAN  

Section 6.2 introduced an important quantity, the adjacency matrix, which captures the entire 
structure of a network and whose matrix properties can tell us a variety of useful things about 
networks. There is another matrix, closely related to the adjacency matrix but differing in some 
important respects, that can also tell us much about network structure. This is the graph Laplacian.

 



6.13.1 DIFFUSION  

Diffusion is, among other things, the process by which gas moves from regions of high density to 
regions of low, driven by the relative pressure (or partial pressure) of the different regions. One 
can also consider diffusion processes on networks, and such processes are sometimes used as a 
simple model of spread across a network, such as the spread of an idea or the spread of a disease. 
Suppose we have some commodity or substance of some kind on the vertices of a network and 
there is an amount ψi of it at vertex i. And suppose that the commodity moves along the edges, 
flowing from one vertex j to an adjacent one i at a rate C(ψj – ψi) where C is a constant called the 
diffusion constant. That is, in a small interval of time the amount of fluid flowing from j to i is C(ψj 
– ψi) dt. Then the rate at which ψi is changing is given by 

 

(6.37) 
  

The adjacency matrix in this expression insures that the only terms appearing in the sum are those 
that correspond to vertex pairs that are actually connected by an edge. Equation (6.37) works 
equally well for both undirected and directed networks, but let us focus here on undirected ones.71 
We will also consider our networks to be simple (i.e., to have at most a single edge between any 
pair of vertices and no self-edges). 

Splitting the two terms in Eq. (6.37), we can write 

 

(6.38) 
  

where ki is the degree of vertex i as usual and we have made use of the result ki = ∑jAij—see Eq. 
(6.19). (And δij is the Kronecker delta, which is 1 if i = j and 0 otherwise.) 

Equation (6.38) can be written in matrix form as 

 

 

 

 

 

 



(6.39) 
  

where ψ is the vector whose components are numbers ψi, A is the adjacency matrix, and D is the 
diagonal matrix with the vertex degrees along its diagonal: 

 

(6.40) 
  

It is common to define the new matrix 

 

(6.41) 
  

so that Eq. (6.38) takes the form 

 

(6.42) 
  

which has the same form as the ordinary diffusion equation for a gas, except that the Laplacian 
operator ∇2 that appears in that equation has been replaced by the matrix L. The matrix L is for 
this reason called the graph Laplacian, although its importance stretches much further than just 
diffusion processes. The graph Laplacian, as we will see, turns up in a variety of different places, 
including random walks on networks, resistor networks, graph partitioning, and network 
connectivity.72 

Written out in full, the elements of the Laplacian matrix are 

 

(6.43) 
  

 

 

 

 

 



so it has the degrees of the vertices down its diagonal and a −1 element for every edge. 
Alternatively we can write 

 

(6.44) 
  

We can solve the diffusion equation (6.42) by writing the vector ψ as a linear combination of the 
eigenvectors vi of the Laplacian thus: 

 

(6.45) 
  

with the coefficients ai(t) varying over time. Substituting this form into (6.42) and making use of 
Lvi = λivi, where λi is the eigenvalue corresponding to the eigenvector vi, we get 

 

(6.46) 
  

But the eigenvectors of a symmetric matrix such as the Laplacian are orthogonal, and so, taking 
the dot product of this equation with any eigenvector vj, we get 

 

(6.47) 
  

for all i, which has the solution 

 

(6.48) 
  

 

 

 

 

 

 

 



Given an initial condition for the system, as specified by the quantities ai(0), therefore, we can 
solve for the state at any later time, provided we know the eigenvalues and eigenvectors of the 
graph Laplacian. 

 



6.13.2 EIGENVALUES OF THE GRAPH LAPLACIAN  

This is the first of many instances in which the eigenvalues of the Laplacian will arise, so it is 
worth spending a little time understanding their properties. The Laplacian is a symmetric matrix, 
and so has real eigenvalues. However, we can say more than this about them. In fact, as we now 
show, all the eigenvalues of the Laplacian are also non-negative. 

Consider an undirected network with n vertices and m edges and let us arbitrarily designate one 
end of each edge to be end 1 and the other to be end 2. It doesn’t matter which end is which, only 
that they have different labels. 

Now let us define an m × n matrix B with elements as follows: 

 

(6.49) 
  

Thus each row of the matrix has exactly one +1 and one −1 element. 
The matrix B is called the edge incidence matrix. It bears some relation to, but is distinct from, 

the incidence matrix for a bipartite graph defined in Section 6.6. 
Now consider the sum ∑kBkiBkj. If i ≠ j, then the only non-zero terms in the sum will occur if 

both Bik and Bjk are non-zero, i.e., if edge k connects vertices i and j, in which case the product will 
have value −1. For a simple network, there is at most one edge between any pair of vertices and 
hence at most one such non-zero term, so the value of the entire sum will be −1 if there is an edge 
between i and j and zero otherwise. 

If i = j then the sum is , 2 which has a term +1 for every edge connected to vertex i, so the 
whole sum is just equal to the degree ki of vertex i. 

Thus the sum ∑kBkiBkj is precisely equal to an element of the Laplacian ∑kBkiBkj = Lij—the 
diagonal terms Lii are equal to the degrees ki and the off-diagonal terms Lij are—1 if there is an 
edge (i, j) and zero otherwise. (See Eq. (6.43).) In matrix form we can write 

 

(6.50) 
  

where BT is the transpose of B.
 

Now let vi be an eigenvector of L with eigenvalue λi. Then 

 

 

 

 

 

 



(6.51) 
  

where we assume that the eigenvector vi is normalized so that its inner product with itself is 1.
 

Thus any eigenvalue λi of the Laplacian is equal to . But this quantity is itself just 
the inner product of a real vector (Bvi) with itself. In other words, it is the sum of the squares of the 
(real) elements of that vector and hence it cannot be negative. The smallest value it can have is 
zero: 

 

(6.52) 
  

for all i. 
This is an important physical property of the Laplacian. It means, for instance, that the solution, 

Eq. (6.48), of the diffusion equation on any network contains only decaying exponentials or 
constants and not growing exponentials, so that the solution tends to an equilibrium value as t → 
∞, rather than diverging.73 

While the eigenvalues of the Laplacian cannot be negative, they can be zero, and in fact the 
Laplacian always has at least one zero eigenvalue. Consider the vector 1 = (1,1,1,...). If we 
multiply this vector by the Laplacian, the ith element of the result is given by 

 

(6.53) 
  

where we have made use of Eqs. (6.19) and (6.44). In vector notation, L · 1 = 0. Thus the vector 
1 is always an eigenvector of the graph Laplacian with eigenvalue zero.74 Since there are no 
negative eigenvalues, this is the lowest of the eigenvalues of the Laplacian. Following convention, 
we number the n eigenvalues of the Laplacian in ascending order: λ1 ≤ λ2 ≤ ... ≤ λn. So we always 
have λ1 = 0. 

Note that the presence of a zero eigenvalue implies that the Laplacian has no inverse: the 
determinant of the matrix is the product of its eigenvalues, and hence is always zero for the 
Laplacian, so that the matrix is singular.

 

 



6.13.3 COMPONENTS AND THE ALGEBRAIC CONNECTIVITY  

See the discussion of block diagonal matrices in Section 6.11. 

Suppose we have a network that is divided up into c different components of sizes n1, n2, ..., nc. To 
make the notation simple let us number the vertices of the network so that the first n1 vertices are 
those of the first component, the next n2 are those of the second component, and so forth. With this 
choice the Laplacian of the network will be block diagonal, looking something like this: 

 

(6.54) 
  

What is more, each block in the Laplacian is, by definition, the Laplacian of the corresponding 
component: it has the degrees of the vertices in that component along its diagonal and −1 in each 
position corresponding to an edge within that component. Thus we can immediately write down c 
different vectors that are eigenvectors of L with eigenvalue zero: the vectors that have ones in all 
positions corresponding to vertices in a single component and zero elsewhere. For instance, the 
vector 

 

(6.55) 
  

is an eigenvector with eigenvalue zero. 
Thus in a network with c components there are always at least c eigenvectors with eigenvalue 

zero. In fact, it can be shown that the number of zero eigenvalues is always exactly equal to the 
number of components [324]. (Note that the vector 1 of all ones is just equal to the sum of the c 
other eigenvectors, so it is not an independent eigenvector.) An important corollary of this result is 
that the second eigenvalue of the graph Laplacian λ2 is non-zero if and only if the network is 
connected, i.e., consists of a single component. The second eigenvalue of the Laplacian is called 
the algebraic connectivity of the network.75 It will come up again in Section 11.5 when we look at 
the technique known as spectral partitioning.

 

 

 

 

 



6.14 RANDOM WALKS  

Another context in which the graph Laplacian arises is in the study of random walks on networks. 
A random walk is a path across a network created by taking repeated random steps. Starting at 
some specified initial vertex, at each step of the walk we choose uniformly at random between the 
edges attached to the current vertex, move along the chosen edge to the vertex at its other end, and 
repeat. Random walks are normally allowed to go along edges more than once, visit vertices more 
than once, or retrace their steps along an edge just traversed. Self-avoiding walks, which do none 
of these things, are also studied sometimes, but we will not discuss them here. 

Random walks arise, for instance, in the random walk sampling method for social networks 
discussed in Section 3.7 and in the random walk betweenness measure of Section 7.7. 

Consider a random walk that starts at a specified vertex and takes t random steps. Let pi(t) be the 
probability that the walk is at vertex i at time t. If the walk is at vertex j at time t − 1, the 
probability of taking a step along any particular one of the kj edges attached to j is 1/kj, so on an 
undirected network pi(t) is given by 

 

(6.56) 
  

or p(t) = AD−1p(t − 1) in matrix form where p is the vector with elements pi and, as before, D is 
the diagonal matrix with the degrees of the vertices down its diagonal. 

There are a couple of other useful ways to write this relation. One is to define D1/2 to be the 
matrix with the square roots  of the degrees down the diagonal, so that 

 

(6.57) 
  

This form is convenient in some situations because the matrix D−1/2AD−1/2 is a symmetric one. This 
matrix is called the reduced adjacency matrix and has elements equal to  if there is an edge 
between i and j and zero otherwise. Equation (6.57) tells us that the vector D−1/2p gets multiplied 
by one factor of the reduced adjacency matrix at each step of the random walk, and so the problem 
of understanding the random walk can be reduced to one of understanding the effects of repeated 
multiplication by a simple symmetric matrix. 

For our purposes, however, we take a different approach. In the limit as t → ∞ the probability 
distribution over vertices is given by setting t = ∞: pi (∞) = ∑jAijpj(∞)/kj, or in matrix form: 

 

 

 

 



 

(6.58) 
  

Rearranging, this can also be written as 

 

(6.59) 
  

Thus D−1p is an eigenvector of the Laplacian with eigenvalue 0.
 

On a connected network, for instance—one with only a single component—we know (Section 
6.13.3) that there is only a single eigenvector with eigenvalue zero, the vector whose components 
are all equal. Thus, D−1p = a1, where a is a constant and 1 is the vector whose components are all 
ones. Equivalently p = aD1, so that pi = aki. Then on a connected network the probability that a 
random walk will be found at vertex i in the limit of long time is simply proportional to the degree 
of that vertex. If we choose the value of a to normalize pi properly, this gives 

 

(6.60) 
  

where we have used Eq. (6.20). 
The simple way to understand this result is that vertices with high degree are more likely to be 

visited by the random walk because there are more ways of reaching them. We used Eq. (6.60) in 
Section 3.7 in our analysis of the random-walk sampling method for social networks. 

An important question about random walks concerns the first passage time. The first passage 
time for a random walk from a vertex u to another vertex v is the number of steps before a walk 
starting at u first reaches v. Since the walk is random, the first passage time between two vertices is 
not fixed; if we repeat the random walk process more than once it can take different values on 
different occasions. But we can ask for example what the mean first passage time is. 

To answer this question, we modify our random walk slightly to make it into an absorbing 
random walk. An absorbing walk is one that has one or more absorbing states, meaning vertices 
that the walk can move to, but not leave again. We will consider just the simplest case of a single 
absorbing vertex v. Any walk that arrives at vertex v must stay there ever afterwards, but on the 
rest of the network the walk is just a normal random walk. We can answer questions about the first 
passage time by considering the probability pv(t) that a walk is at vertex v after a given amount of 
time, since this is also the probability that the walk has a first passage time to v that is less than or 
equal to t. And the probability that a walk has first passage time exactly t is pv(t) – pv(t – 1), which 
means that the mean first passage time τ is 

 

 

 

 

 



 

(6.61) 
  

To calculate the probability pv(t) we could apply Eq. (6.56) (or (6.58)) repeatedly to find p(t) 
and substitute the result into Eq. (6.61). Note, however, that since the random walk can move to 
vertex v but not away from it, the adjacency matrix A has elements Aiv = 0 for all i but Avi can still 
be non-zero. Thus in general A is asymmetric. Although we can work with such an asymmetric 
matrix, the computations are harder than for symmetric matrices and in this case there is no need. 
Instead we can use the following trick. 

Consider Eq. (6.56) for any i ≠ v: 

 

(6.62) 
  

where the second equality applies since Aiv = 0 and hence the terms with j = v donʹt contribute to 

the sum. But if i ≠ v then there are no terms in Avj in the sum either. This allows us to write the 
equation in the matrix form 

 

(6.63) 
  

where pʹ is p with the vth element removed and Aʹ and Dʹ are A and D with their vth row and 

column removed. Note that Aʹ and Dʹ are symmetric matrices, since the rows and columns 
containing the asymmetric elements have been removed. Iterating Eq. (6.63), we now get 

 

(6.64) 
  

Since we have removed the element pv from the vector p, we cannot calculate its value directly 
using this equation, but we can calculate it indirectly by noting that ∑ipi(t) = 1 at all times. Thus 

 

 

 

 

 

 



 

(6.65) 
  

where again 1 = (1, 1, 1, ...). Using Eqs. (6.61), (6.64), and (6.65) we then have a mean first 
passage time of 

 

(6.66) 
  

where I is the identity matrix and we have made use of the result that 

 

(6.67) 
  

for any matrix M (assuming the sum actually converges). 
We can simplify Eq. (6.66) by writing 

 

(6.68) 
  

so that 

 

(6.69) 
  

where the symmetric matrix L′ is the graph Laplacian with the vth row and column removed. L′ 
is called the vth reduced Laplacian. Note that, even though, as we noted in Section 6.13.2, the 
Laplacian has no finite inverse, the reduced Laplacian can have an inverse. The eigenvector (1, 1, 
1, ...) whose zero eigenvalue causes the determinant of the Laplacian to be zero is, in general, not 
an eigenvector of the reduced matrix. 

 

 

 

 

 



For convenience, we now introduce the symmetric matrix Λ(v), which is equal to L′-1 with a vth 
row and column reintroduced having elements all zero: 

 

(6.70) 
  

Then we observe that for a walk starting at vertex u, the initial probability distribution p′(0) has all 
elements 0 except the one corresponding to vertex u, which is 1. Thus, combining Eqs. (6.69) and 
(6.70), the mean first passage time for a random walk from u to v is given by 

 

(6.71) 
  

where we have made use of the fact that the non-zero elements of the diagonal matrix D′ are the 
degrees ki of the vertices. Thus if we can calculate the inverse of the vth reduced Laplacian then a 
sum over the elements in the uth column immediately gives us the mean first passage time for a 
random walk from u to v. And sums over the other columns give us the first passage times from 
other starting vertices to the same target vertex v—we get n first passage times from a single 
matrix inversion. 

 

 

 



6.14.1 RESISTOR NETWORKS  

There are interesting mathematical connections between random walks on networks and the 
calculation of current flows in networks of resistors. Suppose we have a network in which the 
edges are identical resistors of resistance R and the vertices are junctions between resistors, as 
shown in Fig. 6.16, and suppose we apply a voltage between two vertices s and t such that a 
current I flows from s to t through the network. What then is the current flow through any given 
resistor in the network? 

 

Figure 6.16: A resistor network with applied voltage. A network in which the edges are 
resistors and the vertices are electrical junctions between them, with a voltage applied between 
vertices s and t so as to generate a total current I. 
  

The currents in the network obey Kirchhoff’s current law, which is essentially a statement that 
electricity is conserved, so that the net current flowing in or out of any vertex is zero. Let Vi be the 
voltage at vertex i, measured relative to any convenient reference potential. Then Kirchhoff’s law 
says that 

 

(6.72) 
  

where Ii represents any current injected into vertex i by an external current source. In our case 
this external current is non-zero only for the two vertices s and t connected to the external voltage: 

 

 

 

 

 



(6.73) 
  

(In theory there’s no reason why one could not impose more complex current source arrangements 
by applying additional voltages to the network and making more elements Ii non-zero, but let us 
stick to our simple case in this discussion.) 

Noting that ∑jAij = ki, Eq. (6.72) can also be written as kiVi– ∑jAijVj = RIi or 

 

(6.74) 
  

which in matrix form is 

 

(6.75) 
  

where L = D - A is once again the graph Laplacian. 
As discussed in Section 6.13.2, the Laplacian has no inverse because it always has at least one 

eigenvalue that is zero, so we cannot simply invert Eq. (6.75) to get the voltage vector V. We can, 
however, solve for V by once again making use of the reduced Laplacian of Section 6.14. 

The reason why we cannot invert Eq. (6.75) is that the equation does not in fact fix the absolute 
value of the voltages Vi. We can add any multiple of the vector 1 = (1, 1, 1, ...) to the solution of 
this equation and get another solution, since 1 is an eigenvector of L with eigenvalue zero: 

 

(6.76) 
  

In physical terms these different solutions correspond to different choices of the reference potential 
against which we measure our voltages. The actual currents flowing around the system are 
identical no matter what reference potential we choose. If we fix our reference potential at a 
particular value, then we will fix the solution for the voltages as well, and our equation for V will 
become solvable. 

Let us choose, arbitrarily, to set our reference potential equal to the potential at the target vertex 
t where the current exits the network. (We could choose any other vertex just as well, but this 
choice is the simplest.) That is, the voltage at this vertex is chosen to be zero and all others are 
measured in terms of their potential difference from vertex t. But now we can remove the element 
Vt = 0 from V in Eq. (6.75), along with the corresponding column t in the Laplacian, without 

 

 

 

 

 

 



affecting the result, since they contribute zero to the matrix multiplication anyway. And we can 
also remove row t from both sides of the equation, since we already know the value of Vt, so 
there’s no need to calculate it. That leaves us with a modified equation L′V′ = RI′, with L′ being 
the tth reduced Laplacian, which in general has a well-defined inverse. Then 

 

(6.77) 
  

and once we have the voltages we can calculate in a straightforward manner any other quantity 
of interest, such as the current along a given edge in the network. 

Note that, for the simple case discussed here in which current is injected into the network at just 
one vertex and removed at another, I′ has only one non-zero element. (The other one, It, has been 
removed.) Thus the vector V′ on the left-hand side of Eq. (6.77) is simply proportional to the 
column of the inverse reduced Laplacian corresponding to vertex s. To use the notation of Section 
6.14, if Λ(t) is the inverse of the tth reduced Laplacian with the tth row and column reintroduced 
having elements all zero (see Eq. (6.70)), then 

 

(6.78) 
  

 

 

 

 

 



PROBLEMS  

6.1 Consider the following two networks: 

 

(a) 
  

 

(b) 
  

Network (a) is a directed network. Network (b) is undirected but bipartite. Write down: 

a. the adjacency matrix of network (a); 
b. the cocitation matrix of network (a); 
c. the incidence matrix of network (b); 
d. the projection matrix (Eq. (6.17)) for the projection of network (b) onto its black vertices. 

6.2 Let A be the adjacency matrix of an undirected network and 1 be the column vector whose 
elements are all 1. In terms of these quantities write expressions for: 

a. the vector k whose elements are the degrees ki of the vertices;
 

b. the number m of edges in the network; 
c. the matrix N whose element Nij is equal to the number of common neighbors of vertices i 

and j; 
d. the total number of triangles in the network, where a triangle means three vertices, each 

connected by edges to both of the others. 

 

 

 

 

 

 

 



6.3 Consider an acyclic directed network of n vertices, labeled i = 1 ... n, and suppose that the 
labels are assigned in the manner of Fig. 6.3 on page 119, such that all edges run from vertices 
with higher labels to vertices with lower. 

a. Find an expression for the total number of edges ingoing to vertices 1 ... r and another for 
the total number of edges outgoing from vertices 1 ... r, in terms of the in- and out-degrees 

 and  of the vertices. 
b. Hence find an expression for the total number of edges running to vertices 1 ... r from 

vertices r + 1 ... n. 
c. Show that in any acyclic network the in- and out-degrees must satisfy 

 

for all r. 

6.4 Consider a bipartite network, with its two types of vertex, and suppose that there are n1 vertices 
of type 1 and n2 vertices of type 2. Show that the mean degrees c1 and c2 of the two types are 
related by 

 

6.5 Using Kuratowski’s theorem, prove that this network is not planar: 

 

6.6 Consider a connected planar network with n vertices and m edges. Let ƒ be the number of 
“faces” of the network, i.e., areas bounded by edges when the network is drawn in planar form. 
The “outside” of the network, the area extending to infinity on all sides, is also considered a face. 
The network can have multiedges and self-edges: 

 

 

 



 

a. Write down the values of n, m, and ƒ for a network with a single vertex and no edges. 
b. How do n, m, and ƒ change when we add a single vertex to the network along with a single 

edge attaching it to another vertex? 
c. How do n, m, and ƒ change when we add a single edge between two extant vertices (or a 

self-edge attached to just one vertex), in such a way as to maintain the planarity of the 
network? 

d. Hence by induction prove a general relation between n, m, and ƒ for all connected planar 
networks. 

e. Now suppose that our network is simple (i.e., it contains no multiedges or self-edges). 
Show that the mean degree c of such a network is strictly less than six. 

6.7 Consider the set of all paths from vertex s to vertex t on an undirected graph with adjacency 
matrix A. Let us give each path a weight equal to αr, where r is the length of the path. 

a. Show that the sum of the weights of all the paths from s to t is given by Zst which is the st 
element of the matrix Z = (I - αA)-1, where I is the identity matrix. 

b. What condition must α satisfy for the sum to converge? 
c. Hence, or otherwise, show that the length ℓst of a geodesic path from s to t, if there is one, 

is 

 

6.8 What is the difference between a 2-component and a 2-core? Draw a small network that has 
one 2-core but two 2-components. 

6.9 In Section 5.3.1, we gave one possible definition of the trophic level xi of a species in a 
(directed) food web as the mean of the trophic levels of the species’ prey, plus one. 

a. Show that xi, when defined in this way, is the ith element of the vector 

x = D - A -1D ‧ 1,
 

where D is the diagonal matrix of in-degrees, A is the (asymmetric) adjacency matrix, and 1 = 
(1, 1, 1, ...). 

b. This expression does not work for autotrophs—species with no prey—because the 

 

 

 



corresponding vector element diverges. Such species are usually given a trophic level of one. 
Suggest a modification of the calculation that will correctly assign trophic levels to these 
species, and hence to all species. 

6.10 What is the size k of the minimum vertex cut set between s and t in this network? 

 

Prove your result by finding one possible cut set of size k and one possible set of k independent 
paths between s and t. Why do these two actions constitute a proof that the minimum cut set has 
size k? 

 

 



CHAPTER 7 

MEASURES AND METRICS 

An introduction to some standard measures and metrics for quantifying network structure, 
many of which were introduced first in the study of social networks, although they are now in 
wide use in many other areas 

IF WE KNOW the structure of a network we can calculate from it a variety of useful quantities or 
measures that capture particular features of the network topology. In this chapter we look at some 
of these measures. Many of the most important ideas in this area come from the social sciences, 
from the discipline of social network analysis, which was developed to aid our understanding of 
social network data such as those described in Chapter 3, and much of the language used to 
describe these ideas reflects their sociological origin. Nonetheless, the methods described are now 
widely used in areas outside the social sciences, including computer science, physics, and biology, 
and form an important part of the basic network toolbox.77 

In the chapter following this one we will apply some of the measures developed here to the 
analysis of network data from a variety of fields and in the process reveal some intriguing features 
and patterns that will play an important role in later developments.

 

 

 



7.1 DEGREE CENTRALITY  

A large volume of research on networks has been devoted to the concept of centrality. This 
research addresses the question, “Which are the most important or central vertices in a network?” 
There are of course many possible definitions of importance, and correspondingly many centrality 
measures for networks. In this and the following several sections we describe some of the most 
widely used such measures. 

Perhaps the simplest centrality measure in a network is just the degree of a vertex, the number of 
edges connected to it (see Section 6.9). Degree is sometimes called degree centrality in the social 
networks literature, to emphasize its use as a centrality measure. In directed networks, vertices 
have both an in-degree and an out-degree, and both may be useful as measures of centrality in the 
appropriate circumstances. 

Although degree centrality is a simple centrality measure, it can be very illuminating. In a social 
network, for instance, it seems reasonable to suppose that individuals who have connections to 
many others might have more influence, more access to information, or more prestige than those 
who have fewer connections. A non-social network example is the use of citation counts in the 
evaluation of scientific papers. The number of citations a paper receives from other papers, which 
is simply its in-degree in the citation network, gives a crude measure of whether the paper has been 
influential or not and is widely used as a metric for judging the impact of scientific research.

 



7.2 EIGENVECTOR CENTRALITY  

A natural extension of the simple degree centrality is eigenvector centrality. We can think of 
degree centrality as awarding one “centrality point” for every network neighbor a vertex has. But 
not all neighbors are equivalent. In many circumstances a vertex’s importance in a network is 
increased by having connections to other vertices that are themselves important. This is the concept 
behind eigenvector centrality. Instead of awarding vertices just one point for each neighbor, 
eigenvector centrality gives each vertex a score proportional to the sum of the scores of its 
neighbors. Here’s how it works. 

Let us make some initial guess about the centrality xi of each vertex i. For instance, we could 
start off by setting xi = 1 for all i. Obviously this is not a useful measure of centrality, but we can 
use it to calculate a better one , which we define to be the sum of the centralities of i′s neighbors 
thus: 

 

(7.1) 
  

where Aij is an element of the adjacency matrix. We can also write this expression in matrix 
notation as x′ = Ax, where x is the vector with elements xi. Repeating this process to make better 
estimates, we have after t steps a vector of centralities x(t) given by 

 

(7.2) 
  

Now let us write x(0) as a linear combination of the eigenvectors vi of the adjacency matrix thus: 

 

(7.3) 
  

for some appropriate choice of constants ci. Then 

 

 

 

 

 



 

(7.4) 
  

where the κi are the eigenvalues of A, and κ1 is the largest of them. Since κi/κ1 < 1 for all i ≠ 1, all 
terms in the sum other than the first decay exponentially as t becomes large, and hence in the limit 

t → ∞ we get . In other words, the limiting vector of centralities is simply 
proportional to the leading eigenvector of the adjacency matrix. Equivalently we could say that the 
centrality x satisfies 

 

(7.5) 
  

This then is the eigenvector centrality, first proposed by Bonacich [49] in 1987. As promised the 
centrality xi of vertex i is proportional to the sum of the centralities of i′s neighbors: 

 

(7.6) 
  

which gives the eigenvector centrality the nice property that it can be large either because a vertex 
has many neighbors or because it has important neighbors (or both). An individual in a social 
network, for instance, can be important, by this measure, because he or she knows lots of people 
(even though those people may not be important themselves) or knows a few people in high 
places. 

Note also that the eigenvector centralities of all vertices are non-negative. To see this, consider 
what happens if the initial vector x(0) happens to have only non-negative elements. Since all 
elements of the adjacency matrix are also non-negative, multiplication by A can never introduce 
any negative elements to the vector and x(t) in Eq. (7.2) must have all elements non-negative.78 

Equation (7.5) does not fix the normalization of the eigenvector centrality, although typically 
this doesn’t matter because we care only about which vertices have high or low centrality and not 
about absolute values. If we wish, however, we can normalize the centralities by, for instance, 
requiring that they sum to n (which insures that average centrality stays constant as the network 
gets larger). 

 

 

 

 



 

Figure 7.1: A portion of a directed network. Vertex A in this network has only outgoing edges 
and hence will have eigenvector centrality zero. Vertex B has outgoing edges and one ingoing 
edge, but the ingoing one originates at A, and hence vertex B will also have centrality zero. 
  

In theory eigenvector centrality can be calculated for either undirected or directed networks. It 
works best however for the undirected case. In the directed case other complications arise. First of 
all, a directed network has an adjacency matrix that is, in general, asymmetric (see Section 6.4). 
This means that it has two sets of eigenvectors, the left eigenvectors and the right eigenvectors, 
and hence two leading eigenvectors. So which of the two should we use to define the centrality? In 
most cases the correct answer is to use the right eigenvector. The reason is that centrality in 
directed networks is usually bestowed by other vertices pointing towards you, rather than by you 
pointing to others. On the World Wide Web, for instance, the number and stature of web pages that 
point to your page can give a reasonable indication of how important or useful your page is. On the 
other hand, the fact that your page might point to other important pages is neither here nor there. 
Anyone can set up a page that points to a thousand others, but that does not make the page 
important.79 Similar considerations apply also to citation networks and other directed networks. 
Thus the correct definition of eigenvector centrality for a vertex i in a directed network makes it 
proportional to the centralities of the vertices that point to i thus: 

 

(7.7) 
  

which gives Ax = κ1x in matrix notation, where x is the right leading eigenvector.
 

However, there are still problems with eigenvector centrality on directed networks. Consider 
Fig. 7.1. Vertex A in this figure is connected to the rest of the network, but has only outgoing 
edges and no incoming ones. Such a vertex will always have centrality zero because there are no 
terms in the sum in Eq. (7.7). This might not seem to be a problem: perhaps a vertex that no one 
points to should have centrality zero. But then consider vertex B, which has one ingoing edge, but 
that edge originates at vertex A, and hence B also has centrality zero, because the one term in its 
sum in Eq. (7.7) is zero. Taking this argument further, we see that a vertex may be pointed to by 
others that themselves are pointed to by many more, and so on through many generations, but if 
the progression ends up at a vertex or vertices that have in-degree zero, it is all for nothing—the 
final value of the centrality will still be zero. 

In mathematical terms, only vertices that are in a strongly connected component of two or more 
vertices, or the out-component of such a component, can have non-zero eigenvector centrality.80 In 
many cases, however, it is appropriate for vertices with high in-degree to have high centrality even 

 

 

 



if they are not in a strongly-connected component or its out-component. Web pages with many 
links, for instance, can reasonably be considered important even if they are not in a strongly 
connected component. Recall also that acyclic networks, such as citation networks, have no 
strongly connected components of more than one vertex (see Section 6.11.1), so all vertices will 
have centrality zero. Clearly this make the standard eigenvector centrality completely useless for 
acyclic networks. 

A variation on eigenvector centrality that addresses these problems is the Katz centrality, which 
is the subject of the next section. 



7.3 KATZ CENTRALITY  

One solution to the issues of the previous section is the following: we simply give each vertex a 
small amount of centrality “for free,” regardless of its position in the network or the centrality of 
its neighbors. In other words, we define 

 

(7.8) 
  

where α and β are positive constants. The first term is the normal eigenvector centrality term in 
which the centralities of the vertices linking to i are summed, and the second term is the “free” 
part, the constant extra term that all vertices receive. By adding this second term, even vertices 
with zero in-degree still get centrality β, and once they have a non-zero centrality, then the vertices 
they point to derive some advantage from being pointed to. This means that any vertex that is 
pointed to by many others will have a high centrality, although those that are pointed to by others 
with high centrality themselves will still do better. 

In matrix terms, Eq. (7.8) can be written 

 

(7.9) 
  

where 1 is the vector (1, 1, 1 ...). Rearranging for x, we find that x = β(I - αA)-1 ‧ 1. As we 
have said, we normally don’t care about the absolute magnitude of the centrality, only about which 
vertices have high or low centrality values, so the overall multiplier β is unimportant. For 
convenience we usually set β = 1, giving 

 

(7.10) 
  

This centrality measure was first proposed by Katz in 1953 [169] and we will refer to it as the Katz 
centrality. 

The Katz centrality differs from ordinary eigenvector centrality in the important respect of 
having a free parameter α, which governs the balance between the eigenvector term and the 

 

 

 

 

 



constant term in Eq. (7.8). If we wish to make use of the Katz centrality we must first choose a 
value for this constant. In doing so it is important to understand that α cannot be arbitrarily large. If 
we let α → 0, then only the constant term survives in Eq. (7.8) and all vertices have the same 
centrality β (which we have set to 1). As we increase α from zero the centralities increase and 
eventually there comes a point at which they diverge. This happens at the point where (I - αA)-1 
diverges in Eq. (7.10), i.e., when det (I - αA) passes through zero. Rewriting this condition as 

 

(7.11) 
  

we see that it is simply the characteristic equation whose roots α-1 are equal to the eigenvalues of 
the adjacency matrix.81 As α increases, the determinant first crosses zero when α-1 = κ1, the largest 
eigenvalue of A, or alternatively when α = 1/κ1. Thus, we should choose a value of α less than this 
if we wish the expression for the centrality to converge.82 

Beyond this, however, there is little guidance to be had as to the value that α should take. Most 
researchers have employed values close to the maximum of 1/κ1, which places the maximum 
amount of weight on the eigenvector term and the smallest amount on the constant term. This 
returns a centrality that is numerically quite close to the ordinary eigenvector centrality, but gives 
small non-zero values to vertices that are not in the strongly connected components or their out-
components. 

The Katz centrality can be calculated directly from Eq. (7.10) by inverting the matrix on the 
right-hand side, but often this isn’t the best way to do it. Inverting a matrix on a computer takes an 
amount of time proportional to n3, where n is the number of vertices. This makes direct calculation 
of the Katz centrality prohibitively slow for large networks. Networks of more than a thousand 
vertices or so present serious problems. 

A better approach in many cases is to evaluate the centrality directly from Eq. (7.8) (or 
equivalently, Eq. (7.9)). One makes an initial estimate of x—probably a bad one, such as x = 0—
and uses that to calculate a better estimate 

 

(7.12) 
  

Repeating the process many times, x converges to a value close to the correct centrality. Since A 
has m non-zero elements, each iteration requires m multiplication operations and the total time for 
the calculation is proportional to rm, where r is the number of iterations necessary for the 
calculation to converge. Unfortunately, r depends on the details of the network and on the choice 
of α, so we cannot give a general guide to how many iterations will be necessary. Instead one must 
watch the values of xi to observe when they converge to constant values. Nonetheless, for large 
networks it is almost always worthwhile to evaluate the centrality this way rather than by inverting 
the matrix. 

We have presented the Katz centrality as a solution to the problems encountered with ordinary 
eigenvector centrality in directed networks. However, there is no reason in principle why one 
cannot use Katz centrality in undirected networks as well, and there are times when this might be 
useful. The idea of adding a constant term to the centrality so that each vertex gets some weight 

 

 

 



just by virtue of existing is a natural one. It allows a vertex that has many neighbors to have high 
centrality regardless of whether those neighbors themselves have high centrality, and this could be 
desirable in some applications. 

A possible extension of the Katz centrality is to consider cases in which the additive constant 
term in Eq. (7.8) is not the same for all vertices. One could define a generalized centrality measure 
by 

 

(7.13) 
  

where βi is some intrinsic, non-network contribution to the centrality for each vertex. For 
example, in a social network the importance of an individual might depend on non-network factors 
such as their age or income and if we had information about these factors we could incorporate it 
into the values of the βi. Then the vector x of centralities is given by 

 

(7.14) 
  

where β is the vector whose elements are the βi. One nice feature of this approach is that the 
difficult part of the calculation—the inversion of the matrix—only has to be done once for a given 
network and choice of α. For difference choices of the βi we need not recalculate the inverse, but 
simply multiply the inverse into different vectors β.

 

 



7.4 PAGERANK  

The Katz centrality of the previous section has one feature that can be undesirable. If a vertex with 
high Katz centrality points to many others then those others also get high centrality. A high-
centrality vertex pointing to one million others gives all one million of them high centrality. One 
could argue—and many have—that this is not always appropriate. In many cases it means less if a 
vertex is only one among many that are pointed to. The centrality gained by virtue of receiving an 
edge from a prestigious vertex is diluted by being shared with so many others. For instance, the 
famous Yahoo! web directory might contain a link to my web page, but it also has links to millions 
of other pages. Yahoo! is an important website, and would have high centrality by any sensible 
measure, but should I therefore be considered very important by association? Most people would 
say not: the high centrality of Yahoo! will get diluted and its contribution to the centrality of my 
page should be small because my page is only one of millions. 

We can allow for this by defining a variation on the Katz centrality in which the centrality I 
derive from my network neighbors is proportional to their centrality divided by their out-degree. 
Then vertices that point to many others pass only a small amount of centrality on to each of those 
others, even if their own centrality is high. 

In mathematical terms this centrality is defined by 

 

(7.15) 
  

This gives problems however if there are vertices in the network with out-degree . If there 
are any such vertices then the first term in Eq. (7.15) is indeterminate—it is equal to zero divided 
by zero (because Aij = 0 for all i). This problem is easily fixed however. It is clear that vertices with 
no out-going edges should contribute zero to the centrality of any other vertex, which we can 
contrive by artificially setting  for all such vertices. (In fact, we could set  to any non-
zero value and the calculation would give the same answer.) 

In matrix terms, Eq. (7.15), is then 

 

(7.16) 
  

with 1 being again the vector (1, 1, 1, ...) and D being the diagonal matrix with elements 
. Rearranging, we find that x = β(I - αAD-1)-1 ‧ 1, and thus, as before, β plays the 

role only of an unimportant overall multiplier for the centrality. Conventionally we set β = 1, 
giving 

 

 

 

 



 

(7.17) 
  

Web search is discussed in more detail in Section 19.1. 

This centrality measure is commonly known as PageRank, which is the trade name given it by 
the Google web search corporation, which uses it as a central part of their web ranking technology 
[55]. The aim of the Google web search engine is to generate lists of useful web pages from a 
preassembled index of pages in response to text queries. It does this by first searching the index for 
pages matching a given query using relatively simple criteria such as text matching, and then 
ranking the answers according to scores based on a combination of ingredients of which PageRank 
is one. Google returns useful answers to queries not because it is better at finding relevant pages, 
but because it is better at deciding what order to present its findings in: its perceived accuracy 
arises because the results at the top of the list of answers it returns are often highly relevant to the 
query, but it is possible and indeed likely that many irrelevant answers also appear on the list, 
lower down. 

PageRank works on the Web precisely because having links to your page from important pages 
elsewhere is a good indication that your page may be important too. But the added ingredient of 
dividing by the out-degrees of pages insures that pages that simply point to an enormous number 
of others do not pass much centrality on to any of them, so that, for instance, network hubs like 
Yahoo! do not have a disproportionate influence on the rankings. 

As with the Katz centrality, the formula for PageRank, Eq. (7.17), contains one free parameter 
α, whose value must be chosen somehow before the algorithm can be used. By analogy with Eq. 
(7.11) and the argument that follows it, we can see that the value of α should be less than the 
inverse of the largest eigenvalue of AD-1. For an undirected network this largest eigenvalue turns 
out to be 1 and the corresponding eigenvector is (k1, k2, k3, ...), where ki is the degree of the ith 
vertex.83 Thus α should be chosen less than 1. For a directed network, this result does not follow 
and in general the leading eigenvalue will be different from 1, although in practical cases it is 
usually still roughly of order 1. 

The Google search engine uses a value of α = 0.85 in its calculations, although it’s not clear that 
there is any rigorous theory behind this choice. More likely it is just a shrewd guess based on 
experimentation to find out what works well. 

As with the Katz centrality we can generalize PageRank to the case where the additive constant 
term in Eq. (7.15) is different for different vertices: 
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In matrix form this gives a solution for the centrality vector of 
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One could, for instance, use this for ranking web pages, giving βi a value based perhaps on textual 
relevance to a search query. Pages that contained the word or words being searched for more often 
or in more prominent places could be given a higher intrinsic centrality than others, thereby 
pushing them up the rankings. The author is not aware, however, of any cases in which this 
technique has been implemented in practice. 

Finally, one can also imagine a version of PageRank that did not have the additive constant term 
in it at all: 
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which is similar to the original eigenvector centrality introduced back in Section 7.2, but now 
with the extra division by kj. For an undirected network, however, this measure is trivial: it is easy 
to see that it gives simply xi = ki and therefore is just the same as ordinary degree centrality. For a 
directed network, on the other hand, it does not reduce to any equivalent simple value and it might 
potentially be of use, although it does not seem to have found use in any prominent application. (It 
does suffer from the same problem as the original eigenvector centrality, that it gives non-zero 
scores only to vertices that fall in a strongly connected component of two or more vertices or in the 
out-component of such a component. All other vertices get a zero score.) 

In Table 7.1 we give a summary of the different matrix centrality measures we have discussed, 
organized according to their definitions and properties. If you want to use one of these measures in 
your own calculations and find the many alternatives bewildering, eigenvector centrality and 
PageRank are probably the two measures to focus on initially. They are the two most commonly 
used measures of this type. The Katz centrality has found widespread use in the past but has been 
favored less in recent work, while the PageRank measure without the constant term, Eq. (7.20), is 
the same as degree centrality for undirected networks and not in common use for directed ones. 

 

Table 7.1: Four centrality measures. The four matrix-based centrality measures discussed in the 
text are distinguished by whether or not they include an additive constant term in their definition 
and whether they are normalized by dividing by the degrees of neighboring vertices. Note that the 
diagonal matrix D, which normally has elements Dii = ki, must be defined slightly differently for 
PageRank, as Dii = max(1, ki)—see Eq. (7.15) and the following discussion. Each of the measures 
can be applied to directed networks as well as undirected ones, although only three of the four are 
commonly used in this way. (The measure that appears in the top right corner of the table is 

 

 

 

 



equivalent to degree centrality in the undirected case but takes more complicated values in the 
directed case and is not widely used.) 
  
 



7.5 HUBS AND AUTHORITIES  

In the case of directed networks, there is another twist to the centrality measures introduced in this 
section. So far we have considered measures that accord a vertex high centrality if those that point 
to it have high centrality. However, in some networks it is appropriate also to accord a vertex high 
centrality if it points to others with high centrality. For instance, in a citation network a paper such 
as a review article may cite other articles that are authoritative sources for information on a 
particular subject. The review itself may contain relatively little information on the subject, but it 
tells us where to find the information, and this on its own makes the review useful. Similarly, there 
are many examples of web pages that consist primarily of links to other pages on a given topic or 
topics and such a page of links could be very useful even if it does not itself contain explicit 
information on the topic in question. 

Thus there are really two types of important node in these networks: authorities are nodes that 
contain useful information on a topic of interest; hubs are nodes that tell us where the best 
authorities are to be found. An authority may also be a hub, and vice versa: review articles often 
contain useful discussions of the topic at hand as well as citations to other discussions. Clearly 
hubs and authorities only exist in directed networks, since in the undirected case there is no 
distinction between pointing to a vertex and being pointed to. 

One can imagine defining two different types of centrality for directed networks, the authority 
centrality and the hub centrality, which quantify vertices’ prominence in the two roles. This idea 
was first put forward by Kleinberg [176] and developed by him into a centrality algorithm called 
hyperlink-induced topic search or HITS. 

The HITS algorithm gives each vertex i in a network an authority centrality xi and a hub 
centrality yi. The defining characteristic of a vertex with high authority centrality is that it is 
pointed to by many hubs, i.e., by many other vertices with high hub centrality. And the defining 
characteristic of a vertex with high hub centrality is that it points to many vertices with high 
authority centrality. 

Thus an important scientific paper (in the authority sense) would be one cited in many important 
reviews (in the hub sense). An important review is one that cites many important papers. Reviews, 
however, are not the only publications that can have high hub centrality. Ordinary papers can have 
high hub centrality too if they cite many other important papers, and papers can have both high 
authority and high hub centrality. Reviews too may be cited by other hubs and hence have high 
authority centrality as well as high hub centrality. 

In Kleinberg’s approach, the authority centrality of a vertex is defined to be proportional to the 
sum of the hub centralities of the vertices that point to it: 
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where α is a constant. Similarly the hub centrality of a vertex is proportional to the sum of the 
authority centralities of the vertices it points to: 
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with β another constant. Notice that the indices on the matrix element Aji are swapped around in 
this second equation: it is the vertices that i points to that define its hub centrality. 

In matrix terms these equations can be written as 
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or, combining the two, 

 

(7.24) 
  

where λ = (αβ)-1. Thus the authority and hub centralities are respectively given by eigenvectors 
of AAT and ATA with the same eigenvalue. By an argument similar to the one we used for the 
standard eigenvector centrality in Section 7.1 we can show that we should in each case take the 
eigenvector corresponding to the leading eigenvalue. 

A crucial condition for this approach to work, is that AAT and ATA have the same leading 
eigenvalue λ, otherwise we cannot satisfy both conditions in Eq. (7.24). It is easily proved, 
however, that this is the case, and in fact that all eigenvalues are the same for the two matrices. If 
AATx = λx then multiplying both sides by AT gives 
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and hence ATx is an eigenvector of ATA with the same eigenvalue λ. Comparing with Eq. (7.24) 
this means that 
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which gives us a fast way of calculating the hub centralities once we have the authority ones—
there is no need to solve both the eigenvalue equations in Eq. (7.24) separately. 

Note that AAT is precisely the cocitation matrix defined in Section 6.4.1 (Eq. (6.8)) and the 
authority centrality is thus, roughly speaking, the eigenvector centrality for the cocitation 
network.84 Similarly ATA is the bibliographic coupling matrix, Eq. (6.11), and hub centrality is the 
eigenvector centrality for the bibliographic coupling network. 

A nice feature of the hub and authority centralities is that they circumvent the problems that 
ordinary eigenvector centrality has with directed networks, that vertices outside of strongly 
connected components or their out-components always have centrality zero. In the hubs and 
authorities approach vertices not cited by any others have authority centrality zero (which is 
reasonable), but they can still have non-zero hub centrality. And the vertices that they cite can then 
have non-zero authority centrality by virtue of being cited. This is perhaps a more elegant solution 
to the problems of eigenvector centrality in directed networks than the more ad hoc method of 
introducing an additive constant term as we did in Eq. (7.8). We can still introduce such a constant 
term into the HITS algorithm if we wish, or employ any of the other variations considered in 
previous sections, such as normalizing vertex centralities by the degrees of the vertices that point 
to them. Some variations along these lines are explored in Refs. [52, 256], but we leave the pursuit 
of such details to the enthusiastic reader. 

The HITS algorithm is an elegant construction that should in theory provide more information 
about vertex centrality than the simpler measures of previous sections, but in practice it has not yet 
found much application. It is used as the basis for the web search engines Teoma and Ask.com, and 
will perhaps in future find further use, particularly in citation networks, where it holds clear 
advantages over other eigenvector measures.



7.6 CLOSENESS CENTRALITY  

An entirely different measure of centrality is provided by the closeness centrality, which measures 
the mean distance from a vertex to other vertices. In Section 6.10.1 we encountered the concept of 
the geodesic path, the shortest path through a network between two vertices. Suppose dij is the 
length of a geodesic path from i to j, meaning the number of edges along the path.85 Then the mean 
geodesic distance from i to j, averaged over all vertices j in the network, is 
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This quantity takes low values for vertices that are separated from others by only a short geodesic 
distance on average. Such vertices might have better access to information at other vertices or 
more direct influence on other vertices. In a social network, for instance, a person with lower mean 
distance to others might find that their opinions reach others in the community more quickly than 
the opinions of someone with higher mean distance. 

In calculating the average distance some authors exclude from the sum in (7.27) the term for j = 
i, so that 
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which is a reasonable strategy, since a vertex’s influence on itself is usually not relevant to the 
working of the network. On the other hand, the distance dii from i to itself is zero by definition, so 
this term in fact contributes nothing to the sum. The only difference the change makes to ℓi is in 
the leading divisor, which becomes 1/(n - 1) instead of 1/n, meaning that ℓi changes by a factor of 
n/(n - 1). Since this factor is independent of i and since, as we have said, we usually care only 
about the relative centralities of different vertices and not about their absolute values, we can in 
most cases ignore the difference between Eqs. (7.27) and (7.28). In this book we use (7.27) 
because it tends to give slightly more elegant analytic results. 

The mean distance ℓi is not a centrality measure in the same sense as the others in this chapter, 
since it gives low values for more central vertices and high values for less central ones, which is 
the opposite of our other measures. In the social networks literature, therefore, researchers 
commonly calculate the inverse of ℓi rather than ℓi itself. This inverse is called the closeness 
centrality Ci: 
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Closeness centrality is a very natural measure of centrality and is often used in social and other 
network studies. But it has some problems. One issue is that its values tend to span a rather small 
dynamic range from largest to smallest. As discussed in Sections 3.6, 8.2, and 12.7, geodesic 
distances dij between vertices in most networks tend to be small, the typical distance increasing 
only logarithmically with the size of the entire network. This means that the ratio between the 
smallest distance, which is 1, and the largest, which is of order log n, is itself only of order log n, 
which is small. But the smallest and largest distances provide lower and upper bounds on the 
average distance ℓi, and hence the range of values of ℓi and similarly of Ci is also small. In a 
typical network the values of Ci might span a factor of five or less. What this means in practice is 
that it is difficult to distinguish between central and less central vertices using this measure: the 
values tend to be cramped together with the differences between adjacent values showing up only 
when you examine the trailing digits. This means that even small fluctuations in the structure of 
the network can change the order of the values substantially. 

For example, it has become popular in recent years to rank film actors according to their 
closeness centrality in the network of who has appeared in films with who else [323]. Using data 
from the Internet Movie Database,86 we find that in the largest component of the network, which 
includes more than 98% of all actors, the smallest closeness centrality of any actor is 2.4138 for 
the actor Christopher Lee,87 while the largest is 8.6681 for an Iranian actress named Leia 
Zanganeh. The ratio of the two is just 3.6 and about half a million other actors lie in between. As 
we can immediately see, the values must be very closely spaced. The second best centrality score 
belongs to actor Donald Pleasence, who scores 2.4164, just a tenth of a percent less than winner 
Lee. Because of the close spacing of values, the leaders under this dubious measure of superiority 
change frequently as the small details of the film network shift when new films are made or old 
ones added to the database. In an analysis using an earlier version of the database, Watts and 
Strogatz [323] proclaimed Rod Steiger to be the actor with the lowest closeness centrality. Steiger 
falls in sixth place in our analysis and it is entirely possible that the rankings will have changed 
again by the time you read this. Other centrality measures, including degree centrality and 
eigenvector centrality, typically don’t suffer from this problem because they have a wider dynamic 
range and the centrality values, particular those of the leaders, tend to be widely separated. 

The closeness centrality has another problem too. If, as discussed in Section 6.10.1, we define 
the geodesic distance between two vertices to be infinite if the vertices fall in different components 
of the network, then ℓi is infinite for all i in any network with more than one component and Ci is 
zero. There are two strategies for getting around this. The most common one is simply to average 
over only those vertices in the same component as i. Then n in Eq. (7.29) becomes the number of 
vertices in the component and the sum is over only that component. This gives us a finite measure, 
but one that has its own problems. In particular, distances tend to be smaller between vertices in 
small components, so that vertices in such components get lower values of ℓi and higher closeness 
centrality than their counterparts in larger components. This is usually undesirable: in most cases 
vertices in small components are considered less well connected than those in larger ones and 
should therefore be given lower centrality. 

Perhaps a better solution, therefore, is to redefine closeness in terms of the harmonic mean 
distance between vertices, i.e., the average of the inverse distances: 
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(Notice that we are obliged in this case to exclude from the sum the term for j = i, since dii = 0 
which would make this term infinite. This means that the sum has only n - 1 terms in it, hence the 
leading factor of 1/(n - 1).) 

This definition has a couple of nice properties. First, if dij = ∞ because i and j are in different 
components, then the corresponding term in the sum is simply zero and drops out. Second, the 
measure naturally gives more weight to vertices that are close to i than to those far away. 
Intuitively we might imagine that the distance to close vertices is what matters in most practical 
situations—once a vertex is far away in a network it matters less exactly how far away it is, and 
Eq. (7.30) reflects this, having contributions close to zero from all such vertices. 

Despite its desirable qualities, however, Eq. (7.30) is rarely used in practice. We have seen it 
employed only occasionally. 

An interesting property of entire networks, which is related to the closeness centrality, is the 
mean geodesic distance between vertices. In Section 8.2 we will use measurements of mean 
distance in networks to study the so-called “small-world effect.” 

For a network with only one component, the mean distance between pairs of vertices, 
conventionally denoted just ℓ (now without the subscript), is 
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In other words ℓ is just the mean of ℓi over all vertices.
 

For a network with more than one component we run into the same problems as before, that dij 
is infinite when i and j are in different components and hence ℓ is also infinite. The most common 
way around this problem is to average only over paths that run between vertices in the same 
component. Let {Cm} be the set of components of a network, with m = 1, 2 ... Then we define 
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where nm is the number of vertices in component Cm. This measure is now finite for all 
networks, although it is not now equal to a simple average over the values of ℓi for each vertex. 

 

 

 

 

 



An alternative and perhaps better approach would be to use the trick from Eq. (7.30) and define 
a harmonic mean distance ℓ′ according to 
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or equivalently 
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where  is the harmonic mean closeness of Eq. (7.30). (Note that, as in (7.30), we exclude from 
the first sum in (7.33) the terms for i = j, which would be infinite since dii = 0.) 

Equation (7.34) automatically removes any contributions from vertex pairs for which dij = ∞. 
Despite its elegance, however, Eq. (7.34), like Eq. (7.30), is hardly ever used. 

 

 



7.7 BETWEENNESS CENTRALITY  

A very different concept of centrality is betweenness centrality, which measures the extent to 
which a vertex lies on paths between other vertices. The idea of betweenness is usually attributed 
to Freeman [128] in 1977, although as Freeman himself has pointed out [129], it was 
independently proposed some years earlier by Anthonisse [19] in an unpublished technical report. 

Suppose we have a network with something flowing around it from vertex to vertex along the 
edges. For instance, in a social network we might have messages, news, information, or rumors 
being passed from one person to another. In the Internet we have data packets moving around. Let 
us initially make the simple assumption that every pair of vertices in the network exchanges a 
message with equal probability per unit time (more precisely every pair that is actually connected 
by a path) and that messages always take the shortest (geodesic) path though the network, or one 
such path, chosen at random, if there are several. Then let us ask the following question: if we wait 
a suitably long time until many messages have passed between each pair of vertices, how many 
messages, on average, will have passed through each vertex en route to their destination? The 
answer is that, since messages are passing down each geodesic path at the same rate, the number 
passing through each vertex is simply proportional to the number of geodesic paths the vertex lies 
on. This number of geodesic paths is what we call the betweenness centrality, or just betweenness 
for short. 

Vertices with high betweenness centrality may have considerable influence within a network by 
virtue of their control over information passing between others. The vertices with highest 
betweenness in our message-passing scenario are the ones through which the largest number of 
messages pass, and if those vertices get to see the messages in question as they pass, or if they get 
paid for passing the messages along, they could derive a lot of power from their position within the 
network. The vertices with highest betweenness are also the ones whose removal from the network 
will most disrupt communications between other vertices because they lie on the largest number of 
paths taken by messages. In real-world situations, of course, not all vertices exchange 
communications with the same frequency, and in most cases communications do not always take 
the shortest path. Nonetheless, betweenness centrality may still be an approximate guide to the 
influence vertices have over the flow of information between others. 

Having seen the basic idea of betweenness centrality, let us make things more precise. For the 
sake of simplicity, suppose for the moment that we have an undirected network in which there is at 
most one geodesic path between any pair of vertices. (There may be zero paths if the vertices in 
question are in different components.) Consider the set of all geodesic paths in such a network. 
Then the betweenness centrality of a vertex i is defined to be the number of those paths that pass 
through i. 

Mathematically, let  be 1 if vertex i lies on the geodesic path from s to t and 0 if it does not or 
if there is no such path (because s and t lie in different components of the network). Then the 
betweenness centrality xi is given by 
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Note that this definition counts separately the geodesic paths in either direction between each 
vertex pair. Since these paths are the same on an undirected network this effectively counts each 
path twice. One could compensate for this by dividing xi by 2, and often this is done, but we prefer 
the definition given here for a couple of reasons. First, it makes little difference in practice whether 
one divides the centrality by 2, since one is usually concerned only with the relative magnitudes of 
the centralities and not with their absolute values. Second, as discussed below, Eq. (7.35) has the 
advantage that it can be applied unmodified to directed networks, in which the paths in either 
direction between a vertex pair can differ. 

Note also that Eq. (7.35) includes paths from each vertex to itself. Some people prefer to 
exclude such paths from the definition, so that  but again the difference is typically not 
important. Each vertex lies on one path from itself to itself, so the inclusion of these terms simply 
increases the betweenness by 1, but does not change the rankings of the vertices—which ones have 
higher or lower betweenness—relative to one another. 

There is also a choice to be made about whether the path from s to t should be considered to 
pass through the vertices s and t themselves. In the social networks literature it is usually assumed 
that it does not. We prefer the definition where it does: it seems reasonable to define a vertex to be 
on a path between itself and someone else, since normally a vertex has control over information 
flowing from itself to other vertices or vice versa. If, however, we exclude the endpoints of the 
path as sociologists commonly do, the only effect is to reduce the number of paths through each 
vertex by twice the size of the component to which the vertex belongs. Thus the betweennesses of 
all vertices within a single component are just reduced by an additive constant and the ranking of 
vertices within the component is again unchanged. (The rankings of vertices in different 
components can change relative to one another, but this is rarely an issue because betweenness 
centrality is not typically used to compare vertices in different components, since such vertices are 
not competing for influence in the same arena.) 

 

Vertices A and B are connected by two geodesic paths. Vertex C lies on both paths. 
  

These developments are all for the case in which there is at most one geodesic path between 
each vertex pair. More generally, however, there may be more than one. The standard extension of 
betweenness to this case gives each path a weight equal to the inverse of the number of paths. For 
instance, if there are two geodesic paths between a given pair of vertices, each of them g ets weight 
. Then the betweenness of a vertex is defined to be the sum of the weights of all geodesic paths 

passing through that vertex. 
Note that the geodesic paths between a pair of vertices need not be vertex-independent, meaning 

they may pass through some of the same vertices (see figure). If two or more paths pass through 
the same vertex then the betweenness sum includes contributions from each of them. Thus if there 
are, say, three geodesic paths between a given pair of vertices and two of them pass through a 
particular vertex, then they contribute  to that vertex’s betweenness. 

Formally, we can express the betweenness for a general network by redefining  to be the 
number of geodesic paths from s to t that pass through i. And we define gst to be the total number 
of geodesic paths from s to t. Then the betweenness centrality of vertex i is 
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where we adopt the convention that  are zero. This definition is 
equivalent to our message-passing thought experiment above, in which messages pass between all 
pairs of vertices in a network at the same average rate, traveling along shortest paths, and in the 
case of several shortest paths between a given pair of vertices they choose at random between 
those several paths. Then xi is proportional to the average rate at which traffic passes though vertex 
i. 

Betweenness centrality can be applied to directed networks as well. In a directed network the 
shortest path between two vertices depends, in general, on the direction you travel in. The shortest 
path from A to B is different from the shortest path from B to A. Indeed there may be a path in one 
direction and no path at all in the other. Thus it is important in a directed network explicitly to 
include the path counts in either direction between each vertex pair. The definition in Eq. (7.36) 
already does this and so, as mentioned above, we can use the same definition without modification 
for the directed case. This is one reason why we prefer this definition to other slight variants that 
are sometimes used. 

Although the generalization of betweenness to directed networks is straightforward, however, it 
is rarely if ever used, so we won’t discuss it further here, concentrating instead on the much more 
common undirected case. 

Betweenness centrality differs from the other centrality measures we have considered in being 
not principally a measure of how well-connected a vertex is. Instead it measures how much a 
vertex falls “between” others. Indeed a vertex can have quite low degree, be connected to others 
that have low degree, even be a long way from others on average, and still have high betweenness. 
Consider the situation depicted in Fig. 7.2. Vertex A lies on a bridge between two groups within a 
network. Since any shortest path (or indeed any path whatsoever) between a vertex in one group 
and a vertex in the other must pass along this bridge, A acquires very high betweenness, even 
though it is itself on the periphery of both groups and in other respects may be not well connected: 
probably A would not have particularly impressive values for eigenvector or closeness centrality, 
and its degree centrality is only 2, but nonetheless it might have a lot of influence in the network as 
a result of its control over the flow of information between others. Vertices in roles like this are 
sometimes referred to in the sociological literature as brokers.88 

 

Figure 7.2: A low-degree vertex with high betweenness. In this sketch of a network, vertex A 
lies on a bridge joining two groups of other vertices. All paths between the groups must pass 
through A, so it has a high betweenness even though its degree is low. 
  

Betweenness centrality also has another interesting property: its values are typically distributed 
over a wide range. The maximum possible value for the betweenness of a vertex occurs when the 

 

 

 



vertex lies on the shortest path between every other pair of vertices. This occurs for the central 
vertex in a star graph, a network composed of a vertex attached to n - 1 others by single edges. In 
this situation the central vertex lies on all n2 shortest paths between vertex pairs except for the n - 1 
paths from the peripheral vertices to themselves. Thus the betweenness centrality of the central 
vertex is n2 - n + 1. At the other end of the scale, the smallest possible value of betweenness in a 
network with a single component is 2n - 1, since at a minimum each vertex lies on every path that 
starts or ends with itself. (There are n - 1 paths from a vertex to others, n - 1 paths from others to 
the vertex, and one path from the vertex to itself, for a total of 2(n - 1) + 1 = 2n - 1.) This situation 
occurs, for instance, when a network has a “leaf” attached to it, a vertex connected to the rest of 
the network by just a single edge. 

 

A star graph. 
  

Thus the ratio of largest and smallest possible betweenness values is 
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where the equality becomes exact in the limit of large n. Thus in theory there could be a factor 
of almost  between the largest and smallest betweenness centralities, which could become very 
large for large networks. In real networks the range is usually considerably smaller than this, but is 
nonetheless large and typically increasing with increasing n. 

Taking again the example of the network of film actors from the previous section, the individual 
with the highest betweenness centrality in the largest component of the actor network is the great 
Spanish actor Fernando Rey, most famous in the English-speaking world for his 1971 starring role 
next to Gene Hackman in The French Connection.89 Rey has a betweenness score of 7.47 × 108, 
while the lowest score of any actor90 in the large component is just 8.91 × 105. Thus there is a ratio 
of almost a thousand between the two limits—a much larger dynamic range than the ratio of 3.6 
we saw in the case of closeness centrality. One consequence of this is that there are very clear 
winners and losers in the betweenness centrality competition. The second highest betweenness in 
the actor network is that of Christopher Lee (again), with 6.46 × 108, a 14% percent difference 
from winner Fernando Rey. Although betweenness values may shift a little as new movies are 
made and new actors added to the network, the changes are typically small compared with these 
large gaps between the leaders, so that the ordering at the top of the list changes relatively 

 

 

 



infrequently, giving betweenness centrality results a robustness not shared by those for 
closeness centrality. 

The values of betweenness calculated here are raw path counts, but it is sometimes convenient 
to normalize betweenness in some way. Several of the standard computer programs for network 
analysis, such as Pajek and UCINET, perform such normalizations. One natural choice is to 
normalize the path count by dividing by the total number of (ordered) vertex pairs, which is n2, so 
that betweenness becomes the fraction (rather than the number) of paths that run through a given 
vertex: 

 

(7.38) 
  

With this definition, the values of the betweenness lie strictly between zero and one. 
Some other variations on the betweenness centrality idea are worth mentioning. Betweenness 

gets at an important idea in network analysis, that of the flow of information or other traffic and of 
the influence vertices might have over that flow. However, betweenness as defined by Freeman is 
based on counting only the shortest paths between vertex pairs, effectively assuming that all or at 
least most traffic passes along those shortest paths. In reality traffic flows along paths other than 
the shortest in many networks. Most of us, for instance, will have had the experience of hearing 
news about one of our friends not from that friend directly but from another mutual 
acquaintance—the message has passed along a path of length two via the mutual acquaintance, 
rather than along the direct (geodesic) path of length one. 

A version of betweenness centrality that makes some allowance for effects like this is the flow 
betweenness, which was proposed by Freeman et al. [130] and is based on the idea of maximum 
flow. Imagine each edge in a network as a pipe that can carry a unit flow of some fluid. We can 
ask what the maximum possible flow then is between a given source vertex s and target vertex t 
through these pipes. In general the answer is that more than a single unit of flow can be carried 
between source and target by making simultaneous use of several different paths through the 
network. The flow betweenness of a vertex i is defined according to Eq. (7.35), but with  being 
now the amount of flow through vertex i when the maximum flow is transmitted from s to t. 

See Section 6.12 for a discussion of maximum flow in networks. 

As we saw in Section 6.12, the maximum flow between vertices s and t is also equal to the 
number of edge-independent paths between them. Thus another way equivalent to look at the flow 
betweenness would be to consider  to be the number of independent paths between s and t that 
run through vertex i. 

A slight problem arises because the independent paths between a given pair of vertices are not 
necessarily unique. For instance, the network shown in Fig. 7.3 has two edge-independent paths 
between s and t but we have two choices about what those paths are, either the paths denoted by 
the solid arrows, or those denoted by the dashed ones. Furthermore, our result for the flow 
betweenness will depend on which choice we make; the vertices labeled A and B fall on one set of 
paths but not the other. To get around this problem, Freeman et al. define the flow through a vertex 
for their purposes to be the maximum possible flow over all possible choices of paths, or 
equivalently the maximum number of independent paths. Thus in the network of Fig. 7.3, the 
contribution of the flow between s and t to the betweenness of vertex A would be 1, since this is 
the maximum value it takes over all possible choices of flow paths.

 

 

 



 

Figure 7.3: Edge-independent paths in a small network. The vertices s and t in this network 
have two independent paths between them, but there are two distinct ways of choosing those paths, 
represented by the solid and dashed curves. 
  

In terms of our information analogy, one can think of flow betweenness as measuring the 
betweenness of vertices in a network in which a maximal amount of information is continuously 
pumped between all sources and targets. Flow betweenness takes account of more than just the 
geodesic paths between vertices, since flow can go along non-geodesic paths as well as geodesic 
ones. (For example, the paths through vertices A and B in the example above are not geodesic.) 
Indeed, in some cases none of the paths that appear in the solution of the maximum flow problem 
are geodesic paths, so geodesic paths may not be counted at all by this measure. 

But this point highlights a problem with flow betweenness: although it typically counts more 
paths than the standard shortest-path betweenness, flow betweenness still only counts a subset of 
possible paths, and some important ones (such as geodesic paths) may be missed out altogether. 
One way to look at the issue is that both shortest-path betweenness and flow betweenness assume 
flows that are optimal in some sense—passing only along shortest paths in the first case and 
maximizing total flow in the second. Just as there is no reason to suppose that information or other 
traffic always takes the shortest path, there is no reason in general to suppose it should act to 
maximize flow (although of course there may be special cases in which it does). 

See Section 6.14 for a discussion of random walks. 

A betweenness variant that does count all paths is the random-walk betweenness [243]. In this 
variant traffic between vertices s and t is thought of as performing an (absorbing) random walk that 
starts at vertex s and continues un til it reaches vertex t. The betweenness is defined according to 

 but with  now being the number of times that the random walk from s to t passes 
through i on its journey, averaged over many repetitions of the walk. 

Note that in this case  in general, even on an undirected network. For instance, consider 
this portion of a network: 

 

A random walk from s to t may pass through vertex A before returning to s and stepping thence to 
t, but a walk from t to s will never pass through A because its first step away from t will always 
take it to s and then the walk will finish.

 

 

 

 



Since every possible path from s to t occurs in a random walk with some probability (albeit a 
very small one) the random-walk betweenness includes contributions from all paths.92 Note, 
however, that different paths appear in general with different probabilities, so paths do not 
contribute equally to the betweenness scores, longer paths typically making smaller contributions 
than shorter ones, a bias that is plausible in some but by no means all cases. 

Random walk betweenness would be an appropriate betweenness measure for traffic that 
traverses a network with no idea of where it is going—it simply wanders around at random until it 
reaches its destination. Shortest-path betweenness is the exact opposite. It is the appropriate 
measure for information that knows exactly where it is going and takes the most direct path to get 
there. It seems likely that most real-world situations fall somewhere in between these two 
extremes. However, it is found in practice [243] that the two measures often give quite similar 
results, in which case one can with reasonable justification assume that the “correct” answer, the 
one lying between the limits set by the shortest-path and random-walk measures, is similar to both. 
In cases where the two differ by a considerable margin, however, we should be wary of attributing 
too much authority to either measure—there is no guarantee that either is telling us a great deal 
about true information flow in the network. 

Other generalizations of betweenness are also possible, based on other models of diffusion, 
transmission, or flow along network edges. We refer the interested reader to the article by Borgatti 
[51], which draws together many of the possibilities into a broad general framework for 
betweenness measures. 



7.8 GROUPS OF VERTICES  

Many networks, including social and other networks, divide naturally into groups or communities. 
Networks of people divide into groups of friends, coworkers, or business partners; the World Wide 
Web divides into groups of related web pages; biochemical networks divide into functional 
modules, and so forth. The definition and analysis of groups within networks is a large and fruitful 
area of network theory. In Chapter 11 we discuss some of the sophisticated computer methods that 
have been developed for detecting groups, such as hierarchical clustering and spectral partitioning. 
In this section we discuss some simpler concepts of network groups which can be useful for 
probing and describing the local structure of networks. The primary constructs we look at are 
cliques, plexes, cores, and components.

 



7.8.1 CLIQUES, PLEXES, AND CORES  

A clique is a maximal subset of the vertices in an undirected network such that every member of 
the set is connected by an edge to every other. The word “maximal” here means that there is no 
other vertex in the network that can be added to the subset while preserving the property that every 
vertex is connected to every other. Thus a set of four vertices in a network would be a clique if 
(and only if) each of the four is directly connected by edges to the other three and if there is no 
other vertex anywhere in the network that could be added to make a group of five vertices all 
connected to each other. Note that cliques can overlap, meaning that they can share one or more of 
the same vertices. 

The occurrence of a clique in an otherwise sparse network is normally an indication of a highly 
cohesive subgroup. In a social network, for instance, one might encounter a set of individuals each 
of whom was acquainted with each of the others, and such a clique would probably indicate that 
the individuals in question are closely connected—a set of coworkers in an office for example or a 
group of classmates in a school. 

 

A clique of four vertices within a network. 
  

 

Two overlapping cliques. Vertices A and B in this network both belong to two cliques of four 
vertices. 

 

 

 

 



  

However, it’s also the case that many circles of friends form only nearcliques, rather than 
perfect cliques. There may be some members of the group who are unacquainted, even if most 
members know one another. The requirement that every possible edge be present within a clique is 
a very stringent one, and it seems natural to consider how we might relax this requirement. One 
construct that does this is the k-plex. A k-plex of size n is a maximal subset of n vertices within a 
network such that each vertex is connected to at least n - k of the others. If k = 1, we recover the 
definition of an ordinary clique—a 1-plex is the same as a clique. If k = 2, then each vertex must 
be connected to all or all-but-one of the others. And so forth.93 Like cliques, k-plexes can overlap 
one another; a single vertex can belong to more than one k-plex. 

The k-plex is a useful concept for discovering groups within networks: in real life many groups 
in social and other networks form k-plexes. There is no solid rule about what value k should take. 
Experimentation starting from small values is the usual way to proceed. Smaller values of k tend to 
be meaningful for smaller groups, whereas in large groups the smaller values impose too stringent 
a constraint but larger values often give useful results. This suggests another possible 
generalization of the clique idea: one could specify that each member be connected to a certain 
fraction of the others, say 75% or 50%. (As far as we know, this variant doesn’t have a name and it 
is not in wide use, but perhaps it should be.) 

Many other variations on the clique idea have been proposed in the literature. For instance Flake 
et al. [122] proposed a definition of a group as a subset of vertices such that each has at least as 
many connections to vertices inside the group as to vertices outside. Radicchi et al. [276] proposed 
a weaker definition of a group as a subset of vertices such that the total number of connections of 
all vertices in the group to others in the group is greater than the total number of connections to 
vertices outside.94 

Another concept closely related to the k-plex is the k-core. A k-core is a maximal subset of 
vertices such that each is connected to at least k others in the subset.95 It should be obvious (or you 
can easily prove it for yourself) that a k-core of n vertices is also an (n - k)-plex. However, the set 
of all k-cores for a given value of k is not the same as the set of all k-plexes for any value of k, 
since n, the size of the group, can vary from one k-core to another. Also, unlike k-plexes (and 
cliques), k-cores cannot overlap, since by their definition two k-cores that shared one or more 
vertices would just form a single larger k-core. 

The k-core is of particular interest in network analysis for the practical reason that it is very easy 
to find the set of all k-cores in a network. A simple algorithm is to start with your whole network 
and remove from it any vertices that have degree less than k, since clearly such vertices cannot 
under any circumstances be members of a k-core. In so doing, one will normally also reduce the 
degrees of some other vertices in the network—those that were connected to the vertices just 
removed. So we then go through the network again to see if there are any more vertices that now 
have degree less than k and if there are we remove those too. And so we proceed, repeatedly 
pruning the network to remove vertices with degree less than k until no such vertices remain.96 
What is left over will, by definition, be a k-core or a set of k-cores, since each vertex is connected 
to at least k others. Note that we are not necessarily left with a single k-core—there’s no guarantee 
that the network will be connected once we are done pruning it, even if it was connected to start 
with. 

Two other generalizations of cliques merit a brief mention. A k-clique is a maximal subset of 
vertices such that each is no more than a distance k away from any of the others via the edges of 
the network. For k = 1 this just recovers the definition of an ordinary clique. For larger k it 
constitutes a relaxation of the stringent requirements of the usual clique definition. Unfortunately it 
is not a very well-behaved one, since a k-clique by this definition need not be connected via paths 
that run within the subset (see figure). If we restrict ourselves to paths that run only within the 
subset then the resulting object is known as either a k-clan or a k-club. (The difference between the 
two lies in whether we impose the restriction that paths stay within the group from the outset, or 
whether we first find k-cliques and then discard those with outside paths. The end results can be 
different in the two cases. For more details see Wasserman and Faust [320].). 

 



 

The outlined set of three vertices in this network constitute a 2-clique, but one that is not connected 
via paths within the 2-clique. 
  

 

 



7.8.2 COMPONENTS AND k-COMPONENTS  

In Section 6.11 we introduced the concept of a component. A component in an undirected network 
is a maximal subset of vertices such that each is reachable by some path from each of the others. A 
useful generalization of this concept is the k-component. A k-component (sometimes also called a 
k-connected component) is a maximal subset of vertices such that each is reachable from each of 
the others by at least k vertex-independent paths—see Fig. 7.4. (Recall that two paths are said to be 
vertex-independent if they share none of the same vertices, except the starting and ending 
vertices—see Section 6.12.) For the common special cases k = 2 and k = 3, k-components are also 
called bicomponents and tricomponents respectively. 

A 1-component by this definition is just an ordinary component—there is at least one path 
between every pair of vertices—and k-components for k ≥ 2 are nested within each other. A 2-
component or bicomponent, for example, is necessarily a subset of a 1-component, since any pair 
of vertices that are connected by at least two paths are also connected by at least one path. 
Similarly a tricomponent is necessarily a subset of a bicomponent, and so forth. (See Fig. 7.4 
again.) 

As discussed in Section 6.12, the number of vertex-independent paths between two vertices is 
equal to the size of the vertex cut set between the same two vertices, i.e., the number of vertices 
that would have to be removed in order to disconnect the two. So another way of defining a k-
component would be to say that it is a maximal subset of vertices such that no pair of vertices can 
be disconnected from each other by removing less than k vertices. 

A variant of the k-component can also be defined using edge-independent paths, so that vertices 
are in the same k-component if they are connected by k or more edge-independent paths, or 
equivalently if they cannot be disconnected by the removal of less than k edges. In principal this 
variant could be useful in certain circumstances but in practice it is rarely used. 

 

Figure 7.4: The k-components in a small network. The shaded regions denote the k-components 
in this small network, which has a single 1-component, two 2-components, one 3-component, and 
no k-components for any higher value of k. Note that the k-components are nested within one 
another, the 2-components falling inside the 1-component and the 3-component falling inside one 
of the 2-components. 
  

The idea of a k-component is a natural one in network analysis, being connected with the idea of 
network robustness. For instance, in a data network such as the Internet, the number of vertex-
independent paths between two vertices is also the number of independent routes that data might 

 

 

 



take between the same two vertices, and the size of the cut set between them is the number of 
vertices in the network—typically routers—that would have to fail or otherwise be knocked out to 
sever the data connection between the two endpoints. Thus a pair of vertices connected by two 
independent paths cannot be disconnected from one another by the failure of any single router. A 
pair of vertices connected by three paths cannot be disconnected by the failure of any two routers. 
And so forth. A k-component with k ≥ 2 in a network like the Internet is a subset of the network 
that has robust connectivity in this sense. One would hope, for instance, that most of the network 
backbone—the system of high volume world-spanning links that carry long-distance data (see 
Section 2.1)—is a k-component with high k, so that it would be difficult for points on the backbone 
to lose connection with one another. 

 

The two highlighted vertices in this network form a tricomponent, even though they are not 
directly connected to each other. The other three vertices are not in the tricomponent. 
  

Note that for k ≥ 3, the k-components in a network can be non-contiguous (see figure). Ordinary 
components (1-components) and bicomponents, by contrast, are always contiguous. Within the 
social networks literature, where non-contiguous components are often considered undesirable, k-
components are sometimes defined slightly differently: a k-component is defined to be a maximal 
subset of vertices such that every pair in the set is connected by at least k vertex-independent paths 
that themselves are contained entirely within the subset. This definition rules out non-contiguous 
k-components, but it is also mathematically and computationally more difficult to work with than 
the standard definition. For this reason, and because there are also plenty of cases in which it is 
appropriate to count non-contiguous k-components, the standard definition remains the most 
widely used one in fields other than sociology.

 

 



7.9 TRANSITIVITY  

A property very important in social networks, and useful to a lesser degree in other networks too, 
is transitivity. In mathematics a relation “ο” is said to be transitive if a b and b c together imply 
a c. An example would be equality. If a = b and b = c, then it follows that a = c also, so “=” is 
a transitive relation. Other examples are “greater than,” “less than,” and “implies.” 

In a network there are various relations between pairs of vertices, the simplest of which is 
“connected by an edge.” If the “connected by an edge” relation were transitive it would mean that 
if vertex u is connected to vertex v, and v is connected to w, then u is also connected to w. In 
common parlance, “the friend of my friend is also my friend.” Although this is only one possible 
kind of network transitivity—other network relations could be transitive too—it is the only one 
that is commonly considered, and networks showing this property are themselves said to be 
transitive. This definition of network transitivity could apply to either directed or undirected 
networks, but let us take the undirected case first, since it’s simpler. 

Perfect transitivity only occurs in networks where each component is a fully connected subgraph 
or clique, i.e., a subgraph in which all vertices are connected to all others.97 Perfect transitivity is 
therefore pretty much a useless concept in networks. However, partial transitivity can be very 
useful. In many networks, particularly social networks, the fact that u knows v and v knows w 
doesn’t guarantee that u knows w, but makes it much more likely. The friend of my friend is not 
necessarily my friend, but is far more likely to be my friend than some randomly chosen member 
of the population. 

 

The path uvw (solid edges) is said to be closed if the third edge directly from u to w is present 
(dashed edge). 
  

We can quantify the level of transitivity in a network as follows. If u knows v and v knows w, 
then we have a path uvw of two edges in the network. If u also knows w, we say that the path is 
closed—it forms a loop of length three, or a triangle, in the network. In the social network jargon, 
u, v, and w are said to form a closed triad. We define the clustering coefficient98 to be the fraction 
of paths of length two in the network that are closed. That is, we count all paths of length two, and 
we count how many of them are closed, and we divide the second number by the first to get a 
clustering coefficient C that lies in the range from zero to one:

 

(7.39) 
  

 

 

 

 



C = 1 implies perfect transitivity, i.e., a network whose components are all cliques. C = 0 
implies no closed triads, which happens for various topologies, such as a tree (which has no closed 
loops of any kind—see Section 6.7) or a square lattice (which has closed loops with even numbers 
of vertices only and no closed triads). 

Note that paths in networks, as defined in Section 6.10 have a direction and two paths that 
traverse the same edges but in opposite directions are counted separately in Eq. (7.39). Thus uvw 
and wvu are distinct paths and are counted separately. Similarly, closed paths are counted 
separately in each direction.99 

An alternative way to write the clustering coefficient is

 

(7.40) 
  

Why the factor of six? It arises because each triangle in the network gets counted six times over 
when we count up the number of closed paths of length two. Suppose we have a triangle uvw. 
Then there are six paths of length two in it: uvw, vwu, wuv, wvu, vuw, and uwv. Each of these six is 
closed, so the number of closed paths is six times the number of triangles. 

 

 

 

 

 



A triangle contains six distinct paths of length two, all of them closed. 
  

Yet another way to write the clustering coefficient would be to note that if we have a path of 
length two, uvw, then it is also true to say that vertices u and w have a common neighbor in v—
they share a mutual acquaintance in social network terms. If the triad uvw is closed then u and w 
are themselves acquainted, so the clustering coefficient can be thought of also as the fraction of 
pairs of people with a common friend who are themselves friends or equivalently as the mean 
probability that two people with a common friend are themselves friends. This is perhaps the most 
common way of defining the clustering coefficient. In mathematical notation:

 

(7.41) 
  

Here a “connected triple” means three vertices uvw with edges (u, v) and (v, w). (The edge (u, w) 
can be present or not.) The factor of three in the numerator arises because each triangle gets 
counted three times when we count the connected triples in the network. The triangle uvw for 
instance contains the triples uvw, vwu, and wuv. In the older social networks literature the 
clustering coefficient is sometimes referred to as the “fraction of transitive triples,” which is a 
reference to this definition of the coefficient. 

Social networks tend to have quite high values of the clustering coefficient. For example, the 
network of film actor collaborations discussed earlier has been found to have C = 0.20 [241]; a 
network of collaborations between biologists has been found to have C = 0.09 [236]; a network of 
who sends email to whom in a large university has C = 0.16 [103]. These are typical values for 
social networks. Some denser networks have even higher values, as high as 0.5 or 0.6. 
(Technological and biological networks by contrast tend to have somewhat lower values. The 
Internet at the autonomous system level, for instance, has a clustering coefficient of only about 
0.01. This point is discussed in more detail in Section 8.6.) 

In what sense are these clustering coefficients for social networks high? Well, let us assume, to 
make things simple, that everyone in a network has about the same number c of friends. Consider 
one of my friends in this network and suppose they pick their friends completely at random from 
the whole population. Then the chance that one of their c friends happens to be a particular one of 
my other friends would be c/n, where n is the size of the network. Thus in this network the 
probability of two of my friends being acquainted, which is by definition the clustering coefficient, 
would be just c/n. Of course it is not the case that everyone in a network has the same number of 
friends, and we will see how to perform better calculations of the clustering coefficient later 
(Section 13.4), but this crude calculation will serve our purposes for the moment. 

For the networks cited above, the value of c/n is 0.0003 (film actors), 0.00001 (biology 
collaborations), and 0.00002 (email messages). Thus the measured clustering coefficients are much 
larger than this estimate based on the assumption of random network connections. Even though the 
estimate ignores, as we have said, any variation in the number of friends people have, the disparity 
between the calculated and observed values of the clustering coefficient is so large that it seems 
unlikely it could be eliminated just by allowing the number of friends to vary. A much more likely 
explanation is that our other assumption, that people pick their friends at random, is seriously 
flawed. The numbers suggest that there is a much greater chance that two people will be 
acquainted if they have another common acquaintance than if they don’t. 

Although this argument is admittedly crude, we will see in Section 8.6 how to make it more 

 

 

 



accurate and so show that our basic conclusion is indeed correct.
Some social networks, such as the email network above, are directed networks. In calculating 

clustering coefficients for direct networks, scientists have typically just ignored their directed 
nature and applied Eq. (7.41) as if the edges were undirected. It is however possible to generalize 
transitivity to take account of directed links. If we have a directed relation between vertices such as 
“u likes v” then we can say that a triple of vertices is closed or transitive if u likes v, v likes w, 
and also u likes w. (Note that there are many distinct ways for such a triple to be transitive, 
depending on the directions of the edges. The example given here is only one of six different 
possibilities.) One can calculate a clustering coefficient or fraction of transitive triples in the 
obvious fashion for the directed case, counting all directed paths of length two that are closed and 
dividing by the total number of directed paths of length two. For some reason, however, such 
measurements have not often appeared in the literature. 

 

A transitive triple of vertices in a directed network. 
  

 

 



7.9.1 LOCAL CLUSTERING AND REDUNDANCY  

We can also define a clustering coefficient for a single vertex. For a vertex i, we define

 

(7.42) 
  

That is, to calculate Ci we go through all distinct pairs of vertices that are neighbors of i in the 
network, count the number of such pairs that are connected to each other, and divide by the total 
number of pairs, which is  where ki is the degree of i,. Ci is sometimes called the local 
clustering coefficient and it represents the average probability that a pair of i′s friends are friends 
of one another. 

Local clustering is interesting for several reasons. First, in many networks it is found empirically 
to have a rough dependence on degree, vertices with higher degree having a lower local clustering 
coefficient on average. This point is discussed in detail in Section 8.6.1. 

Second, local clustering can be used as a probe for the existence of so-called “structural holes” 
in a network. While it is common in many networks, especially social networks, for the neighbors 
of a vertex to be connected among themselves, it happens sometimes that these expected 
connections between neighbors are missing. The missing links are called structural holes and were 
first studied in this context by Burt [60]. If we are interested in efficient spread of information or 
other traffic around a network, as we were in Section 7.7, then structural holes are a bad thing—
they reduce the number of alternative routes information can take through the network. On the 
other hand structural holes can be a good thing for the central vertex i whose friends lack 
connections, because they give i power over information flow between those friends. If two friends 
of i are not connected directly and their information about one another comes instead via their 
mutual connection with i then i can control the flow of that information. The local clustering 
coefficient measures how influential i is in this sense, taking lower values the more structural holes 
there are in the network around i. Thus local clustering can be regarded as a type of centrality 
measure, albeit one that takes small values for powerful individuals rather than large ones. 

 

 

 

 

 



When the neighbors of a node are not connected to one another we say the network contains 
“structural holes.” 
  

In this sense, local clustering can also be thought of as akin to the betweenness centrality of 
Section 7.7. Where betweenness measures a vertex’s control over information flowing between all 
pairs of vertices in its component, local clustering is like a local version of betweenness that 
measures control over flows between just the immediate neighbors of a vertex. One measure is not 
necessarily better than another. There may be cases in which we want to take all vertices into 
account and others where we want to consider only immediate neighbors—the choice will depend 
on the particular questions we want to answer. It is worth pointing out however that betweenness is 
much more computationally intensive to calculate than local clustering (see Section 10.3.6), and 
that in practice betweenness and local clustering are strongly correlated [60]. There may in many 
cases be little to be gained by performing the more costly full calculation of betweenness and 
much to be saved by sticking with clustering, given that the two contain much the same 
information.101 

In his original studies of structural holes, Burt [60] did not in fact make use of the local 
clustering coefficient as a measure of the presence of holes.102 Instead, he used another measure, 
which he called redundancy. The original definition of redundancy was rather complicated, but 
Borgatti [50] has shown that it can be simplified to the following: the redundancy Ri of a vertex i is 
the mean number of connections from a neighbor of i to other neighbors of i. Consider the example 
shown in Fig. 7.5 in which vertex i has four neighbors. Each of those four could be acquainted 
with any of the three others, but in this case none of them is connected to all three. One is 
connected to none of the others, two are connected to one other, and the last is connected to two 

others. The redundancy is the average of these numbers . The minimum 
possible value of the redundancy of a vertex is zero and the maximum is ki − 1, where ki is the 
degree of vertex i. 

 

Figure 7.5: Redundancy. The neighbors of the central vertex in this figure have 0, 1, 1, and 2 
connections to other neighbors respectively. The redundancy is the mean of these values: 

. 
  

It’s probably obvious that Ri is related to the local clustering Ci. To see precisely what the 
relation is, we note that if the average number of connections from a friend of i to other friends is 

Ri, then the total number of connections between friends is  . And the total number of pairs of 

friends of i is  . The local clustering coefficient, Eq. (7.42), is the ratio of these two 
quantities:

 

 

 

 



(7.43) 
  

Given that ki − 1 is the maximum value of Ri, the local clustering coefficient can be thought of as 
simply a version of the redundancy rescaled to have a maximum value of 1. Applying Eq. (7.43) to 
the example of Fig. 7.5 implies that the local clustering coefficient for the central vertex should be 

, and the reader can easily verify that this is indeed the case. 
A third context in which the local clustering coefficient arises is in the calculation of the global 

clustering coefficient itself. Watts and Strogatz [323] proposed calculating a clustering coefficient 
for an entire network as the mean of the local clustering coefficients for each vertex:

 

(7.44) 
  

where n is the number of vertices in the network. This is a different definition for the clustering 
coefficient from the one given earlier, Eq. (7.41), and the two definitions are not equivalent. 
Furthermore, they can give substantially different numbers for a given network and because both 
definitions are in reasonably common use this can give rise to confusion. We favor our first 
definition for C, Eq. (7.41), because it has a simple interpretation and because it is normally easier 
to calculate. Also the second definition, Eq. (7.44), tends to be dominated by vertices with low 
degree, since they have small denominators in Eq. (7.42), and the measure thus gives a rather poor 
picture of the overall properties of any network with a significant number of such vertices.103 It’s 
worth noting, however, that the definition of Eq. (7.44) was actually proposed before Eq. (7.41) 
and, perhaps because of this, it finds moderately wide use in network studies. So you need at least 
to be aware of both definitions and clear which is being used in any particular situation. 

 

 

 



7.10 RECIPROCITY  

The clustering coefficient of Section 7.9 measures the frequency with which loops of length 
three—triangles—appear in a network. Of course, there is no reason why one should concentrate 
only on loops of length three, and people have occasionally looked at the frequency of loops of 
length four or more [44, 61,133,140, 238]. Triangles occupy a special place however because in an 
undirected simple graph the triangle is the shortest loop we can have (and usually the most 
commonly occurring). However, in a directed network this is not the case. In a directed network, 
we can have loops of length two—a pair of vertices between which there are directed edges 
running in both directions—and it is interesting to ask about the frequency of occurrence of these 
loops also. 

 

A loop of length two in a directed network. 
  

The frequency of loops of length two is measured by the reciprocity, and tells you how likely it 
is that a vertex that you point to also points back at you. For instance, on the World Wide Web if 
my web page links to your web page, how likely is it, on average, that yours link back again to 
mine? In general, it’s found that you are much more likely to link to me if I link to you than if I 
don’t. (That probably isn’t an Earth-shattering surprise, but it’s good to know when the data bear 
out one’s intuitions.) Similarly in friendship networks, such as the networks of schoolchildren 
described in Section 3.2 where respondents were asked to name their friends, it is much more 
likely that you will name me if I name you than if I do not. 

If there is a directed edge from vertex i to vertex j in a directed network and there is also an edge 
from j to i then we say the edge from i to j is reciprocated. (Obviously the edge from j to i is also 
reciprocated.) Pairs of edges like this are also sometimes called co-links, particularly in the context 
of the World Wide Web [104]. 

The reciprocity r is defined as the fraction of edges that are reciprocated. Noting that the product 
of adjacency matrix elements AijAji is 1 if and only if there is an edge from i to j and an edge from j 
to i and is zero otherwise, we can sum over all vertex pairs i, j to get an expression for the 
reciprocity:

 

(7.45) 

 

 

 

 



  

where m is, as usual, the total number of (directed) edges in the network. 
Consider for example this small network of four vertices:

 

There are seven directed edges in this network and four of them are reciprocated, so the reciprocity 

is . In fact, this is about the same value as seen on the World Wide Web. There is 
about a 57% percent chance that if web page A links to web page B then B also links back to A.104 
As another example, in a study of a network of who has whom in their email address book it was 
found that the reciprocity was about r = 0.23 [248].

 



7.11 SIGNED EDGES AND STRUCTURAL BALANCE  

In some social networks, and occasionally in other networks, edges are allowed to be either 
“positive” or “negative.” For instance, in an acquaintance network we could denote friendship by 
a positive edge and animosity by a negative edge:

 

One could also consider varying degrees of friendship or animosity—networks with more strongly 
positive or negative edges in them—but for the moment let’s stick to the simple case where each 
edge is in just one of two states, positive or negative, like or dislike. Such networks are called 
signed networks and their edges are called signed edges. 

It is important to be clear here that a negative edge is not the same as the absence of an edge. A 
negative edge indicates, for example, two people who interact regularly but dislike each other. The 
absence of an edge represents two people who do not interact. Whether they would like one 
another if they did interact is not recorded. 

Now consider the possible configurations of three edges in a triangle in a signed network, as 
depicted in Fig. 7.6. If “+” and “−” represent like and dislike, then we can imagine some of 
these configurations creating social problems if they were to arise between three people in the real 
world. Configuration (a) is fine: everyone likes everyone else. Configuration (b) is probably also 
fine, although the situation is more subtle than (a). Individuals u and v like one another and both 
dislike w, but the configuration can still be regarded as stable in the sense that u and v can agree 
over their dislike of w and get along just fine, while w hates both of them. No one is conflicted 
about their allegiances. 

Put another way, w is uʹs enemy and v is wʹs enemy, but there is no problem with u and v being 
friends if one considers that the “enemy of my enemy is my friend.” 

Configuration (c) however could be problematic. Individual u likes individual v and v likes w, 
but u thinks w is an idiot. This is going to place a strain on the friendship between u and v because 
u thinks vʹs friend is an idiot. Alternatively, from the point of view of v, v has two friends, u and w 
and they don’t get along, which puts v in an awkward position. In many real-life situations of this 
kind the tension would be resolved by one of the acquaintances being broken, i.e., the edge would 
be removed altogether. Perhaps v would simply stop talking to one of his friends, for instance. 

 

 

 



Figure 7.6: Possible triad configurations in a signed network. Configurations (a) and (b) are 
balanced and hence relatively stable, but configurations (c) and (d) are unbalanced and liable to 
break apart. 
  

Configuration (d) is somewhat ambiguous. On the one hand, it consists of three people who all 
dislike each other, so no one is in doubt about where things stand: everyone just hates everyone 
else. On the other hand, the “enemy of my enemy” rule does not apply here. Individuals u and v 
might like to form an alliance in recognition of their joint dislike of w, but find it difficult to do so 
because they also dislike each other. In some circumstances this might cause tension. (Think of the 
uneasy alliance of the US and Russia against Germany during World War II, for instance.) But 
what one can say definitely is that configuration (d) is often unstable. There may be little reason 
for the three to stay together when none of them likes the others. Quite probably three enemies 
such as these would simply sever their connections and go their separate ways. 

 

Two stable configurations in loops of length four. 
  

The feature that distinguishes the two stable configurations in Fig. 7.6 from the unstable ones is 
that they have an even number of minus signs around the loop.105 One can enumerate similar 
configurations for longer loops, of length four or greater, and again find that loops with even 
numbers of minus signs appear stable and those with odd numbers unstable. 

This alone would be an observation of only slight interest, where it not for the intriguing fact 
that this type of stability really does appear have an effect on the structure of networks. In surveys 
it is found that the unstable configurations in Fig. 7.6, the ones with odd numbers of minus signs, 
occur far less often in real social networks than the stable configurations with even numbers of 
minus signs. 

Networks containing only loops with even numbers of minus signs are said to show structural 
balance, or sometimes just balance. An important consequence of balance in networks was proved 
by Harary [154]:

A balanced network can be divided into connected groups of vertices such that all 
connections between members of the same group are positive and all connections between 
members of different groups are negative. 

 

 

 

 

 



Note that the groups in question can consist of a single vertex or many vertices, and there may be 
only one group or there may be very many. Figure 7.7 shows a balanced network and its division 
into groups. Networks that can be divided into groups like this are said to be clusterable. Harary’s 
theorem tells us that all balanced networks are clusterable. 

 

Figure 7.7: A balanced, clusterable network. Every loop in this network contains an even 
number of minus signs. The dotted lines indicate the division of the network into clusters such that 
all acquaintances within clusters have positive connections and all acquaintances in different 
clusters have negative connections. 
  

Harary’s theorem is straightforward to prove, and the proof is “constructive,” meaning that it 
shows not only when a network is clusterable but also tells us what the groups are.106 We consider 
initially only networks that are connected—they have just one component. In a moment we will 
relax this condition. We will color in the vertices of the network each in one of two colors, denoted 
by the open and filled circles in Fig. 7.7, for instance. We start with any vertex we please and color 
it with whichever color we please. Then we color in the others according to the following 
algorithm:

1. A vertex v connected by a positive edge to another u that has already been colored gets 
colored the same as u. 

2. A vertex v connected by a negative edge to another u that has already been colored gets 
colored the opposite color from u. 

For most networks it will happen in the course of this coloring process that we sometimes come 
upon a vertex whose color has already been assigned. When this happens there is the possibility of 
a conflict arising between the previously assigned color and the one that we would like to assign to 
it now according to the rules above. However, as we now show, this conflict only arises if the 
network as a whole is unbalanced. 

If in coloring in a network we come upon a vertex that has already been colored in, it 
immediately implies that there must be another path by which that vertex can be reached from our 
starting point and hence that there is at least one, and possibly more than one, loop in the network 
to which this vertex belongs—the loop consisting of the two paths between the starting point and 
the vertex. Since the network is balanced, every loop to which our vertex belongs must have an 
even number of negative edges around it. Now let us suppose that the color already assigned to the 
vertex is in conflict with the one we would like to assign it now. There are two ways in which this 
could happen, as illustrated in Fig. 7.8. In case (a), we color in a vertex u and then move onto its 
neighbor v, only to find that v has already been colored the opposite color to u, even though the 
edge between them is positive. This presents a problem. But if u and v are opposite colors, then 
around any loop containing them both there must be an odd number of minus signs, so that the 
color changes an odd number of times and ends up the opposite of what it started out as. And if 
there is an odd number of minus signs around the loop, then the network is not balanced. 

 

 

 



 

Figure 7.8: Proof that a balanced network is clusterable. If we fail to color a network in two 
colors as described in the text, then there must exist a loop in the network that has one or other of 
the two configurations shown here, both of which have an odd number of minus signs around them 
(counting the one between the vertices u and v), and hence the network is not balanced. 
  

In case (b) vertices u and v have the same color but the edge between them is negative. Again 
we have a problem. But if u and v are the same color then there must be an even number of 
negative edges around the rest of the loop connecting them which, along with the negative edge 
between u and v, gives us again an odd total number of negative edges around the entire loop, and 
hence the network is again not balanced. 

Either way, if we ever encounter a conflict about what color a vertex should have then the 
network must be unbalanced. If the network is balanced, therefore, we will never encounter such a 
conflict and we will be able to color the entire network with just two colors while obeying the 
rules. 

Once we have colored the network in this way, we can immediately deduce the identity of the 
groups that satisfy Harary’s theorem: we simply divide the network into contiguous clusters of 
vertices that have the same color—see Fig. 7.7 again. In every such cluster, since all vertices have 
the same color, they must be joined by positive edges. Conversely, all edges that connected 
different clusters must be negative, since the clusters have different colors. (If they did not have 
different colors they would be considered the same cluster.) 

Thus Hararyʹs theorem is proved and at the same time we have deduced a method for 
constructing the clusters.107 It only remains to extend the proof to networks that have more than 
one component, but this is trivial, since we can simply repeat the proof above for each component 
separately. 

The practical importance of Harary’s result rests on the fact that, as mentioned earlier, many real 
social networks are found naturally to be in a balanced or mostly balanced state. In such cases it 
would be possible, therefore, for the network to form into groups such that everyone likes others 
within their group with whom they have contact and dislikes those in other groups. It is widely 
assumed in social network theory that this does indeed often happen. Structural balance and 
clusterability in networks are thus a model for cliquishness or insularity, with people tending to 
stick together in like-minded groups and disdaining everyone outside their immediate community. 

It is worth asking whether the inverse of Harary’s clusterability theorem is also true. Is it also 
the case that a network that is clusterable is necessarily balanced? The answer is no, as this simple 
counter-example shows: 

 

 

 

 



In this network all three vertices dislike each other, so there is an odd number of minus signs 
around the loop, but there is no problem dividing the network into three clusters of one vertex each 
such that everyone dislikes the members of the other clusters. This network is clusterable but not 
balanced. 



7.12 SIMILARITY  

Another central concept in social network analysis is that of similarity between vertices. In what ways 
can vertices in a network be similar, and how can we quantify that similarity? Which vertices in a given 
network are most similar to one another? Which vertex v is most similar to a given vertex u? Answers to 
questions like these can help us tease apart the types and relationships of vertices in social networks, 
information networks, and others. For instance, one could imagine that it might be useful to have a list of 
web pages that are similar—in some appropriate sense—to another page that we specify. In fact, several 
web search engines already provide a feature like this: “Click here for pages similar to this one.” 

Similarity can be determined in many different ways and most of them have nothing to do with 
networks. For example, commercial dating and matchmaking services try to match people with others to 
whom they are similar by using descriptions of people’s interests, background, likes, and dislikes. In 
effect, these services are computing similarity measures between people based on personal 
characteristics. Our focus in this book, however, is on networks, so we will concentrate on the more 
limited problem of determining similarity between the vertices of a network using the information 
contained in the network structure. 

There are two fundamental approaches to constructing measures of network similarity, called 
structural equivalence and regular equivalence. The names are rather opaque, but the ideas they 
represent are simple enough. Two vertices in a network are structurally equivalent if they share many of 
the same network neighbors. In Fig. 7.9a we show a sketch depicting structural equivalence between two 
vertices i and j—the two share, in this case, three of the same neighbors, although both also have other 
neighbors that are not shared. 

Regular equivalence is more subtle. Two regularly equivalent vertices do not necessarily share the 
same neighbors, but they have neighbors who are themselves similar. Two history students at different 
universities, for example, may not have any friends in common, but they can still be similar in the sense 
that they both know a lot of other history students, history instructors, and so forth. Similarly, two CEOs 
at two different companies may have no colleagues in common, but they are similar in the sense that they 
have professional ties to their respective CFO, CIO, members of the board, company president, and so 
forth. Regular equivalence is illustrated in Fig. 7.9b. 

 

Figure 7.9: Structural equivalence and regular equivalence. (a) Vertices i and j are structurally 
equivalent if they share many of the same neighbors. (b) Vertices i and j are regularly equivalent if their 
neighbors are themselves equivalent (indicated here by the different shades of vertices). 
  

In the next few sections we describe some mathematical measures that quantify these ideas of 
similarity. As we will see, measures for structural equivalence are considerably better developed than 
those for regular equivalence. 

 

 

 



7.12.1 COSINE SIMILARITY  

We start by looking at measures of structural equivalence and we will concentrate on undirected 
networks. Perhaps the simplest and most obvious measure of structural equivalence would be just 
a count of the number of common neighbors two vertices have. In an undirected network the 
number nij of common neighbors of vertices i and j is given by 

 

(7.46) 
  

which is the ijth element of A2. This quantity is closely related to the “cocitation” measure 
introduced in Section 6.4.1. Cocitation is defined for directed networks whereas we are here 
considering undirected ones, but otherwise it is essentially the same thing. 

However, a simple count of common neighbors for two vertices is not on its own a very good 
measure of similarity. If two vertices have three common neighbors is that a lot or a little? It’s hard 
to tell unless we know, for instance, what the degrees of the vertices are, or how many common 
neighbors other pairs of vertices share. What we need is some sort of normalization that places the 
similarity value on some easily understood scale. One strategy might be simply to divide by the 
total number of vertices in the network n, since this is the maximum number of common neighbors 
two vertices can have in a simple graph. (Technically the maximum is actually n − 2, but the 
difference is small when n is large.) However, this unduly penalizes vertices with low degree: if a 
vertex has degree three, then it can have at most three neighbors in common with another vertex, 
but the two vertices would still receive a small similarity value if the divisor n were very large. A 
better measure would allow for the varying degrees of vertices. Such a measure is the cosine 
similarity, sometimes also called Salton’s cosine. 

In geometry, the inner or dot product of two vectors x and y is given by x‧y= |x| |y| cos θ, 
where |x| is the magnitude of x and θ is the angle between the two vectors. Rearranging, we can 
write the cosine of the angle as 

 

(7.47) 
  

Salton [290] proposed that we regard the ith and jth rows (or columns) of the adjacency matrix as 
two vectors and use the cosine of the angle between them as our similarity measure. Noting that 
the dot product of two rows is simply ∑kAikAkj for an undirected network, this gives us a similarity 

 

 

 

 



 

(7.48) 
  

Assuming our network is an unweighted simple graph, the elements of the adjacency matrix take 
only the values 0 and 1, so that  for all i, j. Then , where ki is the degree 
of vertex i (see Eq. (6.19)). Thus 

 

(7.49) 
  

The cosine similarity of i and j is therefore the number of common neighbors of the two vertices 
divided by the geometric mean of their degrees. For the vertices i and j depicted in Fig. 7.9a, for 
instance, the cosine similarity would be 

 

(7.50) 
  

Notice that the cosine similarity is technically undefined if one or both of the vertices has degree 
zero, but by convention we normally say in that case that σij = 0. 

The cosine similarity provides a natural scale for our similarity measure. Its value always lies in 
the range from 0 to 1. A cosine similarity of 1 indicates that two vertices have exactly the same 
neighbors. A cosine similarity of zero indicates that they have none of the same neighbors. Notice 
that the cosine similarity can never be negative, being a sum of positive terms, even though cosines 
in general can of course be negative. 

 

 

 

 

 

 



7.12.2 PEARSON COEFFICIENTS  

An alternative way to normalize the count of common neighbors is to compare it with the expected 
value that count would take on a network in which vertices choose their neighbors at random. This 
line of argument leads us to the Pearson correlation coefficient. 

Suppose vertices i and j have degrees ki and kj respectively. How many common neighbors 
should we expect them to have? This is straightforward to calculate if they choose their neighbors 
purely at random. Imagine that vertex i chooses ki neighbors uniformly at random from the n 
possibilities open to it (or n − 1 on a network without self-loops, but the distinction is slight for a 
large network), and vertex j similarly chooses kj neighbors at random. For the first neighbor that j 
chooses there is a probability of ki/n that it will choose one of the ones ki chose, and similarly for 
each succeeding choice. (We neglect the possibility of choosing the same neighbor twice, since it 
is small for a large network.) Then in total the expected number of common neighbors between the 
two vertices will be kj times this, or kikj/n. 

A reasonable measure of similarity between two vertices is the actual number of common 
neighbors they have minus the expected number that they would have if they chose their neighbors 
at random:

 

(7.51) 
  

where �Ai� denotes the mean n−1 ∑kAik of the elements of the ith row of the adjacency matrix. 

Equation (7.51) will be zero if the number of common neighbors of i and j is exactly what we 
would expect on the basis of random chance. If it is positive, then i and j have more neighbors than 
we would expect by chance, which we take as an indication of similarity between the two. 
Equation (7.51) can also be negative, indicating that i and j have fewer neighbors than we would 
expect, a possible sign of dissimilarity. 

Equation (7.51) is simply n times the covariance cov(Ai, Aj) of the two rows of the adjacency 
matrix. It is common to normalize the covariance, as we did with the cosine similarity, so that its 
maximum value is 1. The maximum value of the covariance of any two sets of quantities occurs 
when the sets are exactly the same, in which case their covariance is just equal to the variance of 
either set, which we could write as  or , or in symmetric form as σiσj. Normalizing by this 
quantity then gives us the standard Pearson correlation coefficient:

 

 



 

(7.52) 
  

This quantity lies strictly in the range −1 ≤ rij ≤ 1.
 

The Pearson coefficient is a widely used measure of similarity. It allows us to say when vertices 
are both similar or dissimilar compared with what we would expect if connections in the network 
were formed at random. 

 

 



7.12.3 OTHER MEASURES OF STRUCTURAL EQUIVALENCE  

There are many other possible measures of structural equivalence. For instance, one could also 
normalize the number nij of common neighbors by dividing by (rather than subtracting) the 
expected value of kikj/n. That would give us a similarity of

 

(7.53) 
  

This quantity will be 1 if the number of common neighbors is exactly as expected on the basis of 
chance, greater than one if there are more common neighbors than that, and less than one for 
dissimilar vertices with fewer common neighbors than we would expect by chance. It is never 
negative and has the nice property that it is zero when the vertices in question have no common 
neighbors. This measure could be looked upon as an alternative to the cosine similarity: the two 
differ in that one has the product of the degrees kikj in the denominator while the other has the 

square root of the product . It has been suggested that Eq. (7.53) may in some cases be a 
superior measure to the cosine similarity because, by normalizing with respect to the expected 
number of common neighbors rather than the maximum number, it allows us to easily identify 
statistically surprising coincidences between the neighborhoods of vertices, which cosine similarity 
does not [195]. 

Another measure of structural equivalence is the so-called Euclidean distance ,108 which is equal 
to the number of neighbors that differ between two vertices. That is, it is the number of vertices 
that are neighbors of i but not of j, or vice versa. Euclidean distance is really a dissimilarity 
measure, since it is larger for vertices that differ more. 

In terms of the adjacency matrix the Euclidean distance dij between two vertices can be written

 

(7.54) 
  

As with our other measures it is sometimes convenient to normalize the Euclidean distance by 
dividing by its possible maximum value. The maximum value of dij occurs when two vertices have 
no neighbors in common, in which case the distance is equal to the sum of the degrees of the 
vertices: dij = ki + kj. Dividing by this maximum value the normalized distance is

 

 

 

 

 



 

(7.55) 
  

where we have made use of the fact that  because Aij is always zero or one, and nij is again 
the number of neighbors that i and j have in common. To within additive and multiplicative 
constants, this normalized Euclidean distance can thus be regarded as just another alternative 
normalization of the number of common neighbors.

 



7.12.4 REGULAR EQUIVALENCE  

The similarity measures discussed in the preceding sections are all measures of structural 
equivalence, i.e., they are measures of the extent to which two vertices share the same neighbors. 
The other main type of similarity considered in social network analysis is regular equivalence. As 
described above, regularly equivalent vertices are vertices that, while they do not necessarily share 
neighbors, have neighbors who are themselves similar—see Fig. 7.9b again. 

Quantitative measures of regular equivalence are less well developed than measures of structural 
equivalence. In the 1970s social network analysts came up with some rather complicated computer 
algorithms, such as the “REGE” algorithm of White and Reitz [320, 327], that were intended to 
discover regular equivalence in networks, but the operation of these algorithms is involved and not 
easy to interpret. More recently, however, some simpler algebraic measures have been developed 
that appear to work reasonably well. The basic idea [45, 162, 195] is to define a similarity score σij 
such that i and j have high similarity if they have neighbors k and l that themselves have high 
similarity. For an undirected network we can write this as

 

(7.56) 
  

or in matrix terms σ = αAσA. Although it may not be immediately clear, this expression is a 
type of eigenvector equation, where the entire matrix σ of similarities is the eigenvector. The 
parameter α is the eigenvalue (or more correctly, its inverse) and, as with the eigenvector centrality 
of Section 7.2, we are normally interested in the leading eigenvalue, which can be found by 
standard methods. 

 

Vertices i and j are considered similar (dashed line) if they have respective neighbors k and l that 
are themselves similar. 
  

See Section 11.1 for a discussion of computer algorithms for finding eigenvectors. 

This formula however has some problems. First, it doesn’t necessarily give a high value for the 
“self-similarity” σii of a vertex to itself, which is counter-intuitive. Presumably, all vertices are 

 

 

 

 

 



highly similar to themselves! As a consequence of this, Eq. (7.56) also doesn’t necessarily give 
a high similarity score to vertex pairs that have a lot of common neighbors, which in the light of 
our examination of structural equivalence in the preceding few sections we perhaps feel it should. 
If we had high self-similarity scores for all vertices, on the other hand, then Eq. (7.56) would 
automatically give high similarity also to vertices with many common neighbors. 

We can fix these problems by introducing an extra diagonal term in the similarity thus:

 

(7.57) 
  

or in matrix notation

 

(7.58) 
  

However, while expressions like this have been proposed as similarity measures, they still suffer 
from some problems. Suppose we evaluate Eq. (7.58) by repeated iteration, taking a starting value, 
for example, of σ(0) = 0 and using it to compute σ(1) = αAσA + I, and then repeating the process 
many times until σ converges. On the first few iterations we will get the following results:

 

(7.59a) 
  

 

(7.59b) 
  

 

(7.59c) 
  

 

 

 

 

 

 

 

 

 



 

In the modified definition of regular equivalence vertex i is considered similar to vertex j (dashed 
line) if it has a neighbor k that is itself similar to j. 
  

The pattern is clear: in the limit of many iterations, we will get a sum over even powers of the 
adjacency matrix. However, as discussed in Section 6.10, the elements of the rth power of the 
adjacency matrix count paths of length r between vertices, and hence this measure of similarity is a 
weighted sum over the numbers of paths of even length between pairs of vertices. 

But why should we consider only paths of even length? Why not consider paths of all lengths? 
These questions lead us to a better definition of regular equivalence as follows: vertices i and j are 
similar if i has a neighbor k that is itself similar to j.109 Again we assume that vertices are similar to 
themselves, which we can represent with a diagonal δij term in the similarity, and our similarity 
measure then looks like

 

(7.60) 
  

or

 

(7.61) 
  

in matrix notation. Evaluating this expression by iterating again starting from σ(0) = 0, we get

 

(7.62a) 
  

 

 

 

 

 

 



 

(7.62b) 
  

 

(7.62c) 
  

In the limit of a large number of iterations this gives

 

(7.63) 
  

which we could also have deduced directly by rearranging Eq. (7.61). Now our similarity measure 
includes counts of paths at all lengths, not just even paths. In fact, we can see now that this 
similarity measure could be defined a completely different way, as a weighted count of all the 
paths between the vertices i and j with paths of length r getting weight αr. So long as α < 1, longer 
paths will get less weight than shorter ones, which seems sensible: in effect we are saying that 
vertices are similar if they are connected either by a few short paths or by very many long ones. 

Equation (7.63) is reminiscent of the formula for the Katz centrality, Eq. (7.10). We could call 
Eq. (7.63) the “Katz similarity” perhaps, although Katz himself never discussed it. The Katz 
centrality of a vertex would then be simply the sum of the Katz similarities of that vertex to all 
others. Vertices that are similar to many others would get high centrality, a concept that certainly 
makes intuitive sense. As with the Katz centrality, the value of the parameter α is undetermined—
we are free to choose it as we see fit—but it must satisfy α < 1/κ1 if the sum in Eq. (7.63) is to 
converge, where κ1 is the largest eigenvalue of the adjacency matrix. 

In a sense, this regular equivalence measure can be seen as a generalization of our structural 
equivalence measures in earlier sections. With those measures we were counting the common 
neighbors of a pair of vertices, but the number of common neighbors is also of course the number 
of paths of length two between the vertices. Our “Katz similarity” measure merely extends this 
concept to counting paths of all lengths. 

Some variations of this similarity measure are possible. As defined it tends to give high 
similarity to vertices that have high degree, because if a vertex has many neighbors it tends to 
increase the number of those neighbors that are similar to any other given vertex and hence 
increases the total similarity to that vertex. In some cases this might be desirable: maybe the person 
with many friends should be considered more similar to others than the person with few. However, 
in other cases it gives an unwanted bias in favor of high-degree nodes. Who is to say that two 
hermits are not “similar” in an interesting sense? If we wish, we can remove the bias in favor of 
high degree by dividing by vertex degree thus:

 

 

 

 

 



 

(7.64) 
  

or in matrix notation σ = αD−1Aσ + I, where, as previously, D is the diagonal matrix with 
elements Dii = ki. This expression can be rearranged to read:

 

(7.65) 
  

Another useful variant is to consider cases where the last term in Eqs. (7.60) or (7.64) is not 
simply diagonal, but includes off-diagonal terms too. Such a generalization would allow us to 
specify explicitly that particular pairs of vertices are similar, based on some other (probably non-
network) information that we have at our disposal. Going back to the example of CEOs at 
companies that we gave at the beginning of Section 7.12, we might, for example, want to state 
explicitly that the CFOs and CIOs and so forth at different companies are similar, and then our 
similarity measure would, we hope, correctly deduce from the network structure that the CEOs are 
similar also. This kind of approach is particularly useful in the case of networks that consist of 
more than one component, so that some pairs of vertices are not connected at all. If, for instance, 
we have two separate components representing people in two different companies, then there will 
be no paths of any length between individuals in different companies, and hence a measure like 
(7.60) or (7.64) will never assign a non-zero similarity to such individuals. If however, we 
explicitly insert some similarities between members of the different companies, our measure will 
then be able to generalize and extend those inputs to deduce similarities between other members. 

This idea of generalizing from a few given similarities arises in other contexts too. For example, 
in the fields of machine learning and information retrieval there is a considerable literature on how 
to generalize known similarities between a subset of the objects in a collection of, say, text 
documents to the rest of the collection, based on network data or other information. 

 

 

 



7.13 HOMOPHILY AND ASSORTATIVE MIXING  

Consider Fig. 7.10, which shows a friendship network of children at an American school, 
determined from a questionnaire of the type discussed in Section 3.2.111 One very clear feature that 
emerges from the figure is the division of the network into two groups. It turns out that this 
division is principally along lines of race. The different shades of the vertices in the picture 
correspond to students of different race as denoted in the legend, and reveal that the school is 
sharply divided between a group composed principally of black children and a group composed 
principally of white. 

 

Figure 7.10: Friendship network at a US high school. The vertices in this network represent 470 
students at a US high school (ages 14 to 18 years). The vertices are color coded by race as 
indicated in the key. Data from the National Longitudinal Study of Adolescent Health [34, 314]. 
  

This is not news to sociologists, who have long observed and discussed such divisions [225]. 
Nor is the effect specific to race. People are found to form friendships, acquaintances, business 
relations, and many other types of tie based on all sorts of characteristics, including age, 
nationality, language, income, educational level, and many others. Almost any social parameter 
you can imagine plays into people’s selection of their friends. People have, it appears, a strong 
tendency to associate with others whom they perceive as being similar to themselves in some way. 
This tendency is called homophily or assortative mixing. 

More rarely, one also encounters disassortative mixing, the tendency for people to associate 
with others who are unlike them. Probably the most widespread and familiar example of 

 

 

 



disassortative mixing is mixing by gender in sexual contact networks. The majority of sexual 
partnerships are between individuals of opposite sex, so they represent connections between people 
who differ in their gender. Of course, same-sex partnerships do also occur, but they are a much 
smaller fraction of the ties in the network. 

Assortative (or disassortative) mixing is also seen in some nonsocial networks. Papers in a 
citation network, for instance, tend to cite other papers in the same field more than they do papers 
in different fields. Web pages written in a particular language tend to link to others in the same 
language. 

In this section we look at how assortative mixing can be quantified. Assortative mixing by 
discrete characteristics such as race, gender, or nationality is fundamentally different from mixing 
by a scalar characteristic like age or income, so we treat the two cases separately. 



7.13.1 ASSORTATIVE MIXING BY ENUMERATIVE CHARACTERISTICS  

Suppose we have a network in which the vertices are classified according to some characteristic 
that has a finite set of possible values. The values are merely enumerative—they don’t fall in any 
particular order. For instance, the vertices could represent people and be classified according to 
nationality, race, or gender. Or they could be web pages classified by what language they are 
written in, or biological species classified by habitat, or any of many other possibilities. 

The network is assortative if a significant fraction of the edges in the network run between 
vertices of the same type, and a simple way to quantify assortativity would be to measure that 
fraction. However, this is not a very good measure because, for instance, it is 1 if all vertices 
belong to the same single type. This is a trivial sort of assortativity: all friends of a human being, 
for example, are also human beings,112 but this is not really an interesting statement. What we 
would like instead is a measure that is large in non-trivial cases but small in trivial ones. 

A good measure turns out to be the following. We find the fraction of edges that run between 
vertices of the same type, and then we subtract from that figure the fraction of such edges we 
would expect to find if edges were positioned at random without regard for vertex type. For the 
trivial case in which all vertices are of a single type, for instance, 100% of edges run between 
vertices of the same type, but this is also the expected figure, since there is nowhere else for the 
edges to fall. The difference of the two numbers is then zero, telling us that there is no non-trivial 
assortativity in this case. Only when the fraction of edges between vertices of the same type is 
significantly greater than we would expect on the basis of chance will our measure give a positive 
score. 

In mathematical terms, let us denote by ci the class or type of vertex i, which is an integer 1 ... 
nc , with nc being the total number of classes. Then the total number of edges that run between 
vertices of the same type is

 

(7.66) 
  

where δ(m, n) is the Kronecker delta and the factor of  accounts for the fact that every vertex 
pair i, j is counted twice in the second sum. 

Calculating the expected number of edges between vertices if edges are placed at random takes a 
little more work. Consider a particular edge attached to vertex i, which has degree ki. There are by 
definition 2m ends of edges in the entire network, where m is as usual the total number of edges, 
and the chances that the other end of our particular edge is one of the kj ends attached to vertex j is 
thus kj/2m if connections are made purely at random.113 Counting all ki edges attached to i, the total 
expected number of edges between vertices i and j is then kikj/2m, and the expected number of 
edges between all pairs of vertices of the same type is

 

 

 

 



(7.67) 
  

where the factor of , as before, prevents us from double-counting vertex pairs. Taking the 
difference of (7.66) and (7.67) then gives us an expression for the difference between the actual 
and expected number of edges in the network that join vertices of like types:

 

(7.68) 
  

Conventionally, one calculates not the number of such edges but the fraction, which is given by 
this same expression divided by the number m of edges:

 

(7.69) 
  

This quantity Q is called the modularity [239, 250] and is a measure of the extent to which like is 
connected to like in a network. It is strictly less than 1, takes positive values if there are more 
edges between vertices of the same type than we would expect by chance, and negative ones if 
there are less. 

For Fig. 7.10, for instance, where the types are the three ethnic classifications “black,” “white,” 
and “other,” we find a modularity value of Q = 0.305, indicating (positive) assortative mixing by 
race in this particular network.114 Negative values of the modularity indicate disassortative mixing. 
We might see a negative modularity, for example, in a network of sexual partnerships where most 
partnerships were between individuals of opposite sex. 

The quantity

 

(7.70) 
  

in Eq. (7.69) appears in a number of situations in the study of networks. We will encounter it, 
for instance, in Section 11.8 when we study community detection in networks. In some contexts it 
is useful to consider Bij to be an element of a matrix B, which itself is called the modularity matrix. 

The modularity, Eq. (7.69), is always less than 1 but in general it does not achieve the value Q = 
1 even for a perfectly mixed network, one in which every vertex is connected only to others of the 

 

 

 

 

 



same type. Depending on the sizes of the groups and the degrees of vertices, the maximum value 
of Q can be considerably less than 1. This is in some ways unsatisfactory: how is one to know 
when one has strong assortative mixing and when one doesn’t? To rectify the problem, we can 
normalize Q by dividing by its value for the perfectly mixed network. With perfect mixing all 
edges fall between vertices of the same type and hence δ(ci,cj) = 1 whenever Aij = 1. This means 
that the first term in the sum in Eq. (7.69) sums to 2m and the modularity for the perfectly mixed 
network is

 

(7.71) 
  

Then the normalized value of the modularity is given by

 

(7.72) 
  

This quantity, sometimes called an assortativity coefficient, now takes a maximum value of 1 on a 
perfectly mixed network. 

Although it can be a useful measure in some circumstances, however, Eq. (7.72) is only rarely 
used. Most often, the modularity is used in its unnormalized form, Eq. (7.69). 

An alternative form for the modularity, which is sometimes useful in practical situations, can be 
derived in terms of the quantities

 

(7.73) 
  

which is the fraction of edges that join vertices of type r to vertices of type s, and

 

(7.74) 
  

 

 

 

 

 

 



which is the fraction of ends of edges attached to vertices of type r. Then, noting that

 

(7.75) 
  

we have, from Eq. (7.69)

 

(7.76) 
  

This form can be useful, for instance, when we have network data in the form of a list of edges and 
the types of the vertices at their ends, but no explicit data on vertex degrees. In such a case ers and 
ar are relatively easy to calculate, while Eq. (7.69) is quite awkward. 

 

 

 



7.13.2 ASSORTATIVE MIXING BY SCALAR CHARACTERISTICS  

We can also have homophily in a network according to scalar characteristics like age or income. 
These are characteristics whose values come in a particular order, so that it is possible say not only 
when two vertices are exactly the same according to the characteristic but also when they are 
approximately the same. For instance, while two people can certainly be of exactly the same age—
born on the same day even—they can also be approximately the same age—born within a couple 
of years of one another, say—and people could (and in fact often do) choose who they associate 
with on the basis of such approximate ages. There is no equivalent approximate similarity for the 
enumerative characteristics of the previous section: there is no sense in which people from France 
and Germany, say, are more nearly of the same nationality than people from France and Spain.115 

If network vertices with similar values of a scalar characteristic tend to be connected together 
more often that those with different values then the network is considered assortatively mixed 
according to that characteristic. If, for example, people are friends with others around the same age 
as them, then the network is assortatively mixed by age. Sometimes you may also hear it said that 
the network is stratified by age, which means the same thing—one can think of age as a one-
dimensional scale or axis, with individuals of different ages forming connected “strata” within the 
network. 

 

A sketch of stratified network in which most connections run between vertices at or near the same 
“level” in the network, with level along the vertical axis in this case and also denoted by the 
shades of the vertices. 
  

Consider Fig. 7.11, which shows friendship data for the same set of US schoolchildren as Fig. 
7.10 but now as a function of age. Each dot in the figure corresponds to one pair of friends and the 
position of the dot along the two axes gives the ages of the friends, with ages measured by school 
grades.116 As the figure shows, there is substantial assortative mixing by age among the students: 
many dots lie within the boxes close to the diagonal line that represent friendships between 

 

 

 



students in the same grade. There is also, in this case, a notable tendency for students to have 
more friends of a wider range of ages as their age increases so there is a lower density of points in 
the top right box than in the lower left one. 

 

Figure 7.11: Ages of pairs of friends in high school. In this scatter plot each dot corresponds to 
one of the edges in Fig. 7.10, and its position along the horizontal and vertical axes gives the ages 
of the two individuals at either end of that edge. The ages are measured in terms of the grades of 
the students, which run from 9 to 12. In fact, grades in the US school system don’t correspond 
precisely to age since students can start or end their high-school careers early or late, and can 
repeat grades. (Each student is positioned at random within the interval representing their grade, so 
as to spread the points out on the plot. Note also that each friendship appears twice, above and 
below the diagonal.) 
  

One could make a crude measure of assortative mixing by scalar characteristics by adapting the 
ideas of the previous section. One could group the vertices into bins according to the characteristic 
of interest (say age) and then treat the bins as separate “types” of vertex in the sense of Section 
7.13.1. For instance, we might group people by age in ranges of one year or ten years. This 
however misses much of the point about scalar characteristics, since it considers vertices falling in 
the same bin to be of identical types when they may be only approximately so, and vertices falling 
in different bins to be entirely different when in fact they may be quite similar. 

A better approach is to use a covariance measure as follows. Let xi be the value for vertex i of 
the scalar quantity (age, income, etc.) that we are interested in. Consider the pairs of values (xi, xj) 
for the vertices at the ends of each edge (i, j) in the network and let us calculate their covariance 
over all edges as follows. We define the mean μ of the value of xi at the end of an edge thus:

 

(7.77) 
  

 

 

 



Note that this is not simply the mean value of xi averaged over all vertices. It is an average over 
edges, and since a vertex with degree ki lies at the ends of ki edges it appears ki times in the average 
(hence the factor of ki in the sum). 

Then the covariance of xi and xj over edges is

 

(7.78) 
  

where we have made use of Eqs. (6.21) and (7.77). Note the strong similarity between this 
expression and Eq. (7.69) for the modularity—only the delta function δ(ci , cj) in (7.69) has 
changed, being replaced by xixj. 

The covariance will be positive if, on balance, values xi, xj at either end of an edge tend to be 
both large or both small and negative if they tend to vary in opposite directions. In other words, the 
covariance will be positive when we have assortative mixing and negative for disassortative 
mixing. 

Just as with the modularity measure of Section 7.13.1, it is sometimes convenient to normalize 
the covariance so that it takes the value 1 in a perfectly mixed network—one in which all edges 
fall between vertices with precisely equal values of xi (although in most cases such an occurrence 
would be extremely unlikely in practice). Putting xj = xi in Eq. (7.78) gives a perfect mixing value 
of

 

(7.79) 
  

and the normalized measure, sometimes called an assortativity coefficient, is the ratio of the 
two:

 

 

 

 

 



(7.80) 
  

Although it may not be immediately obvious, this is in fact an example of a (Pearson) correlation 
coefficient, having a covariance in its numerator and a variance in the denominator. We 
encountered another example in a different context in Section 7.12.2. The correlation coefficient 
varies in value between a maximum of 1 for a perfectly assortative network and a minimum of −1 
for a perfectly disassortative one. A value of zero implies that the values of xi at the ends of edges 
are uncorrelated.117 

For the data of Fig. 7.11 the correlation coefficient is found to take a value of r = 0.616, 
indicating that the student friendship network has significant assortative mixing by age—students 
tend to be friends with others who have ages close to theirs. 

It would be possible in principle also to have assortative (or disassortative) mixing according to 
vector characteristics, with vertices whose vectors have similar values, as measured by some 
appropriate metric, being more (or less) likely to be connected by an edge. One example of such 
mixing is the formation of friendships between individuals according to their geographic locations, 
location being specified by a two-dimensional vector of, for example, latitude/longitude 
coordinates. It is certainly the case that in general people tend to be friends with others who live 
geographically close to them, so one would expect mixing of this type to be assortative. Formal 
treatments of vector assortative mixing, however, have not been much pursued in the network 
literature so far. 

 



7.13.3 ASSORTATIVE MIXING BY DEGREE  

A special case of assortative mixing according to a scalar quantity, and one of particular interest, is 
that of mixing by degree. In a network that shows assortative mixing by degree the high-degree 
vertices will be preferentially connected to other high-degree vertices, and the low to low. In a 
social network, for example, we have assortative mixing by degree if the gregarious people are 
friends with other gregarious people and the hermits with other hermits. Conversely, we could 
have disassortative mixing by degree, which would mean that the gregarious people were hanging 
out with hermits and vice versa. 

The reason this particular case is interesting is because, unlike age or income, degree is itself a 
property of the network structure. Having one structural property (the degrees) dictate another (the 
positions of the edges) gives rise to some interesting features in networks. In particular, in an 
assortative network, where the high-degree nodes tend to stick together, one expects to get a clump 
or core of such high-degree nodes in the network surrounded by a less dense periphery of nodes 
with lower-degree. This core/periphery structure is a common feature of social networks, many of 
which are found to be assortatively mixed by degree. Figure 7.12a shows a small assortatively 
mixed network in which the core/periphery structure is clearly visible. 

On the other hand, if a network is disassortatively mixed by degree then high-degree vertices 
tend to connected to low-degree ones, creating star-like features in the network that are often 
readily visible. Figure 7.12b shows an example of a small disassortative network. Disassortatively 
networks do not usually have a core/periphery split but are instead more uniform. 

Assortative mixing by degree can be measured in the same way as mixing according to any 
other scalar quantity. We define a covariance of the type described by Eq. (7.78), but with xi now 
equal to the degree ki: 

 

(7.81) 
  

or if we wish we can normalize by the maximum value of the covariance to get a correlation 
coefficient or assortativity coefficient:

 

(7.82) 
  

We give examples of the application of this formula to a number of networks in Section 8.7. 
One point to notice is that the evaluation of Eq. (7.81) or Eq. (7.82) requires only the structure 

of the network and no other information (unlike the calculations for other forms of assortative 

 

 

 

 



mixing). Once we know the adjacency matrix (and hence the degrees) of all vertices we can 
calculate r. Perhaps for this reason mixing by degree is one of the most frequently studied types of 
assortative mixing. 

 

Figure 7.12: Assortative and disassortative networks. These two small networks are not real 
networks—they were computer generated to display the phenomenon of assortativity by degree. 
(a) A network that is assortative by degree, displaying the characteristic dense core of high-degree 
vertices surrounded by a periphery of lower-degree ones. (b) A disassortative network, displaying 
the star-like structures characteristic of this case. Figure from Newman and Girvan [249]. 
Copyright 2003 Springer-Verlag Berlin Heidelberg. Reproduced with kind permission of Springer 
Science and Business Media. 
  

 

 

 

 



PROBLEMS  

7.1 Consider a k-regular undirected network (i.e., a network in which every vertex has degree k). 

a. Show that the vector 1 = (1, 1, 1, ...) is an eigenvector of the adjacency matrix with 
eigenvalue k. 

b. By making use of the fact that eigenvectors are orthogonal (or otherwise), show that there 
is no other eigenvector that has all elements positive. The Perron- Frobenius theorem says 
that the eigenvector with the largest eigenvalue always has all elements non-negative (see 
footnote 2 on page 346), and hence the eigenvector 1 gives, by definition, the eigenvector 
centrality of our k-regular network and the centralities are the same for every vertex. 

c. Find the Katz centralities of all vertices in a k-regular network. 
d. You should have found that, as with the eigenvector centrality, the Katz centralities of all 

vertices in the network are the same. Name a centrality measure that could give different 
centrality values for different vertices in a regular network. 

7.2 Suppose a directed network takes the form of a tree with all edges pointing inward towards a 
central vertex:

 

What is the PageRank centrality of the central vertex in terms of the single parameter α appearing 
in the definition of PageRank and the geodesic distances di from each vertex i to the central 
vertex? 

7.3 Consider an undirected tree of n vertices. A particular edge in the tree joins vertices 1 and 2 
and divides the tree into two disjoint regions of n1 and n2 vertices as sketched here:

 

 

 



 

Show that the closeness centralities C1 and C2 of the two vertices, defined according to Eq. (7.29), 
are related by

 

7.4 Consider an undirected (connected) tree of n vertices. Suppose that a particular vertex in the 
tree has degree k, so that its removal would divide the tree into k disjoint regions, and suppose that 
the sizes of those regions are n1 ... nk. 

a. Show that the unnormalized betweenness centrality x of the vertex, as defined in Eq. (7.36), 
is

 

b. Hence, or otherwise, calculate the betweenness of the ith vertex from the end of a “line 
graph” of n vertices, i.e., n vertices in a row like this:

 

7.5 Consider these three networks:

 

a. Find a 3-core in the first network. 
b. What is the reciprocity of the second network? 
c. What is the cosine similarity of vertices A and B in the third network? 

 

 

 

 

 



7.6 Among all pairs of vertices in a directed network that are connected by an edge or edges, 
suppose that half are connected in only one direction and the rest are connected in both directions. 
What is the reciprocity of the network? 
  

7.7 In this network + and − indicate pairs of people who like each other or don′t, respectively:

 

a. Is the network structurally balanced and why? 
b. Is it clusterable and, if so, what are the clusters? 

7.8 In a survey of couples in the US city of San Francisco, Catania et al. [65] recorded, among 
other things, the ethnicity of their interviewees and calculated the fraction of couples whose 
members were from each possible pairing of ethnic groups. The fractions were as follows:

 

Assuming the couples interviewed to be a representative sample of the edges in the undirected 
network of relationships for the community studied, and treating the vertices as being of four 
types—black, Hispanic, white, and other—calculate the numbers err and ar that appear in Eq. 
(7.76) for each type. Hence calculate the modularity of the network with respect to ethnicity.

 

 

 



CHAPTER 8 

THE LARGE-SCALE STRUCTURE OF NETWORKS 

A discussion of some of the recurring patterns and structures revealed when we apply the 
concepts developed in previous chapters to the study of real-world networks 

IN PREVIOUS chapters of this book we have looked at different types of natural and man-made 
networks and techniques for determining their structure (Chapters 2 to 5), the mathematics used to 
represent networks formally (Chapter 6), and the measures and metrics used to quantify network 
structure (Chapter 7). In this chapter we combine what we have learned so far, applying our 
theoretical ideas and measures to empirical network data to get a picture of what networks look 
like in the real world. 

As we will see, there are a number of common recurring patterns seen in network structures, 
patterns that can have a profound effect on the way networked systems work. Among other things, 
we discuss in this chapter component sizes, path lengths and the small-world effect, degree 
distributions and power laws, and clustering coefficients.

 

 

 



8.1 COMPONENTS  

We begin our discussion of the structure of real-world networks with a look at component sizes. In 
an undirected network, we typically find that there is a large component that fills most of the 
network—usually more than half and not infrequently over 90%—while the rest of the network is 
divided into a large number of small components disconnected from the rest. This situation is 
sketched in Fig. 8.1. (The large component is often referred to as the “giant component,” although 
this is a slightly sloppy usage. As discussed in Section 12.5, the words “giant component” have a 
specific meaning in network theory and are not precisely synonymous with “largest component.” 
In this book we will be careful to distinguish between “largest” and “giant.”) 

A typical example of this kind of behavior is the network of film actors discussed in Section 3.5. 
In this network the vertices represent actors in movies and there is an edge between two actors if 
they have ever appeared in the same movie. In a version of the network from May 2000 [253], it 
was found that 440 971 out of 449 913 actors were connected together in the largest component, or 
about 98%. Thus just 2% of actors were not part of the largest component. 

 

Figure 8.1: Components in an undirected network. In most undirected networks there is a 
single large component occupying a majority, or at least a significant fraction, of the network, 
along with a number of small components, typically consisting of only a handful of vertices each. 
  

See Section 6.11.1 for the definition of a weakly connected component. 

Table 8.1 summarizes the properties of many of the networks discussed in this chapter, and 
gives, among other things, the size S of the largest component in each case as a fraction of total 

 

 

 

 



network size. (For the directed networks in the table it is the size of the largest weakly 
connected component that is quoted. Component sizes in directed networks are discussed further in 
the following section.) As we can see from the table our figure for the actor network is quite 
typical for the networks listed and not unusually large. 

As the table also shows, there are quite a few networks for which the largest component fills the 
entire network so that S = 1, i.e., the network has only a single component and no smaller 
components. In the cases where this happens there is usually a good reason. For instance, the 
Internet is a communication network—its reason for existence is to provide connections between 
its nodes. There must be at least one path from your vertex to your friend’s vertex if the network is 
to serve its purpose of allowing your and your friend to communicate. To put it another way, there 
would be no point in being a part of the Internet if you are not part of its largest component, since 
that would mean that you are disconnected from and unable to communicate with almost everyone 
else. Thus there is a strong pressure on every vertex of the Internet to be part of the largest 
component and thus for the largest component to fill the entire network. In other cases the largest 
component fills the network because of the way the network is measured. The first Web network 
listed in the table, for instance, is derived from a single web crawl, as described in Section 4.1. 
Since a crawler can only find a web page if that page is linked to by another page, it follows 
automatically that all pages found by a single crawl will be connected into a single component. A 
Web network may, however, have more than one component if, like the ʺAlta Vistaʺ network in 
the table, it is assembled using several web crawls starting from different locations. 

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of 
network, directed or undirected; total number of vertices n; total number of edges m; mean degree 
c; fraction of vertices in the largest component S (or the largest weakly connected component in 
the case of a directed network); mean geodesic distance between connected vertex pairs ℓ; 
exponent α of the degree distribution if the distribution follows a power law (or “-” if not; in/out-
degree exponents are given for directed graphs); clustering coefficient C from Eq. (7.41); 
clustering coefficient CWS from the alternative definition of Eq. (7.44); and the degree correlation 

 



coefficient r from Eq. (7.82). The last column gives the citation(s) for each network in the 
bibliography. Blank entries indicate unavailable data. 
  

Can a network have two or more large components that fill a sizable fraction of the entire graph? 
Usually the answer to this question is no. We will study this point in more detail in Section 12.6, 
but the basic argument is this. If we had a network of n vertices that was divided into two large 
components of about  vertices each, then there would be  possible pairs of vertices such that 
one vertex was in one large component and the other vertex in the other large component. If there 
is an edge between any of these pairs of vertices, then the two components are joined together and 
are in fact just one component. For example, in our network of movie actors, with half a million 
vertices, there would about 50 billion pairs, only one of which would have to be joined by an edge 
to join the two large components into one. Except in very special cases, it is highly unlikely that 
not one such pair would be connected, and hence also highly unlikely that we will have two large 
components. 

And what about networks with no large component? It is certainly possible for networks to 
consist only of small components, small groups of vertices connected among themselves but not 
connected to the rest of the world. An example would be the network of immediate family ties, in 
which two people are considered connected if they are family members living under the same roof. 
Such a network is clearly broken into many small components consisting of individual families, 
with no large component at all. In practice, however, situations like this arise rather infrequently in 
the study of networks for the anthropocentric reason that people don’t usually bother to represent 
such situations by networks at all. Network representations of systems are normally only useful if 
most of the network is connected together. If a network is so sparse as to be made only of small 
components, then there is normally little to be gained by applying techniques like those described 
in this book. Thus, essentially all of the networks we will be looking at do contain a large 
component (and certainly all those in Table 8.1, although for some of them the size of that 
component has not been measured and the relevant entry in the table is blank). 

So the basic picture we have of the structure of most networks is that of Fig. 8.1, of a large 
component filling most of the network, sometimes all of it, and perhaps some other small 
components that are not connected to the bulk of the network.

 



8.1.1 COMPONENTS IN DIRECTED NETWORKS  

As discussed in Section 6.11, the component structure of directed networks is more complicated 
than for undirected ones. Directed graphs have weakly and strongly connected components. The 
weakly connected components correspond closely to the concept of a component in an undirected 
graph, and the typical situation for weakly connected components is similar to that for undirected 
graphs: there is usually one large weakly connected component plus, optionally, other small ones. 
Figures for the sizes of the largest weakly connected components in several directed network are 
given in Table 8.1. 

A strongly connected component, as described in Section 6.11, is a maximal subset of vertices 
in a network such that each can reach and is reachable from all of the others along a directed path. 
As with weakly connected components, there is typically one large strongly connected component 
in a directed network and a selection of small ones. The largest strongly connected component of 
the World Wide Web, for instance, fills about a quarter of network [56]. 

Associated with each strongly connected component is an out-component (the set of all vertices 
that can be reached from any starting point in the strongly connected component along a directed 
path) and an in-component (the set of vertices from which the strongly connected component can 
be reached). By their definition, in–and out-components are supersets of the strongly connected 
component to which they belong and if there is a large strongly connected component then the 
corresponding in–and out-components will often contain many vertices that lie outside the strongly 
connected component. In the Web, for example, the portion of the in–and out-components that lie 
outside the largest strongly connected component each also occupy about a quarter of the network 
[56]. 

Each of the small strongly connected components will have its own in–and out-components 
also. Often these will themselves be small, but they need not be. It can happen that a small strongly 
connected component C is connected by a directed path to the large strongly connected 
component, in which case the out-component of the large strongly connected component belongs 
to (and probably forms the bulk of) Cʹs out-component. Notice that the large out-component can 
be reachable from many small components in this way—the out-components of different strongly 
connected components can overlap in directed networks and any vertex can and usually does 
belong to many out-components. Similar arguments apply, of course, for in-components as well. 

 

Figure 8.2: The “bow tie” diagram of components in a directed network. The typical directed 

 

 



network consists of one large strongly connected component and many small ones, each with an 
in-component and an out-component. Note that by definition each in-component includes the 
corresponding strongly connected component as a subset, as does each out-component. The largest 
strongly connected component and its inand out-components typically occupy a significant fraction 
of the whole network. The percentages shown here indicate how much of the network is taken up 
by each part of the bow tie in the case of the World Wide Web. After Broder et al. [56]. 
  

The overall picture for a directed network can be represented using the “bow tie” diagram 
introduced by Broder and co-workers [56]. In Fig. 8.2 we show the bow tie for the case of the 
World Wide Web, including percentages (from Ref. [56]) for the fraction of the network occupied 
by its different parts. 

Not all directed networks have a large strongly connected component. In particular, any acyclic 
directed network has no strongly connected components of size greater than one since if two 
vertices belong to the same strongly connected component then by definition there exists a directed 
path through the network in both directions between them, and hence there is a cycle from one 
vertex to the other and back. Thus if there are no cycles in a network there can be no strongly 
connected components with two or more vertices. Real-life networks are not usually perfectly 
acyclic, but some, such as citation networks (Section 4.2) are approximately so. Such networks 
typically have a few small strongly connected components of two or perhaps three vertices each, 
but no large ones. 

 



8.2 SHORTEST PATHS AND THE SMALL-WORLD EFFECT  

One of the most remarkable and widely discussed of network phenomena is the small-world effect, 
the finding that in many—perhaps most—networks the typical network distances between vertices 
are surprisingly small. In Section 3.6 we discussed Stanley Milgram’s letter-passing experiment in 
the 1960s, in which people were asked to get a letter from an initial holder to a distant target 
person by passing it from acquaintance to acquaintance through the social network. The letters that 
made it to the target did so in a remarkably small number of steps, around six on average. 
Milgram’s experiment is a beautiful and powerful demonstration of the small-world effect, 
although also a rather poorly controlled one. But with the very complete network data we have for 
many networks these days it is now possible to measure directly the path lengths between vertices 
and verify the small-world effect explicitly. 

In Section 7.6 we defined the mean distance ℓ between vertices in a network (see Eqs. (7.31) 
and (7.32)). In mathematical terms, the small-world effect is the hypothesis that this mean distance 
is small, in a sense that will be defined shortly. In Table 8.1 we list the value of ℓ for each of the 
networks in the table, and we see that indeed it takes quite small values, always less than 20 and 
usually less than 10, even though some of the networks have millions of vertices. 

One can well imagine that the small-world effect could have substantial implications for 
networked systems. Suppose a rumor is spread over a social network for instance (or a disease for 
that matter). Clearly it will reach people much faster if it is only about six steps from any person to 
any other than if it is a hundred, or a million. Similarly, the speed with which one can get a 
response from another computer on the Internet depends on how many steps or “hops” data 
packets have to make as they traverse the network. Clearly a network in which the typical number 
of hops is only ten or twenty will perform much better than one in which it is ten times as much. 
(While this point was not articulated by the original designers of the Internet in the 1960s, they 
must have had some idea of its truth, even if only vaguely, to believe that a network like the 
Internet could be built and made to work.) 

In fact, once one looks more deeply into the mathematics of networks, which we will do in later 
chapters, one discovers that the small-world effect is not so surprising after all. As we will see in 
Section 12.7, mathematical models of networks suggest that path lengths in networks should 
typically scale as log n with the number n of network vertices, and should therefore tend to remain 
small even for large networks because the logarithm is a slowly growing function of its argument. 

 

The shortest path from i to j in this network has length 1, but the shortest path from j to i has length 
2. 
  

One can ask about path lengths on directed networks as well, although the situation is more 
complicated there. Since in general the path from vertex i to vertex j is different in a directed 

 

 

 



network from the path from j to i, the two paths can have different lengths. Our average distance 
ℓ should therefore include terms for both distances separately. It’s also possible for there to be no 
path in one direction between two vertices, which we would conventionally denote by setting dij = 
∞. As before we could get around the problems caused by the infinite values by defining ℓ as an 
average over only the finite ones, as in Eq. (7.32). Values calculated in this way are given for the 
directed networks in Table 8.1. One could also (and perhaps more elegantly) use a harmonic mean 
as in Eq. (7.34), although this is rarely done. 

One can also examine the diameter of a network, which, as described in Section 6.10.1, is the 
length of the longest finite geodesic path anywhere in the network. The diameter is usually found 
to be relatively small as well and calculations using network models suggest that it should scale 
logarithmically with n just as the average distance does. The diameter is in general a less useful 
measure of real-world network behavior than mean distance, since it really only measures the 
distance between one specific pair of vertices at the extreme end of the distribution of distances. 
Moreover, the diameter of a network could be affected substantially by a small change to only a 
single vertex or a few vertices, which makes it a poor indicator of the behavior of the network as a 
whole. Nonetheless, there are cases where it is of interest. In Section 8.4 we discuss so-called 
“scale-free” networks, i.e., networks with power-law degree distributions. Such networks are 
believed to have an unusual structure consisting of a central “core” to the network that contains 
most of the vertices and has a mean geodesic distance between vertex pairs that scales only as log 
log n with network size, and not as log n, making the mean distance for the whole network scale as 
log log n also. Outside of this core there are longer “streamers” or “tendrils” of vertices attached to 
the core like hair, which have length typically of order log n, making the diameter of the network 
of order log n [67, 75]. This sort of behavior could be detected by measuring separately the mean 
geodesic distance and diameter of networks of various sizes to confirm that they vary differently 
with n. (It’s worth noting, however, that behavior of the form log log n is very difficult to confirm 
in real-world data because log log n is a very slowly varying function of n.) 

Another interesting twist on the small-world effect was discussed by Milgram in his original 
paper on the problem. He noticed, in the course of his letter-passing experiments, that most of the 
letters destined for a given target person passed through just one or two acquaintances of the target. 
Thus, it appeared, most people who knew the target person knew him through these one or two 
people. This idea, that one or two of your acquaintances are especially well connected and 
responsible for most of the connection between you and the rest of the world has been dubbed 
funneling, and it too is something we can test against complete networks with the copious data 
available to us today. If, for instance, we focus on geodesic paths between vertices, as we have 
been doing in this section, then we could measure what fraction of the shortest paths between a 
vertex i and every other reachable vertex go through each of i’s neighbors in the network. For 
many networks, this measurement does reveal a funneling effect. For instance, in the coauthorship 
network of physicists from Table 8.1 it is found that, for physicists having five or more 
collaborators, 48% of geodesic paths go through one neighbor of the average vertex, the remaining 
52% being distributed over the other four or more neighbors. A similar result is seen in the 
Internet. Among nodes having degree five or greater in a May 2005 snapshot of Internet structure 
at the autonomous system level, an average of 49% of geodesic paths go through one neighbor of 
the average vertex. It is tempting to draw conclusions about the routing of Internet packets from 
this latter result—perhaps that the network will tend to overload a small number of well-connected 
nodes rather than distributing load more evenly—but it is worth noticing that, although Internet 
packets tended to be routed along shortest paths during the early days of the Internet, much more 
sophisticated routing strategies are in place today, so statistics for shortest paths may not reflect 
actual packet flows very closely. 

Milgram referred to these people as “sociometric superstars.” We discussed them previously 
in Section 3.6. 

 



8.3 DEGREE DISTRIBUTIONS  

In this section, we look at one of the most fundamental of network properties, the frequency 
distribution of vertex degrees. This distribution will come up time and again throughout this book 
as a defining characteristic of network structure. 

As described in Section 6.9, the degree of a vertex is the number of edges attached to it. Let us 
first consider undirected networks. We define pk to be the fraction of vertices in such a network 
that have degree k. For example, consider this network:

 

It has n = 10 vertices, of which 1 has degree 0, 2 have degree 1, 4 have degree 2, 2 have degree 3, 
and 1 has degree 4. Thus the values of pk for k = 0,..., 4 are

 

(8.1) 
  

and pk = 0 for all k > 4. The quantities pk represent the degree distribution of the network.
 

The value pk can also be thought of as a probability: it is the probability that a randomly chosen 
vertex in the network has degree k. This will be a useful viewpoint when we study theoretical 
models of networks in Chapters 12 to 15. 

Sometimes, rather than the fraction of vertices with a given degree, we will want the total 
number of such vertices. This is easily calculated from the degree distribution, being given simply 
by npk, where n is as usual the total number of vertices. 

Another construct containing essentially the same information as the degree distribution is the 
degree sequence, which is the set {k1, k2, k3,...} of degrees for all the vertices. For instance, the 
degree sequence of the small graph above is {0, 1, 1, 2, 2, 2, 2, 3, 3, 4}. (The degree sequence need 
not necessarily be given in ascending order of degrees as here. For instance, in many cases the 
vertices are given numeric labels and their degrees are then listed in the order of the labels.) 

It is probably obvious, but bears saying anyway, that a knowledge of the degree distribution (or 
degree sequence) does not, in most cases, tell us the complete structure of a network. For most 
choices of vertex degrees there is more than one network with those degrees. These two networks, 
for instance, are different but have the same degrees:

 

 

 



 

 

Figure 8.3: The degree distribution of the Internet. A histogram of the degree distribution of 
the vertices of the Internet graph at the level of autonomous systems. 
  

Thus we cannot tell the complete structure of a network from its degrees alone. The degree 
sequence certainly gives us very important information about a network, but it doesn’t give us 
complete information. 

It is often illuminating to make a plot of the degree distribution of a large network as a function 
of k. Figure 8.3 shows an example of such a plot for the Internet at the level of autonomous 
systems. The figure reveals something interesting: most of the vertices in the network have low 
degree—one or two or three—but there is a significant “tail” to the distribution, corresponding to 
vertices with substantially higher degree.118 The plot cuts off at degree 20, but in fact the tail goes 
much further than this. The highest degree vertex in the network has degree 2407. Since there are, 
for this particular data set, a total of 19 956 vertices in the network, that means that the most highly 
connected vertex is connected to about 12% of all other vertices in the network. We call such a 
well-connected vertex a hub119. Hubs will play an important role in the developments of the 
following chapters. 

 

 

 



 

Figure 8.4: The degree distributions of the World Wide Web. Histograms of the distributions 
of in–and out-degrees of pages on the World Wide Web. Data are from the study by Broder et al. 
[56]. 
  

In fact, it turns out that almost all real-world networks have degree distributions with a tail of 
high-degree hubs like this. In the language of statistics we say that the degree distribution is right-
skewed. Right-skewed degree distributions are discussed further in Section 8.4, and will reappear 
repeatedly throughout this book. 

One can also calculate degree distributions for directed networks. As discussed in Section 6.9, 
directed networks have two different degrees for each vertex, the in-degree and the out-degree, 
which are, respectively, the number of edges ingoing and outgoing at the vertex of interest. There 
are, correspondingly, two different degree distributions in a directed network, the in-degree and 
out-degree distributions, and one can make a plot of either, or both. Figure 8.4, for example, shows 
the degree distributions for the World Wide Web. 

If we wish to be more sophisticated, we might observe that the true degree distribution of a 
directed network is really a joint distribution of in–and out- degrees. We can define pjk to be the 
fraction of vertices having simultaneously an in-degree j and an out-degree k. This is a two-
dimensional distribution that cannot be plotted as a simple histogram, although it could be plotted 
as a two-dimensional density plot or as a surface plot. By using a joint distribution in this way we 
can allow for the possibility that the in–and out-degrees of vertices might be correlated. For 
instance, if vertices with high in-degree also tended to have high out-degree, then we would see 
this reflected in large values of pjk when both j and k were large. If we only have the separate 
distributions of inand out-degree individually, but not the joint distribution, then there is no way of 
telling whether the network contains such correlations. 

In practice, the joint in/out degree distribution of directed networks has rarely been measured or 
studied, so there is relatively little data on it. This is, in some ways, a pity, since many of our 
theories of directed networks depend on a knowledge of the joint distribution to give accurate 
answers (see Section 13.11), while others make predictions about the joint distribution that we 
would like to test against empirical data. For the moment, however, this is an area awaiting more 
thorough exploration. 

 

 



8.4 POWER LAWS AND SCALE-FREE NETWORKS  

Returning to the Internet, another interesting feature of its degree distribution is shown in Fig. 8.5, 
where we have replotted the histogram of Fig. 8.3 using logarithmic scales. (That is, both axes are 
logarithmic. We have also made the range of the bins bigger in the histogram to make the effect 
clearer—they are of width five in Fig. 8.5 where they were only of width one before.) As the 
figure shows, when viewed in this way, the degree distribution follows, roughly speaking, a 
straight line. In mathematical terms, the logarithm of the degree distribution pk is a linear function 
of degree k thus:

 

(8.2) 
  

where α and c are constants. The minus sign here is optional—we could have omitted it—but it is 
convenient, since the slope of the line in Fig. 8.5 is clearly negative, making α a positive constant 
equal to minus the slope in the figure. In this case, the slope gives us a value for α of about 2.1. 

Taking the exponential of both sizes of Eq. (8.2), we can also write this logarithmic relation as

 

(8.3) 
  

where C = ec is another constant. Distributions of this form, varying as a power of k, are called 
power laws. Based on the evidence of Fig. 8.5 we can say that, roughly speaking, the degree 
distribution of the Internet follows a power law.

 

 

 



 

Figure 8.5: The power-law degree distribution of the Internet. Another histogram of the degree 
distribution of the Internet graph, plotted this time on logarithmic scales. The approximate straight-
line form of the histogram indicates that the degree distribution roughly follows a power law of the 
form (8.3). 
  

This is, in fact, a common pattern seen in quite a few different networks. For instance, as shown 
in Fig. 8.8 on page 253, both the in–and out-degrees of the World Wide Web roughly follow 
power-law distributions, as do the indegrees in many citation networks (but not the out-degrees). 

The constant α is known as the exponent of the power law. Values in the range 2 ≤ α ≤ 3 are 
typical, although values slightly outside this range are possible and are observed occasionally. 
Table 8.1 gives the measured values of the exponents for a number of networks that have power-
law or approximately power-law degree distributions, and we see that most of them fall in this 
range. The constant C in Eq. (8.3) is mostly uninteresting, being fixed by the requirement of 
normalization, as described in Section 8.4.2. 

Degree distributions do not usually follow Eq. (8.3) over their entire range. Looking at Fig. 8.3, 
for example, we can see that the degree distribution is not monotonic for small k, even allowing for 
statistical fluctuations in the histogram. A true power-law distribution is monotonically decreasing 
over its entire range and hence the degree distribution must in this case deviate from the true power 
law in the small-k regime. This is typical. A common situation is that the power law is obeyed in 
the tail of the distribution, for large values of k, but not in the small-k regime. When one says that a 
particular network has a power-law degree distribution one normally means only that the tail of the 
distribution has this form. In some cases, the distribution may also deviate from the power-law 
form for high k as well. For instance, there is often a cut-off of some type that limits the maximum 
degree of vertices in the tail. 

Networks with power-law degree distributions are sometimes called scale-free networks, and we 
will use this terminology occasionally. Of course, there are also many networks that are not scale-
free, that have degree distributions with non-power-law forms, but the scale-free ones will be of 
particular interest to us because they have a number of intriguing properties. Telling the scale-free 
ones from the non-scale-free is not always easy however. The simplest strategy is to look at a 
histogram of the degree distribution on a log-log plot, as we did in Fig. 8.5, to see if we have a 
straight line. There are, however, a number of problems with this approach and where possible we 
recommend you use other methods, as we now explain.

 

 



8.4.1 DETECTING AND VISUALIZING POWER LAWS  

As a tool for visualizing or detecting power-law behavior, a simple histogram like Fig. 8.5 presents 
some problems. One problem obvious from the figure is that the statistics of the histogram are 
poor in the tail of the distribution, the large-k region, which is precisely the region in which the 
power law is normally followed most closely. Each bin of the histogram in this region contains 
only a few samples, which means that statistical fluctuations in the number of samples from bin to 
bin are large. This is visible as a “noisy signal” at the righthand end of Fig. 8.5 that makes it 
difficult to determine whether the histogram really follows a straight line or not, and what the 
slope of that line is. 

There are a number of solutions to this problem. The simplest is to use a histogram with larger 
bins, so that more samples fall into each bin. In fact, we already did this in going from Fig. 8.3 to 
Fig. 8.5—we increased the bin width from one to five between the two figures. Larger bins contain 
more samples and hence give less noise in the tail of the histogram, but at the expense of less detail 
overall, since the number of bins is correspondingly reduced. Bin width in this situation is always 
something of a compromise: we would like to use very wide bins in the tail of the distribution 
where noise is a problem, but narrower ones at the left-hand end of the histogram where there are 
many samples and we would prefer to have more bins if possible. 

Alternatively, we could try to get the best of both worlds by using bins of different sizes in 
different parts of the histogram. For example, we could use bins of width one for low degrees and 
switch to width five for higher degrees. In doing this we must be careful to normalize the bins 
correctly: a bin of width five will on average accrue five times as many samples as a similarly 
placed bin of width one, so if we wish to compare counts in the two we should divide the number 
of samples in the larger bin by five. More generally, we should divide sample counts by the width 
of their bins to make counts in bins of different widths comparable. 

We need not restrict ourselves to only two different sizes of bin. We could use larger and larger 
bins as we go further out in the tail. We can even make every bin a different size, each one a little 
larger than the one before it. One commonly used version of this idea is called logarithmic 
binning. In this scheme, each bin is made wider than its predecessor by a constant factor a. For 
instance, if the first bin in a histogram covers the interval 1 ≤ k < 2 (meaning that all vertices of 
degree 1 fall in this bin) and a = 2, then the second would cover the interval 2 ≤ k < 4 (vertices of 
degrees 2 and 3), the third the interval 4 ≤ k < 8, and so forth. In general the nth bin would cover 
the interval an-1 ≤ k < an and have width an – an-1 = (a -1) an-1. The most common choice for a is a = 
2, since larger values tend to give bins that are too coarse while smaller ones give bins with non-
integer limits. 

Figure 8.6 shows the degree distribution of the Internet binned logarithmically in this way. We 
have been careful to normalize each bin by dividing by its width, as described above. As we can 
see, the histogram is now much less noisy in the tail and it is considerably easier to see the 
straight-line behavior of the degree distribution. The figure also reveals a nice property of 
logarithmically binned histograms, namely that when plotted on logarithmic scales as here, the 
bins in such a histogram appear to have equal width. This is, in fact, the principal reason for this 
particular choice of bins and also the origin of the name “logarithmic binning.” 

Note that on a logarithmically binned histogram there is never any bin that contains vertices of 
degree zero. Since there is no zero on logarithmic scales like those of Fig. 8.6, this doesn’t usually 
make much difference, but if we do want to know how many vertices there are of degree zero we 
will have to measure this number separately. 

A different solution to the problem of visualizing a power-law distribution is to construct the 
cumulative distribution function, which is defined by

 



 

Figure 8.6: Histogram of the degree distribution if the Internet, created using logarithmic 
binning. In this histogram the widths of the bins are constant on a logarithmic scale, meaning that 
on a linear scale each bin is wider by a constant factor than the one to its left. The counts in the 
bins are normalized by dividing by bin width to make counts in different bins comparable. 

  

 

(8.4) 
  

In other words, Pk is the fraction of vertices that have degree k or greater. (Alternatively, it is the 
probability at a randomly chosen vertex has degree k or greater.) 

Suppose the degree distribution pk follows a power law in its tail. To be precise, let us say that pk 
= Ck−α for k ≥ kmin for some kmin. Then for k ≥ kmin we have

 

(8.5) 
  

where we have approximated the sum by an integral, which is reasonable since the power law is 
a slowly varying function for large k. (We are also assuming that α > 1 so that the integral 

 

 

 

 

 



converges.) Thus we see that if the distribution pk follows a power law, then so does the 
cumulative distribution function Pk, but with an exponent α − 1 that is 1 less than the original 
exponent. 

 

Figure 8.7: Cumulative distribution function for the degrees of vertices on the Internet. For a 
distribution with a power-law tail, as is approximately the case for the degree distribution of the 
Internet, the cumulative distribution function, Eq. (8.4), also follows a power law, but with a slope 
1 less than that of the original distribution. 
  

This gives us another − way of visualizing a power-law distribution: we plot the cumulative 
distribution function on log-log scales, as we did for the original histogram, and again look for 
straight-line behavior. We have done this in Fig. 8.7 for the case of the Internet, and the 
(approximate) straight-line form is clearly visible. Three more examples are shown in Fig. 8.8, for 
the in–and out-degree distributions of the World Wide Web and for the in-degree distribution of a 
citation network. 

This approach has some advantages. In particular, the calculation of Pk does not require us to bin 
the values of k as we do with a normal histogram. Pk is perfectly well defined for any value of k 
and can be plotted just as a normal function. When bins in a histogram contain more than one 
value of k—i.e., when their width is greater than 1—the binning of data necessarily throws away 
quite a lot of the information contained in the data, eliminating, as it does, the distinction between 
any two values that fall into the same bin. The cumulative distribution function on the other hand 
preserves all of the information contained in the data, because no bins are involved. The most 
obvious manifestation of this difference is that the number of points in a plot like Fig. 8.5 or Fig. 
8.6 is relatively small, whereas in a cumulative distribution plot like Fig. 8.7 there are as many 
points along the k (horizontal) axis as there are distinct values of k.

 

 



Figure 8.8: Cumulative distribution functions for in–and out-degrees in three directed 
networks. (a) The in-degree distribution of the World Wide Web, from the data of Broder et al. 
[56]. (b) The out-degree distribution for the same Web data set. (c) The in-degree distribution of a 
citation network, from the data of Redner [280]. The distributions follow approximate power-law 
forms in each case. 
  

The cumulative distribution function is also easy to calculate. The number of vertices with 
degree greater than or equal to that of the rth-highest-degree vertex in a network is, by definition, 
r. Thus the fraction with degree greater than or equal to that of the rth-highest-degree vertex in a 
network is Pk = r/n. So a simple way of finding Pk is to sort the degrees of the vertices in 
descending order and then number them from 1 to n in that order. These numbers are the so-called 
ranks ri of the vertices. A plot of ri/n as a function of degree ki, with the vertices in rank order, then 
gives us our cumulative distribution plot.120 

For instance, consider again the small example network we looked at at the beginning of Section 
8.3, on page 244. The degrees of the vertices in that case were {0, 1, 1, 2, 2, 2, 2, 3, 3, 4}. Listing 
these in decreasing order and numbering them, we can easily calculate Pk as follows:

 

Then a plot of the last column as a function of the first gives us our cumulative distribution 
function. 

Cumulative distributions do have some disadvantages. One is that they are less easy to interpret 
than ordinary histograms, since they are only indirectly related to the actual distribution of vertex 

 

 

 



degrees. A more serious disadvantage is that the successive points on a cumulative plot are 
correlated—the cumulative distribution function in general only changes a little from one point to 
the next, so adjacent values are not at all independent. This means that it is not valid for instance to 
extract the exponent of a power-law distribution by fitting the slope of the straight-line portion of a 
plot like Fig. 8.7 and equating the result with α − 1, at least if the fitting is done using standard 
methods such as least squares that assume independence between the data points. 

In fact, it is in general not good practice to evaluate exponents by performing straight-line fits to 
either cumulative distribution functions or ordinary histograms. Both are known to give biased 
answers, although for different reasons [72, 141]. Instead, it is usually better to calculate α directly 
from the data, using the formula

 

(8.6) 
  

Here, kmin is the minimum degree for which the power law holds, as before, and N is the number of 
vertices with degree greater than or equal to kmin. The sum is performed over only those vertices 
with k ≥ kmin, and not over all vertices. 

We can also calculate the statistical error on α from the formula:

 

(8.7) 
  

For example, applying Eqs. (8.6) and (8.7) to the degree sequence of the Internet from Fig. 8.3 
gives an exponent value of α = 2.11 ± 0.01. 

The derivation of these formulas, which makes use of maximum likelihood techniques, would 
take us some way from our primary topic of networks, so we will not go into it here. The interested 
reader can find a discussion in Ref. [72], along with many other details such as methods for 
determining the value of kmin and methods for telling whether a particular distribution follows a 
power law at all. 

 

 

 

 



8.4.2 PROPERTIES OF POWER-LAW DISTRIBUTIONS  

Quantities with power-law distributions behave in some surprising ways. We take a few pages here 
to look at some of the properties of power-law distributions, since the results will be of use to us 
later on. 

Power laws turn up in a wide variety of places, not just in networks. They are found in the sizes 
of city populations [24, 336], earthquakes [153], moon craters [230], solar flares [203], computer 
files [84], and wars [283]; in the frequency of use of words in human languages [109, 336], the 
frequency of occurrence of personal names in most cultures [335], the numbers of papers scientists 
write [201], and the number of hits on web pages [5]; in the sales of books, music recordings, and 
almost every other branded commodity [83, 185]; and in the numbers of species in biological taxa 
[58, 330]. A review of the data and some mathematical properties of power laws can be found in 
Ref. [244]. Here we highlight just a few issues that will be relevant for our study of networks. 

Normalization: The constant C appearing in Eq. (8.3) is fixed by the requirement that the degree 
distribution be normalized. That is, when we add up the total fraction of vertices having all 
possible degrees k = 0 ... ∞, we must get 1:

 

(8.8) 
  

If our degree distribution truly follows a pure power law, obeying Eq. (8.3) for all k, then no 
vertices of degree zero are allowed, because p0 would then be infinite, which is impossible since it 
is a probability and must lie between 0 and 1. Let us suppose therefore that the distribution starts at 
k = 1. Substituting from Eq. (8.3) we then find that C∑kk

−α = 1, or

 

(8.9) 
  

where ζ (α) is the Riemann zeta function. Thus the correctly normalized power-law distribution is

 

(8.10) 

 

 

 

 

 



  

for k > 0 with p0 = 0.
 

This is a reasonable starting point for mathematical models of scale-free networks—we will use 
it in Chapter 13—but it’s not a very good representation of most real-world networks, which 
deviate from pure power-law behavior for small k as described above and seen in Fig. 8.3. In that 
case, the normalization constant will take some other value dependent on the particular shape of 
the distribution, but nonetheless it is still fixed by the requirement of normalization and we must 
make sure we get it right in our calculations. 

For some of our calculations we will be interested only in the tail of the distribution where the 
power-law behavior holds and can discard the rest of the data. In such cases, we normalize over 
only the tail, starting from the minimum value kmin for which the power law holds, as above. This 
gives

 

(8.11) 
  

where ζ (α, kmin ) is the so-called generalized or incomplete zeta function.
 

Alternatively, we could observe, as we did for Eq. (8.5), that in the tail of the distribution the 
sum over k is well approximated by an integral, so that the normalization constant can written

 

(8.12) 
  

or

 

(8.13) 
  

In the same approximation the cumulative distribution function, Eq. (8.5), is given by

 

(8.14) 

 

 

 

 

 



  

Moments: Of great interest to us will be the moments of the degree distribution. The first moment 
of a distribution is its mean:

 

(8.15) 
  

The second moment is the mean square:

 

(8.16) 
  

And the mth moment is

 

(8.17) 
  

Suppose we have a degree distribution pk that has a power-law tail for k ≥ kmin, in the manner of 
the Internet or the World Wide Web. Then

 

(8.18) 
  

Since the power law is a slowly varying function of k for large k, we can again approximate the 
second sum by an integral thus:

 

 

 

 

 

 

 

 

 



 

(8.19) 
  

The first term here is some finite number whose value depends on the particular (non-power-law) 
form of the degree distribution for small k. The second term however depends on the values of m 
and α. If m − α + 1 < 0, then the bracket has a finite value, and �km� is well-defined. But if m -α + 

1 ≥ 0 then the bracket diverges and with it the value of �km�. Thus, the mth moment of the degree 

distribution is finite if and only if α > m + 1. Put another way, for a given value of α all moments 
will diverge for which m ≥ α − 1. 

Of particular interest to us will be the second moment �k2�, which arises in many calculations 

to do with networks (such as mean degree of neighbors, Section 13.3, robustness calculations, 
Section 16.2.1, epidemiological processes, Section 17.8.1, and many others). The second moment 
is finite if and only if α > 3. As discussed above, however, most real-world networks with power-
law degree distributions have values of α in the range 2 ≤ α ≤ 3, which means that the second 
moment should diverge, an observation that has a number of remarkable implications for the 
properties of scale-free networks, some of which we will explore in coming chapters. Notice that 
this applies even for networks where the power law only holds in the tail of the distribution—the 
distribution does not have to follow a power law everywhere for the second moment to diverge. 

These conclusions, however, are slightly misleading. In any real network all the moments of the 
degree distribution will actually be finite. We can always calculate the mth moment directly from 
the degree sequence thus:

 

(8.20) 
  

and since all the ki are finite, so must the sum be. When we say that the mth moment is infinite, 
what we mean is that if we were to calculate it for an arbitrarily large network with the same 
power-law degree distribution the value would be infinite. But for any finite network Eq. (8.20) 
applies and all moments are finite. 

There is however another factor that limits the values of the higher moments of the degree 
distribution, namely that most real-world networks are simple graphs. That is, they have no 
multiedges and no self-loops, which means that a vertex can have, at most, one edge to every other 
vertex in the network, giving it a maximum degree of n − 1, where n is the total number of 
vertices. In practice, the power-law behavior of the degree distribution may be cut off for other 
reasons before we reach this limit, but in the worst case, an integral such as that of Eq. (8.19) will 
be cut off in a simple graph at k = n so that

 

 

 



 

(8.21) 
  

as n → ∞ for m > α − 1. This again gives moments that are finite on finite networks but become 
infinite as the size of the network becomes infinite. For instance, the second moment goes as

 

(8.22) 
  

In a network with , this diverges as n1/2 as the network becomes large.
 

We will throughout this book derive results that depend on moments of the degree distributions 
of networks. Some of those results will show unusual behavior in power-law networks because of 
the divergence of the moments. On practical, finite networks that divergence is replaced by large 
finite values of the moments. In many cases, however, this produces similar results to a true 
divergence. On the Internet, for instance, with its power-law degree distribution and a total of 
about n  20 000 autonomous systems as vertices, we can expect the second (and all higher 
moments) to take not infinite but very large values. For the Internet data we used in Figs. 8.3 and 
8.5 the second moment has the value �k2 � = 1159, which can in practice be treated as infinite for 

many purposes. 

Top-heavy distributions: Another interesting quantity is the fraction of edges in a network that 
connect to the vertices with the highest degrees. For a pure power-law degree distribution, it can be 
shown [244] that a fraction W of ends of edges attach to a fraction P of the highest-degree vertices 
in the network, where

 

(8.23) 
  

A set of curves of W against P is shown in Fig. 8.9 for various values of α. Curves of this kind are 
called Lorenz curves, after Max Lorenz, who first studied them around the turn of the twentieth 
century [200]. As the figure shows, the curves are concave downward for all values of α, and for 
values only a little above 2 they have a very fast initial increase, meaning that a large fraction of 
the edges are connected to a small fraction of the highest degree nodes. 

Thus, for example, the in-degree distribution of the World Wide Web follows a power law 
above about kmin = 20 with exponent around α = 2.2. Equation (8.23) with  then tells us that 
we would expect that about W = 0.89 or 89% of all hyperlinks link to pages in the top half of the 
degree distribution, while the bottom half gets a mere 11%. Conversely, if we set in Eq. 

 

 

 

 

 



(8.23) we get P = 0.015, implying that 50% of all the links go to less than 2% of the “richest” 
vertices. Thus the degree distribution is in a sense “top-heavy,” a large fraction of the “wealth”—
meaning incoming hyperlinks in this case—falling to a small fraction of the vertices. 

This calculation assumes a degree distribution that follows a perfect power law, whereas in 
reality, as we have seen, degree distributions usually only follow a power law in their high-degree 
tail. The basic principle still holds, however, and even if we cannot write an exact formula like Eq. 
(8.23) for a particular network we can easily evaluate W as a function of P directly from degree 
data. For the real degree distribution of the Web122 we find that 50% of the incoming hyperlinks 
point to just 1.1% of the richest vertices (so Eq. (8.23) was not too bad in this case). 

 

Figure 8.9: Lorenz curves for scale-free networks. The curves show the fraction W of the total 
number of ends of edges in a scale-free network that are attached to the fraction P of vertices with 
the highest degrees, for various values of the power-law exponent α. 
  

Similarly, for paper citations 8.3% of the highest cited papers get 50% of all the citations123 and 
on the Internet just 3.3% of the most highly connected nodes have 50% of the connections.124 

In the remaining chapters of this book we will see many examples of networks with power-law 
degree distributions, and we will make use of the results of this section to develop an 
understanding of their behavior. 

 

 



8.5 DISTRIBUTIONS OF OTHER CENTRALITY MEASURES  

Vertex degree is just one of a variety of centrality measures for vertices in networks, as discussed in Chapter 
7. Other centrality measures include eigenvector centrality and its variations (Sections 7.2 to 7.5), closeness 
centrality (Section 7.6), and betweenness centrality (Section 7.7). The distributions of these other measures, 
while of lesser importance in the study of networks than the degree distribution, are nonetheless of some 
interest. 

Eigenvector centrality can be thought of as an extended form of degree centrality, in which we take into 
account not only how many neighbors a vertex has but also how central those neighbors themselves are 
(Section 7.2). Given its similarity to degree centrality, it is perhaps not surprising to learn that eigenvector 
centrality often has a highly right-skewed distribution. The left panel of Fig. 8.10 shows the cumulative 
distribution of eigenvector centralities for the vertices of the Internet, using again the autonomous-system-
level data that we used in Section 8.3. As the figure shows, the tail of the distribution approximately follows 
a power law but the distribution rolls off for vertices with low centrality. Similar roughly power-law 
behavior is also seen in eigenvector centralities for other scale-free networks, such as the World Wide Web 
and citation networks, while other networks show right-skewed but non-power-law distributions. 

Betweenness centrality (Section 7.7) also tends to have right-skewed distributions on most networks. The 
right panel of Fig. 8.10 shows the cumulative distribution of betweenness for the vertices of the Internet and, 
as we can see, this distribution is again roughly power-law in form. Again there are some other networks that 
also have power-law betweenness distributions and others still that have skewed but non-power-law 
distributions. 

An exception to this pattern is the closeness centrality (Section 7.6), which is the mean geodesic distance 
from a vertex to all other reachable vertices. As discussed in Section 7.6 the values of the closeness 
centrality are typically limited to a rather small range from a lower bound of 1 to an upper bound of order log 
n, and this means that their distribution cannot have a long tail. In Fig. 8.11, for instance, we show the 
distributions of closeness centralities for our snapshot of the Internet, and the distribution spans well under 
an order of magnitude from a minimum of 2.30 to a maximum of 7.32. There is no long tail to the 
distribution, and the distribution is not even roughly monotonically decreasing (as our others have been) but 
shows clear peaks and dips. 

 

Figure 8.10: Cumulative distribution functions for centralities of vertices on the Internet. Left panel: 
eigenvector centrality. Right panel: betweenness centrality. 
  

 

 

 



8.6 CLUSTERING COEFFICIENTS  

See Section 7.9 for a discussion of clustering coefficients. 

The clustering coefficient measures the average probability that two neighbors of a vertex are 
themselves neighbors. In effect it measures the density of triangles in the networks and it is of 
interest because in many cases it is found to have values sharply different from what one would 
expect on the basis of chance. To see what we mean by this, look again at Table 8.1 on page 237, 
which gives measured values of the clustering coefficient for a variety of networks. (Look at the 
column denoted C, which gives values for the coefficient defined by Eq. (7.41).) Most of the 
values are of the order of tens of percent—there is typically a probability between about 10% and 
maybe 60% that two neighbors of a vertex will be neighbors themselves. However, as we will see 
in Section 13.4, if we consider a network with a given degree distribution in which connections 
between vertices are made at random, the clustering coefficient takes the value

 

(8.24) 
  

In networks where �k2� and �k� have fixed finite values, this quantity becomes small as n → ∞ 

and hence we expect the clustering coefficient to be very small on large networks. This makes the 
values in Table 8.1, which are of order 1, quite surprising, and indeed many of them turn out to be 
much larger than the estimate given by Eq. (8.24). For instance, the collaboration network of 
physicists is measured to have a clustering coefficient of 0.45. Plugging the appropriate values for 
n, �k�, and �k2� into Eq. (8.24) on the other hand gives C = 0.0023. Thus the measured value is 

more than a hundred times greater than the value we would expect if physicists chose their 
collaborators at random.

 

 

 

 



 

Figure 8.11: Histogram of closeness centralities of vertices on the Internet. Unlike Fig. 8.10 
this is a normal non-cumulative histogram showing the actual distribution of closeness centralities. 
This distribution does not follow a power law. 
  

Presumably this large difference is indicative of real social effects at work. There are a number 
of reasons why a real collaboration network might contain more triangles than one would expect 
by chance, but for example it might be that people introduce pairs of their collaborators to one 
another and those pairs then go on to collaborate themselves. This is an example of the process that 
social network analysts call triadic closure: an “open” triad of vertices (i.e., a triad in which one 
vertex is linked to the other two, but the third possible edge is absent) is “closed” by the addition 
of the last edge, forming a triangle. 

One can study triadic closure processes directly if one has time-resolved data on the formation 
of a network. The network of physics collaborators discussed here was studied in this way in Ref. 
[233], where it was shown that pairs of individuals who have not previously collaborated, but who 
have another mutual collaborator, are enormously more likely to collaborate in future than pairs 
who do not—a factor of 45 times as likely in that particular study. Furthermore, the probability of 
future collaboration also goes up sharply as the number of mutual collaborators increases, with 
pairs having two mutual collaborators being more than twice as likely to collaborate in future as 
those having just one. 

However, it is not always the case that the measured clustering coefficient greatly exceeds the 
expected value given by Eq. (8.24). Take the example of the Internet again. For the data set we 
examined earlier the measured clustering coefficient is just 0.012. The expected value, if 
connections were made at random, is 0.84. (The large value arises because, as discussed in Section 
8.4, the Internet has a highly right-skewed degree distribution, which makes �k2� large.) Clearly 

in this case the clustering is far less than one would expect on the basis of chance, suggesting that 
in the Internet there are forces at work that shy away from the creation of triangles.125 

In some other networks, such as food webs or the World Wide Web, clustering is neither higher 
nor lower than expected, taking values roughly comparable with those given by Eq. (8.24). It is not 
yet well understood why clustering coefficients take such different values in different types of 
network, although one theory is that it may be connected with the formation of groups or 
communities in networks [252]. 

The clustering coefficient measures the density of triangles in a network. There is no reason, 
however, for us to limit ourselves to studying only triangles. We can also look at the densities of 

 

 



other small groups of vertices, or motifs, as they are often called. One can define coefficients 
similar to the clustering coefficient to measure the densities of different motifs, although more 
often one simply counts the numbers of the motifs of interest in a network. And, as with triangles, 
one can compare the results with the values one would expect to find if connections in the network 
are made at random. In general, one can find counts that are higher, lower, or about the same as the 
expected values, all of which can have implications for the understanding of the networks in 
question. For example, Milo et al. [221] looked at motif counts in genetic regulatory networks and 
neural networks and found certain small motifs that occurred far more often than was expected on 
the basis of chance. They conjectured that these motifs were playing the role of functional “circuit 
elements,” such as filters or pulse generators, and that their frequent occurrence in these networks 
might be an evolutionary result of their usefulness to the organisms involved. 



8.6.1 LOCAL CLUSTERING COEFFICIENT  

In Section 7.9.1 we introduced the local clustering coefficient for a vertex:

 

(8.25) 
  

which is the fraction of pairs of neighbors of vertex i that are themselves neighbors. If we calculate 
the local clustering coefficient for all vertices in a network, an interesting pattern emerges in many 
cases: we find that on average vertices of higher degree tend to have lower local clustering [278, 
318]. Figure 8.12, for example, shows the average value of the local clustering coefficient for 
vertices of degree k on the Internet as a function of k. The decrease of the average Ci with k is 
clear. It has been conjectured that plots of this type take either the form Ci ∼ k-0.75 [318] or the form 
Ci ∼ k-1 [278]. In this particular case neither of these conjectures matches the data very well, but for 
some other networks they appear reasonable. 

Community structure in networks is discussed at some length in Chapter 11. 

On possible explanation for the decrease in Ci with increasing degree is that vertices group 
together into tightly knit groups or communities, with vertices being connected mostly to others 
within their own group. In a network showing this kind of behavior vertices that belong to small 
groups are constrained to have low degree, because they have relatively few fellow group members 
to connect to, while those in larger groups can have higher degree. (They don’t have to have higher 
degree, but they can.) At the same time, the local clustering coefficient of vertices in small groups 
will tend to be larger. This occurs because each group, being mostly detached from the rest of the 
network, functions roughly as its own small network and, as discussed in Section 8.6, smaller 
networks are expected to have higher clustering. When averaged over many groups of different 
sizes, therefore, we would expect vertices of lower degree to have higher clustering on average, as 
in Fig. 8.12.126 

 

 

 



 

Figure 8.12: Local clustering as a function of degree on the Internet. A plot of the measured 
mean local clustering coefficient of vertices on the Internet (at the level of autonomous systems) 
averaged over all vertices with the given degree. 
  

 

 



8.7 ASSORTATIVE MIXING  

Assortative mixing or homophily is the tendency of vertices to connect to others that are like them 
in some way. We discussed assortative mixing in Section 7.13, where we gave some examples 
from social networks, such as the high school friendships depicted in Figs. 7.10 and 7.11 in which 
school students tend to associate more with others of the same ethnicity or age as themselves. 

Of particular interest is assortative mixing by degree, the tendency of vertices to connect others 
with degrees that are similar to their own. We can also have disassortative mixing by degree, in 
which vertices connect to others with very different degrees. As we saw in Section 7.13.3, 
assortative mixing can have substantial effects on the structure of a network (see particularly Fig. 
7.12). 

Assortative mixing by degree can be quantified in a number of different ways. One of them is to 
use the correlation coefficient defined in Eq. (7.82):

 

(8.26) 
  

If we were going to calculate the value of this coefficient, however, we should not do it directly 
from this equation, because the double sum over vertices i and j has a lot of terms (n2 of them) and 
is slow to evaluate on a computer. Instead we write

 

(8.27) 
  

with

 

(8.28) 
  

where the second sum is over all distinct (unordered) pairs of vertices (i, j) connected by an edge, 
and

 

 

 

 

 



 

(8.29) 
  

The computer time needed to calculate network quantities is an important topic in its own 
right. We discuss the main issues in Chapter 9. 

The sum in (8.28) has m terms, where m is the number of edges in the network and the sums in 
(8.29) have n terms each, so Eq. (8.27) is usually a lot faster to evaluate than Eq. (8.26). 

In Table 8.1 we show the values of r for a range of networks and the results reveal an interesting 
pattern. While none of the values are of very large magnitude—the correlations between degrees 
are not especially strong—there is a clear tendency for the social networks to have positive r, 
indicating assortative mixing by degree, while the rest of the networks—technological, 
information, biological—have negative r, indicating disassortative mixing. 

The reasons for this pattern are not known for certain, but it appears that many networks have a 
tendency to negative values of r because they are simple graphs. As shown by Maslov et al. [211], 
graphs that have only single edges between vertices tend in the absence of other biases to show 
disassortative mixing by degree because the number of edges that can fall between high-degree 
vertex pairs is limited. Since most networks are represented as simple graphs this implies that most 
should be disassortative, as indeed Table 8.1 indicates they are. 

And what about the social networks? One suggestion is that social networks are assortatively 
mixed because they tend to be divided into groups, as discussed in Section 8.6.1. If a network is 
divided up into tightly knit groups of vertices that are mostly disconnected from the rest of the 
network, then, as we have said, vertices in small groups tend to have lower degree than vertices in 
larger groups. But since the members of small groups are in groups with other members of the 
same small groups, it follows that the low-degree vertices will tend to be connected to other low-
degree vertices, and similarly for high-degree ones. This simple idea can be turned into a 
quantitative calculation [252] and indeed it appears that, at least under some circumstances, this 
mechanism does produce positive values of r. 

Thus a possible explanation of the pattern of r-values seen in Table 8.1 is that most networks are 
naturally disassortative by degree because they are simple graphs while social networks (and 
perhaps a few others) override this natural bias and become assortative by virtue of their group 
structure. 

 

 

 

 

 



PROBLEMS  

8.1 One can calculate the diameter of certain types of network exactly. 

a. What is the diameter of a clique? 
b. What is the diameter of a square portion of square lattice, with L edges (or equivalently L + 

1 vertices) along each side, like this:

 

What is the diameter of the corresponding hypercubic lattice in d dimensions with L edges 
along each side? Hence what is the diameter of such a lattice as a function of the number n 
of vertices? 

c. A Cayley tree is a symmetric regular tree in which each vertex is connected to the same 
number k of others, until we get out to the leaves, like this: 

 

(We have k = 3 in this picture.) 
Show that the number of vertices reachable in d steps from the central vertex is k(k − 1)

d−1 for d ≥ 1. Hence find an expression for the diameter of the network in terms of k and the 

 



number of vertices n. 
d. Which of the networks in parts (i), (ii), and (iii) displays the small-world effect, defined as 

having a diameter that increases as log n or slower? 

8.2 Suppose that a network has a degree distribution that follows the exponential form pk = Ce−λk, 
where C and λ are constants. 

a. Find C as a function of λ. 
b. Calculate the fraction P of vertices that have degree k or greater. 
c. Calculate the fraction W of ends of edges that are attached to vertices of degree k or greater. 
d. Hence show that for the exponential degree distribution with exponential parameter λ, the 

Lorenz curve—the equivalent of Eq. (8.23)—is given by

 

e. Show that the value of W is greater than one for some values of P in the range 0 ≤ P ≤ 1. 
What is the meaning of these “unphysical” values? 

8.3 A particular network is believed to have a degree distribution that follows a power law. Among 
a random sample of vertices in the network, the degrees of the first 20 vertices with degree 10 or 
greater are:

 

Estimate the exponent α of the power law and the error on that estimate using Eqs. (8.6) and (8.7). 

8.4 Consider the following simple and rather unrealistic mathematical model of a network. Each of 
n vertices belongs to one of several groups. The mth group has nm vertices and each vertex in that 
group is connected to others in the group with independent probability pm = A(nm − 1)−β, where A 
and β are constants, but not to any vertices in other groups. Thus this network takes the form of a 
set of disjoint clusters or communities. 

a. Calculate the expected degree �k� of a vertex in group m. 
b. Calculate the expected value  of the local clustering coefficient for vertices in group m. 
c. Hence show that . 
d. What value would β have to have for the expected value of the local clustering to fall off 

with increasing degree as �k�-3/4? 

 

 

 

 



PART III 

COMPUTER ALGORITHMS 

 

 



CHAPTER 9 

BASIC CONCEPTS OF ALGORITHMS 

An introduction to some of the basic concepts of computer algorithms for network 
calculations, particularly data structures for storing networks and methods for estimating the 
time computations will take 

IN THE preceding chapters of this book we have introduced various types of networks 
encountered in scientific study, methods for collecting data about those networks, and some of the 
basic theoretical tools used to describe and quantify networks. Then in the last chapter we 
combined these ideas in an analysis of the structural features of a variety of real-world networks, 
revealing in the process a number of interesting patterns that will be important to our further 
studies in the remainder of the book. 

Analysis of this kind, and most analysis involved in the contemporary study of networks, is 
primarily performed using computers. In the early days of network analysis in the first part of the 
twentieth century, calculations were mostly performed by hand, partly out of necessity, since 
computers were slow, expensive, and rare, but also because the networks studied were typically 
quite small, consisting of perhaps just a few dozen vertices or even less. These days we are 
concerned with networks that have thousands or even millions of vertices. Gathering and analyzing 
the data for networks like these is only possible because of the advent of fast cheap computing. 

Some networks calculations are simple enough that it is obvious how one would get a computer 
to carry them out, but many are not and performing them efficiently requires careful consideration 
and thoughtful programming. Even merely storing a network in a computer requires some thought, 
since there are many methods for doing it and the choice of method can make a substantial 
difference to the performance of subsequent calculations. 

In this chapter and the following two we discuss some of the techniques and algorithms used for 
network calculations on computers. A good understanding of the material discussed here will form 
a solid foundation for writing software to perform a wide variety of calculations with network data. 

In this chapter we describe some simple but important ideas about the running time of 
algorithms and data structures for the storage of networks. We will not describe any actual 
algorithms in this chapter, but the ideas introduced form a foundation for understanding the 
algorithms that appear in the following chapters. 

In Chapter 10 we describe a selection of basic network algorithms, including many of the 
classics of the field, such as algorithms for calculating centrality indices, finding components, and 
calculating shortest paths and maximum flows. We continue our study of algorithms in Chapter 11, 
where we look at matrix-based algorithms and particularly at methods for network “partitioning.” 

Understanding the content of these chapters does not require that you know how to program a 
computer. We will not, for instance, discuss particular programming languages. However, some 
experience with programming will certainly help enormously in understanding the material, and 
the reader who has none will in any case probably not have very much use for the methods we 
describe. 

Conversely, readers who already have a thorough knowledge of computer algorithms may well 
find some of the material here too basic for them, particularly the material on run times and data 
structures in the present chapter. Such readers should feel free to skip material as appropriate and 
move quickly on to the possibly less familiar subject matter of Chapters 10 and 11. For very 
advanced readers for whom all the material covered here is already familiar, or readers who simply 
wish to go into the subject in greater detail, we recommend the books by Cormen et al. [81], which 
is a general computer science text on algorithms, and by Ahuja et al. [8], which is specifically on 

 

 

 



network algorithms. 
Before we leap into the study of algorithms, one further word of advice is worthwhile. Many of 

the standard algorithms for the study of networks are already available, ready-made, in the form of 
professional network analysis software packages. Many of these packages are of very high quality, 
produced by excellent and knowledgeable programmers, and if they are adequate for your needs 
then there is no reason not to use them. Writing and debugging your own software for the analysis 
of network data can take hours or days, and there is little reason to expend that time when someone 
else has already done it for you. Table 9.1 lists some of the most widely used current software 
packages for the analysis of network data along with a brief description of what they do. The 
present author, for instance, has made considerable use of Graphviz, Pajek, and yEd, all of which 
provide useful features that could save you a lot of time in your work. Some other network 
calculations, especially the matrix-based methods of Chapter 11 and calculations using the models 
of Chapters 12 to 15, can be performed using standard mathematical software such as Matlab, 
Mathematica, or Maple, and again there is no reason not to make use of these resources if they are 
adequate for the particular task before you. 

 

Table 9.1: A selection of software implementing common network algorithms. Platforms are 
Microsoft Windows (W), Apple Macintosh (M), and Linux (L). Most Linux programs also run 
under Unix and Unix-like systems such as BSD, and many Windows programs can run on Macs 
and Linux systems using emulation software. 
  

That said there are still some excellent reasons for studying network algorithms and computer 
methods. First of all, even when you are making use of pre-packaged software to do your 
calculations, it helps greatly if you understand how the algorithms work and what the software is 
doing. Much time can be wasted when people fail to understand how a program works or 
misunderstand the kinds of answers the program can give them. Furthermore, if you are going to 
undertake a substantial amount of work using network data, you will sooner or later find that you 
need to do something that cannot be done with standard software and you’ll have to write some 
programs of your own. 

Second, there is a marked tendency in the current networks literature for some researchers to 
restrict their calculations to those that can be carried out using the standard software. By relying on 
pre-packaged programs to do their calculations for them, researchers have become limited in what 
types of analysis they can perform. In this way, the standard packages have, in effect, shaped the 
research agenda of the empirical side of the field, which is completely the reverse of what it should 
be. Good research decides the interesting questions first and then goes in search of answers. 
Research that restricts itself only to the questions it already knows how to answer will be narrowly 

 

 



focused indeed. By following the developments in this and the following chapters, and, if you 
wish, reading further in the algorithms literature, you give yourself the opportunity to pursue 
whatever network questions are of interest to you, without having to rely on others to produce 
software to tackle those questions. 



9.1 RUNNING TIME AND COMPUTATIONAL COMPLEXITY  

Before we can look at exactly how network algorithms work, there is an important issue we need 
to tackle, that of computational complexity. If you have programmed computers before, you may 
well have had the experience of writing a program to perform a particular calculation and setting it 
running, only to find that it is still running an hour or even a day later. Performing a quick back-of-
the-envelope calculation, you discover to your dismay that the calculation you have started will 
take a thousand years to finish, and hence that the program you wrote is basically useless. 

The concept of computational complexity (or just “complexity” for short) is essentially a more 
formal version of back-of-the-envelope calculations like this one, and is useful precisely because it 
helps us to avoid wasting our energies on programs that will not finish running in any reasonable 
amount time. By considering the complexity of an algorithm before we even start to write a 
computer program, we can be sure we are writing one that will actually finish. 

Computational complexity is a measure of the running time of a computer algorithm. Consider a 
simple example: how long does it take to find the largest number in a list of n numbers? Assuming 
the numbers are not given to us in some special order (such as largest first), then there is no 
quicker way to find the largest than simply to go through the whole list, item by item, keeping a 
running record of the largest number we have seen, until we get to the end. 

This is a very simple example of a computer algorithm. We could use it, for instance, to find the 
vertex in a network that has the highest degree. The algorithm consists of a number of steps, one 
for each number in the list. On each step, we examine the next number in the list and ask whether 
it is larger than the largest we have seen so far. If it is, it becomes the new largest-numberseen-so-
far, otherwise nothing happens and we move on to the next step. 

Now here is the crucial point: in the worst possible case the most work we will have to do for 
this algorithm is on each step to (1) examine the next number, (2) compare it with our previous 
record holder, and (3) replace the previous record holder with the new number. That is, the largest 
amount of work we have to do happens when every number is bigger than all the ones before it. 

In this case the amount of work we do is the same on every step and hence the total time taken 
to complete the algorithm, its running time, is just nτ, where τ is the time taken on each individual 
step. If we are lucky, the actual time taken may be less than this, but it will never be more. Thus 
we say that the running time or time complexity of this algorithm is order n, or just O(n) for short. 
Technically the notation O(n) means that the running time varies as a constant times n or less, to 
leading order in n.127 We say “to leading-order” because it is possible that there may be 
contributions to the running time that increase with system size more slowly than this leading-
order term. For instance, there might be some initial start-up time for the algorithm, such as time 
taken initializing variables, that is a constant independent of n. We would denote this time as being 
O(1), i.e., a constant times 1. By convention, however, one drops such sub-leading terms when 
citing the complexity of an algorithm, because if n is large enough that the running time of the 
program becomes a serious issue then the sub-leading terms will usually be small enough by 
comparison with the leading ones that they can be safely neglected.128 Thus the time complexity of 
our simple largest-number algorithm is just O(n). 

Technically, the computational complexity of an algorithm is an indication of how the 
algorithm’s running time scales with the size of its input. In our example, the input to the algorithm 
is the list of numbers and the size of that input is the length n of the list. If this algorithm were used 
to find the highest degree node in a network, then the size of the input would be the number of 
vertices in the network. In many of the network algorithms we will look at this will be the case—
the number of vertices n will be the important parameter we consider. In other cases, the important 
parameter will be the number of edges m in the network, while in others still we will need both m

 



and n to fully specify the size of the input—there could be different parts to an algorithm, for 
instance, that operate separately on the vertices and the edges, so that the total running time 
depends on both. Thus, for example, we will see in Section 10.3 that the algorithm known as 
“breadth-first search,” which is used for finding geodesic paths in networks, has a computational 
complexity O(m) + O(n) for a network with m edges and n vertices, meaning that it runs in time 
am + bn where a and b are constants, or quicker. Very often one writes this, in shorthand and 
slightly sloppy form, as O(m + n). This latter notation is not meant to imply that the constants in 
front of m and n are the same. 

In a lot of networks research we are concerned with sparse graphs (see Section 6.9) and 
particularly with graphs for which m increases in proportion to n as n becomes large. To put that 
another way, the mean degree of the network c = 2m/n remains constant (see Eq. (6.23)). In such 
networks, O(m + n) ≡ O(n) and we can drop the m from our notation. 

The importance of the computational complexity lies in its use for estimating the actual running 
time of real algorithms. If a particular algorithm is going to take a month to solve a problem of 
interest, or a year or a century, we’d like to know that in advance. We want to estimate how long 
the calculation is going to take before we start it, so we can make a decision about whether the 
wait is justified. A knowledge of the computational complexity allows us to do that by measuring 
run-time on a small problem and then scaling up appropriately to the size of the real problem. 

For example, suppose we wish to run the breadth-first search algorithm mentioned above on a 
network with a million vertices and ten million edges. Knowing that the algorithm has time 
complexity O(m + n), we could start out with a small test-run of the program on a network with n 
= 1000 vertices, say, and m = 10 000 edges. Often we artificially create small networks just for the 
purposes of such tests. Perhaps we find that the program finishes in a second on the test network. 
We then scale up this result knowing that the running time varies as am + bn. On the full network 
with n = 1 000 000 and m = 10 000 000 both n and m are a thousand times larger than on the test 
network, so the program should take about a thousand times longer to finish, i.e., a thousand 
seconds or about a quarter of an hour. Armed with this information we can safely start our program 
working on the larger problem and step out for a cup of tea or a phone call while we wait for it 
finish. 

Conversely, suppose we had an algorithm with computational complexity O(n4). That means 
that if we increase the number of vertices n in our network by a factor of a thousand the running 
time will increase by a trillion. In such a case it almost does not matter what the run time of the 
algorithm is on our small test network; the run time on the full network is going to be prohibitively 
long. For instance, if the test network takes a second again, then the full network would take a 
trillion seconds, which is around 30 000 years. In this case, we would certainly abandon the 
calculation, or at least look for a faster algorithm that can complete it in reasonable time. 

Finding the computational complexity of an algorithm, generating test networks, performing 
small runs, and doing scaling calculations of this type all require some work—additional work on 
top of the work of developing and programming the computer algorithm in the first place. 
Nonetheless, this extra work is well worth the effort involved and one should always perform this 
type of analysis, at least in some rough manner, before embarking on any major numerical 
calculations. Computational complexity will be one of our major concerns throughout of the 
discussions of algorithms in this chapter and the following two. An algorithm is next to useless if 
its running time scales poorly with the size of a network. In practice, any algorithm that scales with 
system size as O(n129) or greater is useless for large networks, although such algorithms still find 
some use for the smaller cases. In the world of computer science, where many researchers have 
devoted their entire careers to the invention of new algorithms for solving particular problems, the 
calculation of the computational complexity of an algorithm is a primary goal—often the primary 
goal—of research. Plenty of papers are published whose sole contribution is to provide a 
calculation of the complexity of some algorithm. 

It is worth mentioning that calculations of the run time of algorithms based on their complexity, 
as above, do not always give very accurate answers. We have mentioned already that standard 
measures of time complexity neglect sub-leading contributions to the run time, which may 
introduce inaccuracies in practical situations. But in addition there are, for technical reasons, many 
cases where the behavior of the run time is considerably poorer than a simple scaling argument 



would suggest. For instance, in calculations on networks it is important that the entire network 
fit in the main memory (RAM) of our computer if the algorithm is to run quickly. If the network is 
so large that at least part of it must be stored on a disk or some other slow form of storage, then the 
performance of the algorithm may be substantially hindered.129 Even if the entire network fits in 
the main memory, there may be additional space required for the operation of the algorithm, and 
that must fit in the memory too. Also, not all kinds of memory are equally fast. Modern computers 
have a small amount of extra-fast “cache” memory that the computer can use for storing small 
quantities of frequently used data. If all or most of the data for a calculation fit in the cache, then 
the program will run far faster than if it does not. 

There are also cases in which a program will perform better than the estimate based on its 
complexity would indicate. In particular, the complexity is usually calculated by considering the 
behavior of the program in the worst case. But for some programs the worst-case behavior is 
relatively rare, occurring only for certain special values of the program inputs or particularly 
unlucky parameter choices, and the typical behavior is significantly better than the worst case. For 
such programs the complexity can give an unreasonably pessimistic estimate of running time. 

For all of these reasons, and some others as well, programs can show unexpected behaviors as 
the size of their input increases, sometimes slowing down substantially more than we would expect 
given their theoretical time complexity and sometimes running faster. Nonetheless, computational 
complexity is still a useful general guide to program performance and an indispensable tool in the 
computer analysis of large networks. 



9.2 STORING NETWORK DATA  

The first task of most programs that work with network data is to read the data, usually from a 
computer file, and store it in some form in the memory of the computer. Network data stored in 
files can be in any of a large number of different formats, some standard, some not, but typically 
the file contains an entry containing information for each vertex or for each edge, or sometimes 
both. The way the data are stored in the computer memory after they are read from the file can, as 
we will see, make a substantial difference to both the speed of a program and the amount of 
memory it uses. Here we discuss some of the commonest ways to store network data. 

The first step in representing a network in a computer is to label the vertices so that each can be 
uniquely identified. The most common way of doing this is to give each a numeric label, usually 
an integer, just as we have been doing in our mathematical treatment of networks in Chapters 6 
and 7. In the simplest case, we can number the n vertices of a network by the consecutive integers i 
= 1 . . . n, although in some cases we might wish to use non-consecutive integers for some reason 
or to start the numbering from a different point. (For instance, in the C programming language it is 
conventional for numbering to start at zero and run through i = 0 . . . n − 1.) Most, though not all, 
file formats for storing networks already specify integer labels for vertices, which may simplify 
things. For those that don’t, one typically just labels vertices consecutively in the order they are 
read from the file. In what follows, we will assume that vertices are numbered 1 ... n. 

Often the vertices in a network have other notations or values attached to them in addition to 
their integer labels. The vertices in a social network, for instance, might have names; vertices in 
the World Wide Web might have URLs; vertices on the Internet might have IP addresses or AS 
numbers. Vertices could also have properties like age, capacity, or weight represented by other 
numbers, integer or not. All of these other notations and values can be stored straightforwardly in 
the memory of the computer by defining an array of a suitable type with n elements, one for each 
vertex, and filling it with the appropriate values in order. For example, we might have an array of n 
text strings to store the names of the individuals in a social network, and another array of integers 
to store their ages in years. 

Having devised a suitable scheme for storing the properties of vertices, we then need a way to 
represent the edges in the network. This is where things get more complicated. 

 



9.3 THE ADJACENCY MATRIX  

In most of the mathematical developments of previous chapters we have represented networks by 
their adjacency matrix Aij—see Section 6.2. The adjacency matrix also provides one of the simplest 
ways to represent a network on a computer. Most computer languages provide two-dimensional 
arrays that can be used to store an adjacency matrix directly in memory. An array of integers can 
be used if the adjacency matrix consists only of integers, as it does for unweighted simple graphs 
or multigraphs. An array of floating-point numbers is needed for an adjacency matrix that may 
have reals (non-integers) as its elements, as does the adjacency matrix of some weighted 
networks—see Section 6.3. 

Storing a network in the form of an adjacency matrix is convenient in many ways. Most of the 
formulas and calculations described in this book are written out in terms of adjacency matrices. So 
if we have that matrix stored in our computer it is usually a trivial matter to turn those formulas 
into computer code to calculate the corresponding quantities. 

The adjacency matrix can be highly advantageous for other reasons too. For instance, if one 
wishes to add or remove an edge between a given pair of vertices, this can be achieved very 
quickly with an adjacency matrix. To add an edge between vertices i and j one simply increases the 
ijth element of the adjacency matrix by one. To remove an edge between the same vertices one 
decreases the element by one. These operations take a constant amount of time regardless of the 
size of the network, so their computational complexity is O(1). Similarly if we want to test whether 
there is an edge between a given pair of vertices i and j we need only inspect the value of the 
appropriate matrix element, which can also be done in O(1) time. 

Undirected networks give a slight twist to the issue since they are represented by symmetric 
matrices. If we want to add an undirected edge between vertices i and j, then in principle we 
should increase both the ijth and jith elements of the adjacency matrix by one, but in practice this 
is a waste of time. A better approach is to update only elements in the upper triangle of the matrix 
and leave the lower one empty, knowing that its correct value is just the mirror image of the upper 
triangle.130 To put this another way, we only update elements (i, j) of the matrix for which i < j. 
(For networks in which self-edges are allowed, we would use the diagonal elements as well, so we 
would update elements with i ≤ j—see Section 6.2.) For instance, if we wish to create an edge 
between vertex 2 and vertex 1, this means in principle that we want to increase both the (2, 1) 
element and the (1, 2) element of the adjacency matrix by one. But, since we are only updating 
elements with i < j, we would increase only the (1, 2) element and leave the other alone.131 

Taking this idea one step further, we could not bother to store the lower triangle of the 
adjacency matrix in memory at all. If we are not going to update it, why waste memory storing it? 
Unfortunately, dropping the lower triangle of the matrix makes our remaining matrix triangular 
itself, and most computer languages don’t contain arrays designed to hold triangular sets of 
quantities. One can, by dint of a certain amount of work, arrange to store triangular matrices using, 
for example, the dynamic memory allocation facilities provided by languages like C and JAVA, 
but this is only worth the effort if memory space is the limiting factor in performing your 
calculation. 

The adjacency matrix is not always a convenient representation, however. It is cumbersome if, 
for instance, we want to run quickly through the neighbors of a particular vertex, at least on a 
sparse graph. The neighbors of vertex i are denoted by non-zero elements in the ith row of the 
adjacency matrix and to find them all we would have to go through all the elements of the row one 
by one looking for those that are non-zero. This takes time O(n) (since that is the length of the 
row), which could be a lot of time in a large network, and yet on a sparse graph most of that time is 
wasted because each vertex is connected to only a small fraction of the others and most of the 

 



elements in the adjacency matrix are zero. As we will see in this chapter, many network 
algorithms do indeed require us to find all neighbors of a vertex, often repeatedly, and for such 
algorithms the adjacency matrix is not an ideal tool. 

 

Table 9.2: The leading-order time complexity of four operations for various representations 
of a network of n vertices and m edges. The operations are adding an edge to the network 
(insert), removing an edge from the network (delete), testing whether a given pair of vertices are 
connected by an edge (find), and listing the neighbors of a given vertex (enumerate). 
  

The computational complexity of the network operations discussed here for an adjacency matrix 
is summarized in Table 9.2. 

Another disadvantage of the adjacency matrix representation is that for sparse graphs it makes 
inefficient use of computer memory. In a network in which most elements of the adjacency matrix 
are zero, most of the memory occupied by the matrix is used for storing those zeros. As we will 
see, other representations exist, such as the “adjacency list,” that avoid storing the zeros and 
thereby take up much less space.132 

It is a simple matter to work out how much memory is consumed in storing the adjacency matrix 
of a network. The matrix has n2 elements. If each of them is an integer (which requires 4 bytes for 
its storage on most modern computers) then the entire matrix will take 4n2 bytes. At the time of 
writing, a typical computer has about 1010 bytes of RAM (10 GB), and hence the largest network 
that can be stored in adjacency matrix format satisfies 4n2 = 1010, or n = 50 000. This is not nearly 
large enough to store the largest networks of interest today, such as large subsets of the Web graph 
or large social networks, and is not even big enough for some of the medium-sized ones. 

The disadvantages of the adjacency matrix representation described here apply primarily to 
sparse networks. If one is interested in dense networks—those in which a significant fraction of all 
possible edges are present—then the adjacency matrix format may be appropriate. It will still use a 
lot of memory in such cases, but so will any data format, since there is simply a lot of information 
that needs to be stored, so the advantages of other formats are less significant. The adjacency 
matrix may also be a good choice if you are only interested in relatively small networks. For 
instance, the social network analysis package UCINET, which is targeted primarily at sociological 
practitioners working with smaller networks, uses the adjacency matrix format exclusively. Most 
current research on networks however is focused on larger data sets, and for these another 
representation is needed.

 

 



9.4 THE ADJACENCY LIST  

The simplest alternative to storing the complete adjacency matrix of a network is to use an 
adjacency list. The adjacency list is, in fact, probably the most widely used network representation 
for computer algorithms. 

An adjacency list is actually not just a single list but a set of lists, one for each vertex i. Each list 
contains the labels of the other vertices to which i is connected by an edge. Thus, for example, this 
small network:

 

would be represented by this adjacency list:

 

An adjacency list can be stored in a series of integer arrays, one for each vertex, or as a two-
dimensional array with one row for each vertex.133 It is common to also store somewhere the 
degree of each vertex, so that we know how many entries there are in the list of neighbors for each 
vertex; this can be done using a separate array of n integers. Note also that there is usually no 
requirement that the neighbors of a vertex in the adjacency list appear in numerical order. 
Normally they are allowed to appear in any order. 

In the example adjacency list above, each edge appears twice. For instance, the existence of an 
edge between vertices 1 and 3 means that vertex 3 is listed as a neighbor of vertex 1 and vertex 1 is 
also listed as a neighbor of vertex 3. To represent m edges, therefore, we need to store 2m integers. 
This is much better than the n2 integers used to store the full adjacency matrix.134 For instance, on a 
computer where each integer occupies 4 bytes of memory, a network with n = 10 000 vertices and 
m = 100 000 edges would occupy 800 kB in adjacency list form, as opposed to 400 MB in matrix 
format. The double storage of the edges is slightly wasteful—we could save an additional factor of 
two if we only stored each edge once. However, the double storage turns out to have other 
advantages, making our algorithms substantially faster and easier to program in many cases, and 
these benefits are normally worth the extra cost in terms of space. In these days of cheap memory, 
not many networks are large enough that space to store an adjacency list is a serious consideration. 

An adjacency list can store networks with multiedges or self-edges. A multiedge is represented 
by multiple identical entries in the list of neighbors of a vertex, all pointing to the same adjacent 

 

 



vertex. A self-edge is represented by an entry identifying a vertex as its own neighbor. In fact, a 
self-edge is most correctly represented by two such entries in the list, so that the total number of 
entries in the list is still equal to the degree of the vertex. (Recall that a self-edge adds 2 to the 
degree of the vertex it is connected to.) 

The example adjacency list above is for an undirected network, but adjacency lists can be used 
with directed networks as well. For instance, this network: could be represented by this adjacency 
list:

 

 

Here we have listed the outgoing edges for each vertex. Since each edge is outgoing from some 
vertex, this approach is guaranteed to capture every edge in the network, but each edge now 
appears only once in the adjacency list, not twice as in the undirected case. 

Alternatively, we could represent the same network by listing the ingoing edges for each vertex 
thus:

 

In principle these two representations are equivalent. Both include all the edges and either of them 
can be constructed from a knowledge of the other. When creating computer programs, however, 
the crucial point is to have the information you need for your calculations easily available, so that 
the program runs fast. Different calculations require different information and some might need 
ingoing edges while others need outgoing ones. The choice of which adjacency list to use thus 
depends on the particular calculations being performed. Some calculations even require both 
ingoing and outgoing edges, in which case we could create a double adjacency list like this:

 

 

 



 

Note that, as in the undirected case considered above, this double adjacency list stores each edge 
twice, once as an incoming edge and once as an outgoing one, and is thus in some respects 
wasteful of space, although not to an extent that is normally a problem. 

As with the adjacency matrix it is important also to ask how fast our calculations will run if we 
use an adjacency list. Will they still run at a reasonable pace? If the answer is no, then the 
adjacency list is not a useful representation, no matter what its other advantages may be. 

Consider the undirected case136 and the four basic network operations that we considered 
previously for the adjacency matrix, addition and removal of edges, finding whether an edge is 
present, and enumeration of all edges connected to a vertex—see Table 9.2. 

We can add an edge to our network very quickly: to add an edge (i, j) we need only add one new 
entry each to the ends of the neighbor lists for vertices i and j, which takes time O(1). 

Finding or removing an edge is a little harder. To find whether an edge exists between vertices i 
and j we need to go through the list of neighbors of i to see whether j appears in that list, or vice 
versa. Since the list of neighbors is in no particular order, there is no quicker way of doing this 
than simply going through the entire list step by step from the beginning. In the worst case, we will 
have check all elements to find our edge or to confirm that it does not exist, and on average137 this 
will take time of order the mean number c of elements in the list, which is given by the mean 
degree c = 2m/n (Eq. 6.23). Thus the “find” operation takes time O(m/n) for a network in 
adjacency list form. This is a bit slower than the same operation using an adjacency matrix, which 
takes time O(1) (Section 9.3). On a sparse graph with constant mean degree, so that m ∝ n (see 
Sections 6.9 and 9.1), O(m/n) ≡ O(1), so technically the complexity of the adjacency list is as good 
as that of the adjacency matrix, but in practice the former will be slower than the latter by a 
constant factor which could become large if the average degree is large. 

 

The element “1” is deleted from a list by moving the last element “2” to overwrite it. 
  

Removing an edge involves first finding it, which takes time O(m/n), and then deleting it. The 
deletion operation can be achieved in O(1) time by simply moving the last entry in the list of 
neighbors to overwrite the entry for the deleted edge and decreasing the degree of the vertex by 
one (see figure). (If there is no last element, then we need do nothing other than decreasing the 
degree by one.) Thus the leading-order running time for the edge removal operation is O(m/n). 

However, the adjacency list really comes into its own when we need to run quickly through the 
neighbors of a vertex, a common operation in many network calculations, as discussed in Section 
9.3. We can do this very easily by simply running through the stored list of neighbors for the 

 

 

 



vertex in question, which takes time proportional to the number of neighbors, which on average 
is c = 2m/n. The leading-order time complexity of the operation is thus O(m/n), much better than 
the O(n) of the adjacency matrix for the same operation. 

The computational complexity of operations on the adjacency list is summarized in Table 9.2.



9.5 TREES  

The adjacency list is, as we have said, probably the most commonly used format for the storage of 
networks. Its main disadvantage is the comparatively long time it takes to find or remove edges—
O(m/n) time, compared with the O(1) of the adjacency matrix. In many of the most common 
network algorithms, such as the breadth-first search of Section 10.3 or the augmenting path 
algorithm of Section 10.5, this is not a problem, since one never needs to perform these operations. 
Some algorithms, however, such as the algorithm for calculating the clustering coefficient given in 
Section 10.2, do require these operations and can be slowed by the use of an adjacency list. On a 
network with mean degree 100, for instance, the edge-finding operations in the clustering 
coefficient algorithm can be expected to slow the calculation down by about a factor of 100, which 
could make the difference between a calculation that takes an hour to finish and one that takes a 
week. 

A data structure that has most of the advantages of the adjacency list, while being considerably 
faster in many situations, is the adjacency tree.138 An adjacency tree is identical to an adjacency 
list except that each “row”—the set of neighbors of each vertex—is stored in a tree rather than a 
simple array. If you already know what a tree is then you probably don’t need to read the rest of 
this section—you’ll have got the idea already. If you don’t know what a tree is, read on.139 

A tree is a data structure for storing values of some kind, such as integers or real numbers, in a 
way that allows them to be added, removed, and located quickly. Trees come in a number of types. 
We consider the case where the values stored are all distinct, which is the relevant case for our 
purposes, although it is only slightly more complicated to allow for identical values. 

Figure 9.1a shows an example of a tree that is being used to store the integers {1, 3, 4, 6, 7, 10, 
12, 14}. The basic structure is one of a set of nodes (not to be confused with the nodes of the 
network that we are storing), which correspond to memory locations in the computer, each 
containing one of the integers. The tree nodes are arranged in a top-down fashion with a root node 
at the top.140 Each node can have zero, one, or two child nodes that are drawn immediately below it 
and connected to it by lines to indicate the child relationship. One can create trees with nodes that 
have more than two children, but for our purposes it works better to limit the number to two. A 
tree with at most two children per node is called a binary tree. 

Each node in the tree, except for the root, has exactly one parent node. The root has no parent. 
Nodes with no children are called leaves. On a computer a tree is typically implemented with 
dynamically allocated memory locations to store the numbers, and pointers from one node to 
another to indicate the child and parent relationships.141

 



 

Figure 9.1: Two trees containing the same set of numbers. The two trees depicted here both 
store the numbers {1, 3, 4, 6, 7, 10, 12, 14}. (a) A balanced tree in which the depths of the subtrees 
below each node differ by no more than 1. (b) An unbalanced tree. 
  

A defining property of our binary tree will be that the values stored in the left child of node i (if 
there is one) and in all other nodes descended from that child, are less than the value stored in i 
itself. Conversely, the values stored in the right child of i (if there is one) and all nodes descended 
from it are greater than the value stored in i. The reader might like to confirm that the values in 
Fig. 9.1a satisfy these requirements at every node in the tree. 

Our goal is to use trees to store the lists of neighbors of each vertex in a network. We will show 
that if we do so we can perform our four basic network operations—addition, removal, and finding 
of edges, and enumeration of the complete set of a vertex’s neighbors—very quickly on average. 
Below we first explain in the general language of the binary tree how these operations are 
achieved. At the end of the section we discuss how they are used in the specific context of the 
adjacency tree format for networks. 
  

The find operation: The first tree operation we consider is the “find” operation, which is the 
operation of determining whether a particular value is present in our tree. We accomplish this 
operation as follows. Starting at the root node:

1. Examine the value x in the current node. If it is the value we are looking for, stop—our task 
is done. 

2. If not and the value we are looking for is less than x, then by the properties described 
above, the value we are looking for must be in the left child of the current node or one of 
its descendants. So we now move to the left child, if there is one, which becomes our new 
current node. If there is no left child, then the value we are looking for does not exist in the 
tree and our task is done. 

3. Conversely if the value we are looking for is greater than x, we move to the right child, if 
there is one, which becomes our new current node. If there is no right child, the value we 
are looking for does not exist in the tree and our task is done. 

4. Repeat from step 1. 

Taking the example of the tree in Fig. 9.1a, suppose that we are trying to determine whether the 
number 7 appears in the tree. Starting at the root note we find a 4, which is not the number 7 that 

 

 

 



we are looking for. Since 7 is greater than 4, we move to the right child of the root and there find a 
12. Since 7 is less than 12 we move to the left child and there we find our number 7, and our 
search is over. 

 

The path taken through our binary tree to locate the number 7. 
  

On the other hand, suppose we wish to determine whether the number 9 appears in the tree. 
Again we would start at the root and move right, then left, then right as we went down the tree, 
arriving after three steps at the node containing the number 10. This number is not equal to the 
number 9 and since 9 is less than 10 we would normally now move to the left child down the tree. 
In this case, however, there is no left child, and hence we conclude that the number we are looking 
for does not exist in the tree. 

How long does the “find” operation take? That depends on how many steps we have to take 
through the tree: we have to perform the same operations on each step, so the time taken is simply 
proportional to the number of steps. The maximum number of steps to reach any node from the 
root is called the depth of the tree. Unfortunately, the depth doesn’t have a simple fixed value. 
There are many possible ways to store the same numbers in a tree while still obeying the 
conditions on child and parent nodes. For instance, both of the trees in Fig. 9.1 are valid ways to 
store the same set of numbers. The one in panel (a) has depth 4, while the one in panel (b) has 
depth 8. In general the maximum possible depth is given by an arrangement like (b) and is equal to 
the number k of values stored in the tree. For such a tree the find operation would, in the worst 
case, take O(k) time, which is no better than what we get if we store the values in a simple array—
in either case we just end up going through the values one by one until we find the one we want. 

On the other hand, if we can make the tree reasonably balanced, like the one in Fig. 9.1a, then 
the depth can be a lot less than k. Let us calculate the minimum depth required to store k values. If 
we start at the top of the tree and fill in the levels one by one, we can put one value at the root, two 
values in the second level, four in the third, and so forth, each level holding twice as many values 
as the previous one. In general, level l can hold 2l-1 values and the total number of values in L 
levels is

 

(9.1) 
  

Setting this equal to k and rearranging, we find that L = log2 (k + 1). However, L must be an 
integer, so, rounding up, we conclude that a minimum of

 

 

 

 



(9.2) 
  

levels are needed to store k numbers, where  denotes the smallest integer not less than x. If we 
can pack the values into the tree like this, filling each level completely, then our find operation will 

only take  to complete. In fact, since  we could also 
say that it will take O (log2 (k + 1 ) ) time, where as usual we have kept only the leading-order term 
and dropped the sub-leading +1 term. We can also neglect the base of the logarithm, since all logs 
are proportional to one another, regardless of their base, and we can replace log(k + 1) by log k 
since again we are only interested in the leading-order scaling. 

Thus, we conventionally say that the find operation in a balanced tree containing k values can be 
completed in time O(log k). This is much better than the O(k) of the simple list or the unbalanced 
tree. For a tree with k = 100 values stored in it we have log2k  7, so the find operation should be 
about 100/7  14 times faster than for the simple list, and the speed advantage increases further the 
larger the value of k. 
  

The addition operation: And how do we add a new value to a tree? The crucial point to notice is 
that in adding a new value we must preserve the relations between parent and child nodes, that 
lower values are stored in the left child of a node and its descendants and higher ones in the right 
child and descendants. These relations were crucial to the speedy performance of the find 
operation above, so we must make sure they are maintained when new items are added to the tree. 

This, however, turns out not to be difficult. To add an item to the tree we first perform a “find” 
operation as above, to check if the value in question already exists in the tree. If the value already 
exists, then we don’t need to add it. (Imagine for example that we are adding an edge to a network. 
If that edge already exists then we don’t need to add it.) 

On the other hand, if the value does not exist in the tree then the find operation will work its 
way down the tree until it gets to the leaf node that would have been the parent of our value, but 
which does not have an appropriate child node. Then we simply add the appropriate child of that 
leaf node and store our value in it, thereby increasing the number of nodes in the tree by one. Since 
the find operation takes O(log k) time and the creation of the new node takes constant time, the 
leading-order complexity of the addition operation is O(log k). 

 

 



Figure 9.2: The structure of a tree depends on the order in which elements are added to it. 
Here the values 1 to 7 are added to a tree in two different orders. In (a) they are added in the order 
4, 2, 6, 1, 3, 5, 7, resulting in a perfectly balanced tree with the minimum possible depth of three. 
In (b) they are added in the order 1, 2, 3, 4, 5, 6, 7, resulting in an unbalanced tree with the 
maximum possible depth of seven. 
  

Balancing the tree: This is satisfying and simple, but it immediately raises another problem. The 
position a newly added value occupies in the tree depends on the values that are already in the tree, 
and hence the shape of the tree depends, in general, on the values we add to it and the order in 
which we add them. Indeed, it turns out a tree can take quite different shapes even for the same 
values, just as a result of adding those values in different orders. In particular a tree can end up 
balanced or not as a result of different orders of addition—see Fig. 9.2—and if we are unlucky and 
get an unbalanced tree then the speed of our tree operations can be severely affected. Obviously we 
would like to avoid this if possible. 

 

Addition of the number 9 to the tree. 
  

For algorithms in which elements are added to the tree only at the beginning of the program and 
no elements are added or removed thereafter (the clustering coefficient algorithm of Section 10.2 is 
an example), a simple solution to the problem is just to randomize the order in which the elements 
are added. Although the resulting tree is not completely packed full, as in the case considered 
above, it will still have depth O(log k) on average.142 

If our algorithm requires us to add or remove values as we go along, then this approach will not 
work and we must explicitly balance the tree by performing rebalancing operations whenever the 
tree becomes unbalanced. We typically don’t attempt to keep the elements packed as tightly in the 
tree as possible, but we can still achieve O(log k) run times by adopting a looser definition of 
balance. One practical and simple definition (though not the only one) is that a tree is balanced if 
the depth of the two subtrees below any node differ by no more than 1. The tree in Fig. 9.1a 
satisfies this criterion. For instance, the depths of the subtrees of the node containing the value 12 
are 2 on the left and 1 on the right. 

It is straightforward to prove that a tree satisfying this criterion, which is called an AVL tree, has 
depth O(log k). What’s more it is possible to maintain this level of balance with fairly simple 
rebalancing operations called “pivots” that themselves take only O(log k) time to perform. As a 
result, we can both find elements in and add elements to an AVL tree in time O(log k), even if we 
have to rebalance the tree after every single addition (although usually we will not have to do this). 

Details of the workings of the AVL tree can be found in most books on computer algorithms, 
such as Cormen et al. [81]. However, if you need to use such a tree in your own work it’s probably 
not worth programming it yourself. There are many readily available standard implementations of 
AVL trees or other balanced trees that will do the job just fine and save you a lot of effort. A 

 

 

 



suitable one appears, for instance, in the standard C++ library STL, which is available with 
every installation of C++. 
  

The deletion operation: The process of deleting a value from a tree is rather involved, but none of 
the algorithms described in this book require it, so we will not go into it in detail here. The basic 
idea is that you first find the value you want to delete in the normal way, which takes time O(log 
k), then delete it and perform a “pivot” operation of the type mentioned above to remove the hole 
left by the deletion. Each of these operations takes at most time O(log k) and hence the entire 
deletion can be complete in O(log k) time. The interested reader can find the details in Ref. [81]. 
  

Enumerating the items in a tree: We can also quickly run through the items stored in a tree, an 
operation that takes O(k) time, just as it does for a simple list stored in an array. To do this we use 
an Euler tour, which is a circuit of the tree that visits each node at most twice and each edge 
exactly twice. An Euler tour starts at the root of the tree and circumnavigates the tree by following 
its outside edge all the way round (see figure). More precisely, starting from the root we move to 
the left child of the current node if we haven’t already visited it and failing that we move to the 
right child. If we have already visited both children we move upward to the parent. We repeat 
these steps until we reach the root again, at which point the tour is complete. Since each edge is 
traversed twice and there are k − 1 edges in a tree with k nodes (see Section 6.7), this immediately 
tells us we can run through all elements in the tree in O(k) time. 

 

An Euler tour. 
  

Given the above properties of trees, the adjacency tree for a network is now simple to define: we 
store the list of neighbors of each vertex as values in a binary tree. There is one tree for each 
vertex, or two for a directed network if we want to store both the incoming edges and the outgoing 
ones. Edges can be found, added, or deleted from the tree for a given vertex in time O(log k), 
where k is the degree of the vertex, or O ( �log k� ) when averaged over all vertices. However, the 
average of the logs of a set of positive numbers is always less than the log of their average, so a 
running time of O (�log k�) also implies a running time of O(log�k�) ≡ O(log(m/n)). 

The computational complexity of operations on the adjacency tree is summarized in Table 9.2. 
Comparing our three storage formats for networks, the adjacency matrix, list, and tree, we see that 
there is no overall winner; the choice of format is going to depend on what we want to do with it. 
For use in algorithms where we are only going to add and remove edges and check for their 
existence, the adjacency matrix is the fastest option. On the other hand, in algorithms where we are 
only adding edges or enumerating the neighbors of vertices, which includes most of the algorithms 
in this chapter, the adjacency list is the clear winner. The adjacency tree is the fastest format if we 
need to find or delete edges as well as create them. (Note that log(m/n) is usually much better than 

 

 



a mere m/n, particularly in the case where the mean degree c » 1.) In algorithms that only need 
to enumerate edges and not find, add, or delete them, the adjacency list and adjacency tree are 
equally good in principle. In practice, however, the additional complexity of the adjacency tree 
usually makes it somewhat slower and the adjacency list is the format of choice. 

It’s worth bearing in mind that speed isn’t everything, and in particular that the adjacency matrix 
format uses a prohibitive amount of memory space for networks with large numbers of vertices 
(see Section 9.3). Overall, as we have said, the adjacency list is the format used most often, but the 
others certainly have their place and each will be useful to us more than once in the remainder of 
this book. 



9.6 OTHER NETWORK REPRESENTATIONS  

We have discussed three ways of representing network data in the memory of a computer. These 
are probably the most useful simple representations and the ones that you are most likely to need if 
you write your own programs to analyze networks, but there are a few other representations that it 
is worth knowing about. 
  

Hybrid matrix/list representations: The representations of Table 9.2 all have their advantages 
and disadvantages, but none is optimal. In the best of all possible worlds, we would like a data 
structure that can insert, delete, and find edges in O(1) time and enumerate the O(m/n) neighbors 
(on average) of a given vertex in O(m/n) time, but none of our representations can do this. It is 
possible to create a representation that can do this, however, if we are willing to sacrifice memory 
space: we can make a hybrid representation that consists of an adjacency matrix and an adjacency 
list. Non-zero elements in the adjacency matrix, those corresponding to edges, are accompanied by 
pointers that point to the corresponding elements in the adjacency list. Then we can find whether 
an edge exists between a specified pair of vertices in O(1) time using the adjacency matrix as 
usual. And we can enumerate the neighbors of a vertex in O(m/n) time using the adjacency list. We 
can add an edge in O(1) time since both matrix and list allow this anyway (Table 9.2). And finally, 
we can delete an edge in O(1) time by first locating it in the adjacency matrix and setting the 
corresponding element to zero, then following the pointers to the relevant elements of the 
adjacency list and deleting those too by moving the last element of the list to fill their place. 

In terms of time complexity, i.e., scaling of run time with network size, this hybrid data 
structure is optimal.143 Its main disadvantage is that it uses even more memory than the ordinary 
adjacency matrix, and hence is suitable only for relatively small networks, up to a few tens of 
thousands of vertices on a typical computer at the time of writing. If this is not an issue in your 
case, however, and speed is, then this hybrid representation may be worth considering. 
  

Representations with variables on edges: In some networks the edges have values, weights, or 
labels on them. One can store additional properties like these using simple variants of the 
adjacency matrix or adjacency list representations. For instance, if edges come in several types we 
could define an additional n × n matrix to go with the adjacency matrix that has elements 
indicating the type of each extant edge. (For edges that do not exist the elements of such a matrix 
would have no meaning.) Or one could combine the two matrices into a single one that has a non-
zero element for every extant edge whose value indicates the edge type. If there are many different 
variables associated with each edge, as there are for instance in some social network studies, then 
one could use many different matrices, one for each variable, or a matrix whose elements are 
themselves arrays of values or more complicated programming objects like structures. Similarly, 
with an adjacency list one could replace the elements of the list with arrays or structures that 
contain all the details of the edges they correspond to. 

However, these representations can be wasteful or clumsy. The matrix method can waste huge 
amounts of memory storing meaningless matrix elements in all the positions corresponding to 
edges that don’t exist. The adjacency list (for an undirected network) contains two entries for each 
edge, both of which would have to be updated every time we modify the properties of that edge. If 
each edge has many properties this means a lot of extra work and wasted space. 

In some cases, therefore, it is worthwhile to create an additional data structure that stores the 
properties of the edges separately. For instance, one might use a suitable array of m elements, one 

 



for each edge. This array can be linked to the main representation of the network structure: with 
an adjacency list we could store a pointer from each entry in the list to the corresponding element 
in the array of edge data. Then we can immediately find the properties of any edge we encounter in 
the main adjacency list. Similarly, each entry in the array of edge data could include pointers to the 
elements in the adjacency list that correspond to the edge in question. This would allow us to go 
through the array of edge data looking for edges with some particular property and, for example, 
delete them. 
  

Edge lists: One very simple representation of a network that we have not yet mentioned is the 
edge list. This is simply a list of the labels of pairs of vertices that are connected by edges. Going 
back to this network, which we saw in Section 9.4:

 

the edge list representation would be (1, 3), (4, 1), (4, 3), (4, 5). The order of the edges is usually 
not important in an edge list, nor is the order of the vertices in the vertex pairs. 

The edge list is a convenient and space-efficient way to store the structure of a network, and 
furthermore allows us easily to associate properties with the edges—we can simply store those 
properties along with the corresponding pairs of labels. It is not such a good representation if we 
wish to store properties of vertices. Indeed, the representation doesn’t explicitly list vertices at all, 
so there is no way to tell that a vertex even exists if it is not connected to any edges. Vertex 2 in 
the network above is an example of this problem: it doesn’t appear in the edge list because it has 
no edges. On the other hand, this problem and the problem of storing vertex properties can be 
remedied easily enough by creating a separate list of vertices and the data associated with them. 

However, the edge list is a poor format for storing network data in computer memory for most 
of the algorithms we will be considering in this book. It does not, for instance, allow us to 
determine quickly whether a particular edge exists—we would have to go through the entire list to 
answer that question. And, crucially, it does not allow us easily to enumerate the neighbors of a 
given vertex, an operation that is central to many algorithms. For these reasons, the edge list is 
hardly ever used as a format for the representation of a network in memory. 

Where it does find use is in file formats for networks. Being a fairly compact representation, 
edge lists are often used as a way to store network structure in computer files on a disk or other 
storage medium. When we wish to perform calculations on these networks we must read the file 
and convert its contents into a more suitable form for calculation, such as an adjacency matrix or 
adjacency list. This, however, is simple: we create an empty network in the memory of our 
computer, one with no edges initially, then run through the edges stored in the edge list and add 
them one by one to the network in the memory. Since the operation of adding an edge can be 
accomplished quickly in all of the formats we have considered (Table 9.2), this normally does not 
take a significant amount of time. When it is finished, we have a complete copy of the network in 
the format of our choice stored in the memory of the computer, and we are ready to continue with 
our computations. 



9.7 HEAPS 

The last data structure we describe in this chapter is a specialized structure called a binary heap. 
Unlike the structures introduced in the last few sections, heaps are not normally used for storing 
networks themselves, but are used for storing values on networks, usually values associated with a 
network’s vertices. The definitive property of a heap is that it allows us to quickly find the entry in 
the heap with the minimum (or maximum) value. 

We will make use of the binary heap in Section 10.4 when we study one of the most famous of 
network algorithms, Dijkstra’s algorithm, which is an algorithm for finding shortest paths on 
weighted networks. This is the main place the heap will come up in this book, so if you are not 
interested in, or do not need to know, the detailed workings of Dijkstra’s algorithm, you can safely 
skip the remainder of this chapter. Otherwise, read on. 

Suppose, then, that we have some numerical value associated with every vertex in a network. 
That value might be, for instance, the distance from another vertex in the network, or a time until 
something happens. To give a concrete example, consider a disease spreading across a social 
network, as discussed in Chapters 1 and 3, and suppose we want to make a computer model of the 
spread. One simple and efficient way to do this is to associate with each vertex of the network a 
number representing our current estimate of the time at which that vertex will be infected by the 
disease (if it ever is). Initially each of these times is set to ∞, except for a single vertex representing 
the initial carrier of the disease, for which the time is set to zero. Then a simple algorithm for 
simulating the disease involves at each step finding the next vertex to be infected, i.e., the one with 
the earliest infection time, infecting it, and then calculating the time until it subsequently infects 
each of its neighbors. If any of those infection times is earlier than the current recorded time for the 
same neighbor, the new time supersedes the old one. Then we find the vertex in the network with 
the next earliest infection time and the process proceeds. 

The crucial requirements for this algorithm to run efficiently are that we should be able to 
quickly find the smallest value of the infection time anywhere on the network and that we should 
be able to quickly decrease the value at any other given vertex. The binary heap is a data structure 
that allows us to do these things. 

The binary heap is built upon a binary tree structure similar to the trees in Section 9.5, although 
the tree in a binary heap is arranged and used in a different fashion. Each of the items stored in a 
heap (items that will represent vertices in the network context) consists of two parts, an integer 
label that identifies the item and a numerical value. In the disease example above, for instance, the 
labels are the vertex indices i = 1 . . . n for vertices not yet infected and the values are the times at 
which the vertices are infected with the disease. 

The items in the heap are stored at the nodes of a binary tree as depicted in Fig. 9.3. There are 
two important features to notice about this structure. First, the tree is always completely packed. 
We fill the tree row by row starting with the root node at the top and filling each row from left to 
right. Thus the tree is denser than the typical binary tree of Section 9.5 and always has a depth that 
is logarithmic in the number of items in the tree—see Eq. (9.2). 

Second, the values associated with the items in the heap (the lower number at each node in Fig. 
9.3) are partially ordered. This means that each value is greater than or equal to the one above it in 
the tree and less than or equal to both of the two below it. If we follow any branch down the tree—
any path from top to bottom—the values grow larger along the branch or stay the same, but never 
decrease. The values are said to be “partially” ordered because the ordering only applies along 
branches and not between different branches. That is, there is no special relation between values on 
different branches of the tree; they may be larger or smaller than one another, whether they are on 
the same level in the tree or on different levels.

 



 

Figure 9.3: The structure of a binary heap. A binary heap consists of two parts, a tree and an 
index. The nodes of the tree each contain a label and a numerical value, and the tree is partially 
ordered so that the numerical value at each node is greater than or equal to the value above it in the 
tree and less than or equal to both of the values below it. The index is a separate array that lists by 
label the positions of each of the items in the tree, so that we can find a given item quickly. New 
items are added to the tree in the next available space at the bottom, starting a new row if 
necessary. 
  

The property of partial ordering has the important result that the value stored at the root node of 
the tree is always the smallest value anywhere. Since values are non-decreasing along all branches 
of the tree starting from the root, it follows that no value can be smaller than the root value. 

The binary heap also has another component to it, the index, which tells us the location of each 
item in the tree. The index is an array containing the coordinates in the tree of all the items, listed 
in order of their labels. It might, for instance, contain the row in the tree and position along that 
row of each item, starting with the item with label 1 and proceeding through each in turn—see Fig. 
9.3 again. 

A heap allows us to perform three operations on its contents: (1) adding an item to the heap, (2) 
reducing the numerical value stored in the item with a specified label, and (3) finding and 
removing the item with the smallest numerical value from the heap. Let us look at how each of 
these operations is carried out. 

 

 



 

Figure 9.4: Sifting a value up the heap. A branch in the tree initially contains three items as 
shown. A new item with value 1.7 is added at the bottom. The upward sift repeatedly compares 
and swaps this value with the value above it until it reaches its correct place in the partial ordering. 
In this case the added value 1.7 gets swapped twice, ending up (correctly) between the values 0.4 
and 2.0. 
  

Adding an item: To add an item to the heap we place it in the first available free space at the 
bottom of the tree as indicated in Fig. 9.3. If the bottom row of the tree is full, we start a new row. 
It is important in adding an item to the tree that we preserve the partially ordered structure, but a 
new item added at the bottom may well violate that structure by having a numerical value smaller 
than the item above it. We can fix this by sifting the tree as illustrated in Fig. 9.4. The newly added 
item is “sifted up” its branch of the tree by comparing its value with that of the item above it. If its 
value is smaller, the two are swapped, the new item moving up one row. We repeat this process 
until the new item either reaches a point where it is not smaller than the item above it, or it has 
risen to the root of the tree. If it rises to the root of the tree, then by definition it is has the smallest 
value in the tree because it is smaller than the value for the previous root item. 

When we add a new item we also have to update the index of the heap. The coordinates of the 
new item are recorded at the position in the index corresponding to the item’s label and then 
during the sifting operation, we simply swap the index entries for every two items that are 
swapped in the tree. 

Since the tree is completely packed it has depth given by Eq. (9.2), which is O(log k), where k is 
the number of items in the tree. Thus the maximum number of swaps we have to do during the 
sifting process is O(log k) and the total time to add an item to the heap, ignoring sub-leading terms, 
is also O(log k). 
  

Reducing a value in the heap: Reducing the numerical value associated with a given labeled item 
is similar to the addition operation. We first use the index to locate the given item in the tree and 
we reduce its numerical value as desired. Since this may mean that the item is now smaller than 
one or more of those above it, violating the partial ordering, we sift up as before until the item 
reaches its correct place in the ordering, updating the index as we go. This operation, like the 
addition operation, takes time O(log k). 
  

Finding and removing the smallest value: The item in the heap with the smallest numerical 
value is easily found since, as we have said, it is always located at the root of the tree. In Fig. 9.3, 
for example, the smallest value is 0.4 for the item with label 7.

 

 



We remove the smallest item by first deleting it from the tree and deleting its entry in the index. 
This leaves a hole in the tree which violates the condition that the tree be completely packed, but 
we can fix this problem by taking the last item from the bottom row of the tree and moving it up to 
the root, at the same time updating the relevant entry in the index. This, however, creates its own 
problem because in moving the item we will likely once again create a violation of the partial 
ordering of the tree. The item at the root of the tree is supposed to have the smallest numerical 
value and it’s rather unlikely that the item we have moved satisfies this condition. This problem 
we can fix by “sifting down.” Sifting down involves comparing the numerical value stored in the 
root item with both of those below it. If it is larger than either of them, we swap it with the smaller 
of the two and at the same time swap the corresponding entries in the index. We repeatedly 
perform such comparisons and swaps, moving our item down the tree until either it reaches a point 
at which it is smaller than both of the items below it, or it reaches the bottom of the tree. 

Again the sifting process, and hence the entire process of removing the root item from the tree, 
takes time O(log k). 
  

Thus the binary heap allows us to do all three of our operations—adding an item, reducing a 
value, or finding and removing the item with the smallest value—in time O(log k). 



PROBLEMS  

9.1 What (roughly) is the time complexity of:

a. Vacuuming a carpet if the size of the input to the operation is the number n of square feet 
of carpet? 

b. Finding a word in a (paper) dictionary if the size of the input is the number n of words in 
the dictionary? 

9.2 Suppose you have a sparse network with m ∝ n. What is the time complexity of:

a. Multiplying an arbitrary n-element vector by the adjacency matrix, if the network is stored 
in the adjacency matrix format. 

b. Performing the same multiplication if the network is in adjacency list format. 
c. The “modularity matrix” B of a network is the matrix with elements

 

(See Eq. (7.70) on page 224.) What is the time complexity of multiplying an arbitrary 
vector by the modularity matrix of our sparse network if the network is in adjacency list 
format? 

d. In fact, if we are clever about it, this last operation can be performed in time O(n) for the 
sparse network with m ∝ n. Describe an algorithm that achieves this. 

9.3 An interesting question, which is discussed in some detail in Chapter 16, concerns what 
happens to a network if you disable or remove its vertices one by one. The question is of 
relevance, for instance, to the vaccination of populations against the spread of disease. One typical 
approach is to remove vertices in order of their degrees, starting with the highest degrees first. 
Note that once you remove one vertex (along with its associated edges) the degrees of some of the 
other vertices may change. 

In most cases it is not possible to do the experiment of removing vertices from a real network to 
see what effect it has, but we can simulate the process on a computer by taking a network stored in 
computer memory, removing its vertices, and then measuring various properties of the remaining 
network.

a. What is the time complexity of finding the highest-degree vertex in a network, assuming 
the vertices are given to you in no particular order? 

b. If we perform the repeated vertex removal in a dumb way, searching exhaustively for the 
highest-degree vertex, removing it, then searching for the next highest, and so forth, what is 
the time complexity of the entire operation? 

c. Describe how the same operation could be performed with the degrees of the vertices 
stored instead in a heap. You will need to modify the heap structure of Section 9.7 in a 
couple of ways to make the algorithm work. One modification is trivial: the heap needs to 

 

 

 



be sorted in the opposite order so that the largest element is at the root. What other 
modification is needed, and how would you do it? What now is the time complexity of the 
entire calculation? 

d. Taking the same approach, describe in a sentence or two a method for taking n numbers in 
random order and sorting them into decreasing order using a heap. Show that the time 
complexity of this sorting algorithm is O(n log n). 

e. The degrees of the vertices in a simple graph are integers between zero and n. It is possible 
to sort such a set of integers into numerical order, either increasing or decreasing, in time O
(n). Describe briefly an algorithm that achieves this feat. 

 



CHAPTER 10 

FUNDAMENTAL NETWORK ALGORITHMS 

A discussion of some of the most important and fundamental algorithms for performing 
network calculations on a computer 

ARMED WITH the tools and data structures of Chapter 9, we look in this chapter at the algorithms 
that are used to perform network calculations. We start with some simple algorithms for 
calculating quantities such as degrees, degree distributions, and clustering. In the later sections of 
the chapter we look at more sophisticated algorithms for shortest paths, betweenness, maximum 
flows, and other non-local quantities. 

In the following chapter we extend our examination of network algorithms to algorithms based 
on matrix calculations and linear algebra, including algorithms for matrix-based centralities like 
eigenvector centrality and algorithms for graph partitioning and community discovery in networks.

 

 

 



10.1 ALGORITHMS FOR DEGREES AND DEGREE DISTRIBUTIONS  

Many network quantities are easy to calculate and require only the simplest of algorithms, 
algorithms that are little more than translations into computer code of the definitions of the 
quantities in question. Nonetheless, it is worth looking at these algorithms at least briefly, for two 
reasons. First, there is in some cases more than one simple algorithm for calculating a quantity, 
and one algorithm may be much faster than another. It pays to evaluate one’s algorithm at least 
momentarily before writing a computer program, to make sure one is going about the calculation 
in the most sensible manner. Second, it is worthwhile to calculate the computational complexity of 
even the simplest algorithm, so that one can make an estimate of how long a computation will take 
to finish—see Section 9.1. Even simple algorithms can take a long time to run. 

One of the most fundamental and important of network quantities is the degree of a vertex. 
Normally degrees are very simple to calculate. In fact, if a network is stored in the form of an 
adjacency list144 then, as described in Section 9.4, we normally maintain an array containing the 
degree of each vertex so that we know how many entries there are in the list of neighbors for each 
vertex. That means that finding the degree of any particular vertex is a simple matter of looking it 
up in this array, which takes O(1) time. 

If the network is stored in an adjacency matrix, then the calculation takes longer. Calculating the 
degree of a vertex i in this case involves going through all elements of the ith row of the adjacency 
matrix and counting the number that are non-zero. Since there are n elements in each row of the 
matrix, where n is the number of vertices in the network, the calculation takes time O(n), making 
the calculation far slower than for the adjacency list. If one needed to find the degrees of vertices 
frequently during the course of a larger calculation using an adjacency matrix, it might make good 
sense to calculate the degree of each vertex once and for all and store the results for later easy 
retrieval in a separate array. 

In Section 8.3 we discussed degree distributions, which are of considerable interest in the study 
of networks for the effect they have on network structure and processes on networks (see Chapters 
13 and 14). Calculating a degree distribution pk is also very straightforward: once we have the 
degrees of all vertices, we make a histogram of them by creating an array to store the number of 
vertices of each degree up to the network maximum, setting all the array elements initially to zero, 
and then running through the vertices in turn, finding the degree k of each and incrementing by one 
the kth element of the array. This process trivially takes time O(n) to complete. Once it is done the 
fraction pk of vertices of degree k is given by the count in the kth array element divided by n. 

The cumulative distribution function Pk of Section 8.4.1 requires a little more work. There are 
two common ways to calculate it. One is first to form a histogram of the degrees as described 
above and then to calculate the cumulative distribution directly from it using

 

(10.1) 
  

Noting that  we can then start from P0 and use Eq. (10.1) to calculate successive 

 

 

 



Pk up to any desired value of k. This process trivially takes O(n) time and, since the calculation of 
pk also takes O(n) time, the whole process is O(n). 

In fact, however, as described in Section 8.4.1, this is not usually how one calculates the 
cumulative distribution function. Although the method is fast, it’s also moderately complicated and 
there is a simpler way of doing the calculation that involves taking the degrees of all the vertices, 
sorting them in descending order, and ranking them from 1 to n. A plot of the rank divided by n as 
a function of degree then gives the cumulative distribution. The most time-consuming part of this 
calculation is the sorting of the degrees. Sorting is a well-studied problem and the fastest general 
algorithms145 run in time O(n log n). Thus the leading order scaling of this algorithm to calculate 
the cumulative distribution is O(n log n). This is slower than the first method described above, 
which was O(n), but not much slower and the second method has the considerable advantage that 
almost all computers provide standard software for sorting numbers, which means that in most 
cases one doesn’t have to write a program at all to calculate the cumulative distribution. All 
spreadsheet programs, for instance, include facilities for sorting numbers, so one can calculate 
cumulative distributions directly in a spreadsheet. 

Another quantity of interest is the correlation coefficient r for vertex degrees, Eq. (8.26), which 
measures assortative mixing by degree. This too is straightforward to calculate—one uses Eq. 
(8.27) and the sums defined in Eqs. (8.28) and (8.29). Given the degrees of all vertices, the sum in 
Eq. (8.28) takes time O(m) to evaluate, where m is the number of edges in the network, and the 
sums in Eq. (8.29) each take time O(n), so the total time required to calculate r is O(m + n). As 
mentioned in Section 9.1, we are often concerned with sparse networks in which the mean degree 
remains constant as the network gets larger, i.e., networks in which m ∝ n. In such networks O(m 
+ n) ≡ O(n) and the time to calculate r taken just scales as the number of vertices. On the other 
hand, if the network is dense, meaning that m ∝ n145, then O(m) ≡ O(n145 ), which is considerably 
worse. 



10.2 CLUSTERING COEFFICIENTS  

The calculation of clustering coefficients is only slightly more complicated than the calculation of 
degrees. To see how it works, we start by calculating the local clustering coefficient Ci for a single 
vertex i on an undirected network, Eq. (7.42):

 

(10.2) 
  

Calculating the numerator involves going through every pair of distinct neighbors of vertex i and 
counting how many are connected. We need only consider each pair once, which we can do 
conveniently by restricting ourselves to pairs (j, l) for which j < l. For each pair we determine 
whether an edge exists between them, which is done in various ways depending on the 
representation used for the network as described in Sections 9.3-9.5, and count up the number of 
such edges. Then we divide the result by the number of pairs, which is just  , where ki is 
the degree of the vertex. 

To calculate the overall clustering coefficient for the entire network, which is given by

 

(10.3) 
  

(see Eq. (7.41)), we extend the same calculation to the whole network. That is we consider for 
every vertex each pair of neighbors (j, l) with j < l and find whether they are connected by an 
edge.147 We add up the total number of such edges over all vertices and then divide by the number 

of connected triples, which is . 
This last algorithm is simple and straightforward, a direct implementation of the formula (10.3) 

defining the clustering coefficient, but some interesting issues nonetheless come up when we 
consider its running time. Even without performing a full calculation of the complexity of the 
algorithm we can see that something unusual is going to happen because a vertex i with degree ki 

has  pairs of neighbors. We have to check for the presence of an edge between each such 
pair on the entire network and hence the total number of checks we have to perform is

 

 

 

 

 

 



(10.4) 
  

where

 

(10.5) 
  

are the mean and mean square degree for the network. (We previously denoted the mean degree 
by c, but we use the alternate notation �k� here for clarity, and to highlight the distinction 
between the mean and the mean square.) 

See Section 8.3 for a discussion of degree distributions. 

The interesting point here is that Eq. (10.4) depends in a non-trivial way on the degree 
distribution of our network. The running times of other algorithms we have seen so far have 
depended on the number of vertices n and the number of edges m, and hence, indirectly, on the 
mean degree �k� = 2m / n. For the clustering coefficient, however, we see that the amount of 

work we have to do, and hence also the running time, depends not only on n and �k�, but on the 
second moment �k2�, which is an additional independent parameter. Even if we suppose that the 

degree distribution remains the same with increasing n so that the quantities �k� and �k2� can be 

considered constant, strange things can happen. Consider the case of a network whose degree 
distribution follows a power law pk ∼ k-α, as described in Section 8.4. For such networks, the first 
moment is well behaved but the second moment �k2� formally diverges if α < 3 (see Section 

8.4.2) which implies that it will take an infinite amount of time to evaluate the clustering 
coefficient! 

To understand better what is going on let us perform a more careful calculation of the time 
complexity of our clustering coefficient algorithm. We start by considering again a single vertex i. 
And let us assume that we have our network stored in adjacency list form. In that case, we can, as 
we have seen, easily enumerate all of the neighbors of our vertex in time that goes like ki. For each 
neighbor j we run through each other neighbor l > j that could be paired with it, for a total of 

 pairs and determine for each pair whether an edge exists between them. This latter 
operation takes a time proportional, to leading order, to either kj or to kl (see Table 9.2), depending 
on whether we find the edge by looking at the adjacency list for vertex j or for vertex l. Let us for 
the moment assume a simple algorithm that chooses at random between the two vertices, in which 
case the typical time taken will go as the average of the two degrees, i.e., it will be proportional to 
kj + kl. 

Let Γi denote the set of neighbors of vertex i. Then the total time taken to check for edges 
between all pairs of neighboring vertices is proportional to

 

 

 

 



(10.6) 
  

The total time needed to calculate the numerator of Eq. (10.3) is then proportional to the sum of 
this quantity over all vertices i:

 

(10.7) 
  

where Aij is an element of the adjacency matrix and we have made use of the result ∑iAij = kj 
(Eq. (6.19)). 

Compare this equation with our earlier expression for the correlation coefficient r between 
degrees in a network, Eq. (7.82), which quantifies assortativity by degree in networks:

 

(10.8) 
  

As we can see, the first term in Eq. (10.7) is the same as the first term in the numerator of the 
correlation coefficient. As a result, our estimate of the time to calculate the clustering coefficient 
depends on whether the degrees of vertices are correlated or not. This can lead to some interesting 
behaviors for specific networks, but for simplicity let us assume here that there is no correlation 
between degrees, that the network we are considering has no assortativity. In that case r = 0 in Eq. 
(10.8), which can only occur if the numerator is itself zero, or equivalently if

 

(10.9) 
  

Combining this result with Eq. (10.7), the running time for our calculation of the clustering 
coefficient on an uncorrelated network is proportional to

 

 

 

 

 

 

 

 



(10.10) 
  

where we have made use of the fact that 2m = ∑ikj = n�k� (see Eq. (6.20)).
 

This is a measure of the time taken to evaluate the numerator of Eq. (10.3). The denominator is 
simply equal to ∑iki(ki − 1) and so just takes O(n) time to evaluate, given that, for a network stored 
in adjacency list format, we already have the degrees of all vertices available. This will never be 
longer than the time represented in Eq. (10.10), so Eq. (10.10) gives the leading-order time 
complexity of the calculation of the clustering coefficient. 

So we see that the calculation of the clustering coefficient indeed takes a time that depends not 
only on n and m but also on the second moment �k2� of the degree distribution. In many cases 

this does not matter, since the second moment often tends to a modest constant value as the 
network becomes large. But for networks with highly skewed degree distributions �k2� can 

become very large and in the case of a power-law degree distribution with exponent α < 3 it 
formally diverges (see Section 8.4.2) and with it so does the expected running time of our 
algorithm. 

More realistically, if the network is a simple graph with no multiedges, then the maximum 
allowed degree is k = n and the degree distribution is cut off, which means that the second moment 
scales at worst as n3−α (Eq. (8.22)) while the first moment remains constant. This in turn implies 
that the running time of our clustering coefficient algorithm on a scale-free network would go as n 
× n3-α × n3-α = n7-2α. For values of α in the typical range of 2 ≤ α ≤ 3 (Table 8.1), this gives running 
times that vary from a minimum of O(n) for α = 3 to a maximum of O(n3) for α = 2. For the lower 
values of α this makes the calculation of the clustering coefficient quite arduous, taking a time that 
increases sharply as the network gets larger. 

So can we improve on this algorithm? There are various possibilities. Most of the work of the 
algorithm is in the “find” operation to determine whether there is an edge between a given pair of 
vertices, and the algorithm will be considerably faster if we can perform this operation more 
efficiently. One simple (though memory-inefficient) method is to make use of the hybrid 
matrix/list data structure of Section 9.6, which can perform the find operation in constant time.148 
Even in this case, however, the number of find operations that must be performed is still equal to 
the number of connected triples in the network, which means the running time is given by Eq. 
(10.4), and hence still formally diverges on a network with a power-law degree distribution. On a 
simple graph for which the power law is cut off at k = n, it will go as n4-α, which ranges from O(n) 
to O(n2) for values of α in the interesting range 2 ≤ α ≤ 3. This is better than our earlier algorithm, 
but still relatively poor for the lower values of α. 

These difficulties are specific to the case of scale-free networks. In other cases there is usually 
no problem calculating the clustering coefficient quickly. Some alternative algorithms have been 
proposed for calculating approximate values of the clustering coefficient rapidly, such as the 
algorithm of Schank and Wagner [292], and these may be worth considering if you need to 
perform calculations on very large networks.



10.3 SHORTEST PATHS AND BREADTH-FIRST SEARCH  

We now move on to some more complex algorithms, algorithms for calculating mostly non-local 
quantities on the networks, such as shortest paths between vertices. The study of each of these 
algorithms has three parts. Two are, as before, the description of the algorithm and the analysis of 
its running time. But now we also include a proof that the algorithm described performs the 
calculation it claims to. For the previous algorithms in this chapter such proofs were unnecessary; 
the algorithms were direct implementations of the equations defining the quantities calculated. As 
we move onto more complex algorithms, however, it will become much less obvious why those 
algorithms give the results they do, and to gain a full understanding we will need to examine their 
working in some detail. 

The first algorithm we look at is the standard algorithm for finding shortest distances in a 
network, which is called breadth-first search.149 A single run of the breadth-first search algorithm 
finds the shortest (geodesic) distance from a single source vertex s to every other vertex in the 
same component of the network as s. In some cases we want to know only the shortest distance 
between a single pair of vertices s, t, but there is no procedure known for calculating such a 
distance that is faster in the worst case than calculating the distances from s to every other vertex 
using breadth-first search and then throwing away all of the results except for the one we want.150 

With only minor modifications, as we will describe, breadth-first search can also find the 
geodesic path one must take to realize each shortest distance and if there is more than one geodesic 
path, it can find all such paths. It works also on both directed and undirected networks, although 
our description will focus on the undirected case.

 



10.3.1 DESCRIPTION OF THE ALGORITHM  

Breadth-first search finds the shortest distance from a given starting vertex s to every other vertex 
in the same component as s. The basic principle behind the algorithm is illustrated in Fig. 10.1. 
Initially we know only that s has distance 0 from itself and the distances to all other vertices are 
unknown. Now we find all the neighbors of s, which by definition have distance 1 from s. Then we 
find all the neighbors of those vertices. Excluding those we have already visited, these vertices 
must have distance 2. And their neighbors, excluding those we have already visited have distance 
3, and so on. On every iteration, we grow the set of vertices visited by one step. 

 

Figure 10.1: Breadth-first search. A breadth-first search starts at a given vertex, which by 
definition has distance 0 from itself, and grows outward in layers or waves. The vertices in the first 
wave, which are the immediate neighbors of the starting vertex, have distance 1. The neighbors of 
those neighbors have distance 2, and so forth. 
  

 

A network path from s to t of length d (where d = 3 in this case) necessarily includes a path of 
length d–1 (i.e., 2) from s to an immediate neighbor of t.

 

 

 

 



  

This is the basic idea of breadth-first search. Now let us go over it more carefully to see how it 
works in practice and show that it really does find correct geodesic distances. We begin by noting 
the following fact:

Every vertex whose shortest distance from s is d has a network neighbor whose shortest 
distance from s is d − 1. 

This follows since if the shortest path from s to a vertex t is of length d then the penultimate vertex 
along that path, which is a neighbor of t, can, by definition, be reached in d - 1 steps and hence 
cannot have shortest distance greater than d -1. It also cannot have shortest distance less than d -1 
because it if did there would be a path to t of length less than d. 

Now suppose that we already know the distance to every vertex on the network that is d steps or 
less from our source vertex s. For example, we might know all the distances to vertices at distance 
2 or less from the central vertex in Fig. 10.1. For every neighbor of one of the vertices at distance d 
there exists a path of length d + 1 to that neighbor: we can get to the vertex at distance d along a 
path of length d and then we take one more step to its neighbor. Thus every such neighbor is at 
most d + 1 steps from s, but it could be less than d + 1 from s if there is another shorter path 
through the network. However, we already know whether there is a shorter path to any particular 
vertex, since by hypothesis we know the distance to every vertex d steps or less from s. 

Consider the set of all vertices that are neighbors of vertices at distance d but that are not already 
known to have distance d or less from s. We can say immediately that (1) all neighbors in this set 
have distance d + 1 from s, and (2) that there are no other vertices at distance d + 1. The latter 
follows from the property cited above: all vertices at distance d + 1 must be neighbors of vertices 
at distance d. Thus we have found the set of vertices at distance d + 1, and hence we now know the 
distances to all vertices that are d + 1 or less from s. 

Now we just repeat the process. On each round of the algorithm we find all the vertices one step 
further out from s than on the last round. The algorithm continues until we reach a point at all the 
neighbors of vertices at distance d are found already to have known distances of d or less. This 
implies that there are no vertices of distance d + 1 and hence, by the property above, no vertices of 
any greater distance either, and so we must have found every vertex in the component containing s. 

As a corollary of the process of finding distance, breadth-first search thus also finds the 
component to which vertex s belongs, and indeed breadth-first search is the algorithm of choice for 
finding components in networks. 

 

 



10.3.2 A NAIVE IMPLEMENTATION  

Let us now consider how we would implement breadth-first search on our computer. The simplest 
approach (but not, as we will see, the best) would go something like this. We create an array of n 
elements to store the distance of each vertex from the source vertex s, and initially set the distance of 
vertex s from itself to be zero while all other vertices have unknown distance from s. Unknown 
distances could be indicated, for instance, by setting the corresponding element of the array to −1, or 
some similar value that could never occur in reality. 

We also create a distance variable d to keep track of where we are in the breadth-first search 
process and set its value initially to zero. Then we do the following:

1. Find all vertices that are distance d from s, by going through the distance array, element by 
element. 

2. Find all the neighbors of those vertices and check each one to see if its distance from s is 
unknown (denoted, for example, by an entry −1 in the distance array). 

3. If the number of neighbors with unknown distances is zero, the algorithm is over. Otherwise, 
if the number of neighbors with unknown distances is non-zero, set the distance of each of 
those neighbors to d + 1. 

4. Increase the value of d by 1. 
5. Repeat from step 1. 

When the algorithm is finished we are left with an array that contains the distances to every vertex in 
the component of the network that contains s (and every vertex in every other component has 
unknown distance). 

How long does this algorithm take? First of all we have to set up the distance array, which has one 
element for each vertex. We spend a constant amount of time setting up each element, so overall we 
spend O(n) time setting up the distance array. 

For the algorithm proper, on each iteration we go through all n vertices looking for those with 
distance d. Most will not have distance d in which case we pass over them, spending only O(1) time 
on each. Thus there is a basic cost of O(n) time for each iteration. The total number of iterations we 
will for the moment call r, and overall we thus spend O(rn) time on this part of the algorithm, in the 
worst case. 

However, when we do come across a vertex with distance d, we must pause at that vertex and 
spend an additional amount of time checking each of its neighbors to see if their distances are 
unknown and assigning them distance d + 1 if they are. If we assume that the network is stored in 
adjacency list format (see Section 9.4) then we can go through the neighbors of a vertex in O (m / n) 
on average, and during the whole course of the algorithm we pause like this at each vertex exactly 
once so that the total extra time we spend on checking neighbors of vertices is n × O(m / n) = O(m). 

Thus the total running time of the algorithm, including set-up, is O(n + rn + m). 
And what is the value of the parameter r? The value of r is the maximum distance from our source 

vertex s to any other vertex. In the worst case, this distance is equal to the diameter of the network 
(Section 6.10.1) and the worst-case diameter is simply n, which is realized when the network is just a 
chain of n vertices strung one after another in a line. Thus in the worst case our algorithm will have 
running time O(m + n2 ) (where we have dropped the first n because we are keeping only the 
leading-order terms). 

This is very pessimistic, however. As discussed in Sections 8.2 and 12.7 the diameter of most 
networks increases only as log n, in which case our algorithm would run in time O(m + n log n) to 
leading order. This may be a moot point, however, since we can do significantly better than this if 
we use a little cunning in the implementation of our algorithm.

 

 



10.3.3 A BETTER IMPLEMENTATION  

The time-consuming part of the implementation described in the previous section is step 1, in 
which we go through the list of distances to find vertices that are distance d from the starting 
vertex s. Since this operation involves checking the distances of all n vertices, only a small fraction 
of which will be at distance d, it wastes a lot of time. Observe, however, that in each wave of the 
breadth-first search process we find and label all vertices with a given distance d + 1. If we could 
store a list of these vertices, then on the next wave we wouldn’t have to search through the whole 
network for vertices at distance d + 1; we could just use our list. 

The most common implementation of this idea makes use of a first-in/firstout buffer or queue, 
which is nothing more than an array of (in this case) n elements that store a list of labels of 
vertices. On each sweep of the algorithm, we read the vertices with distance d from the list, we use 
these to find the vertices with distance d + 1, add those vertices with distance d + 1 to the list, and 
repeat. 

To do this in practice, we fill up the queue array starting from the beginning. We keep a pointer, 
called the write pointer, which is a simple integer variable whose value indicates the next empty 
location at the end of the queue that has not been used yet. When we want to add an item to the 
queue, we store it in the element of the array pointed to by the write pointer and then increase the 
pointer by one to point to the next empty location. 

At the same time we also keep another pointer, the read pointer, which points to the next item in 
the list that is to be read by our algorithm. Each item is read only once and once it is read the read 
pointer is increased by one to point to the next unread item. 

Here is a sketch of the organization of the queue:

 

Our breadth-first search algorithm now uses two arrays of n elements, one for the queue and one 
for the distances from s to each other vertex. The algorithm is as follows. 

1. Place the label of the source vertex s in the first element of the queue, set the read pointer 
to point to it, and set the write pointer to point to the second element, which is the first 
empty one. In the distance array, record the distance of vertex s from itself as being zero 
and the distances to all other vertices as “unknown” (for instance, by setting the 
corresponding elements of the distance array to -1, or some similar impossible value). 

2. If the read and write pointers are pointing to the same element of the queue array then the 
algorithm is finished. Otherwise, read a vertex label from the element pointed to by the 
read pointer and increase that pointer by one. 

3. Find the distance d for that vertex by looking in the distance array. 
4. Go through each neighboring vertex in turn and look up its distance in the distance array as 

well. If it has a known distance, leave it alone. If it has an unknown distance, assign it 
distance d + 1, store its label in the queue array in the element pointed to by the write 

 

 



pointer, and increase the write pointer by one.
5. Repeat from step 2. 

Note the test applied in step 2: if the read pointer points to the same element as the write pointer, 
then there is no vertex to be read from the queue (since the write pointer always points to an empty 
element). Thus this test tells us when there are no further vertices waiting to have their neighbors 
investigated. 

Note also that this algorithm reads all the vertices with distance d from the queue array one after 
another and uses them to find all the vertices with distance d + 1. Thus all vertices with the same 
distance appear one after another in the queue array, with the vertices of distance d + 1 
immediately after those of distance d. Furthermore, each vertex appears in the queue array at most 
once. A vertex may of course be a neighbor of more than one other, but a vertex is assigned a 
distance and put in the queue only on the first occasion on which it is encountered. If it is 
encountered again, its distance is known rather than unknown, and hence it is not again added to 
the queue. Of course, a vertex may not appear in the queue array at all if it is never reached by the 
breadth-first search process, i.e., if it belongs to a different component from s. 

Thus the queue does exactly what we wanted it to: it stores all vertices with a specified distance 
for us so that we have the list handy on the next sweep of the algorithm. This spares us from 
having to search through the network for them and so saves us a lot of time. In all other respects 
the algorithm works exactly as in the simple implementation of Section 10.3.2 and gives the same 
answers. 

How long does this implementation of the algorithm take to run? Again there is an initial time of 
O(n) to set up the distance array (see Section 10.3.2). Then, for each element in the queue, which 
means for each of the vertices in the same component as s, we do the following operations: we run 
through its neighbors, of which there are O(m / n) on average, and either calculate their distance 
and add them to the queue, or do nothing if their distance is already known. Either way the 
operations take O(1) time. Thus for each vertex in the component, of which there are in the worst 
case n, we spend time O(m / n) and hence we require overall at most a time n × O(m / n) = O(m) to 
complete the algorithm for all n vertices. 

Thus, including the time to set up the distance array, the whole algorithm takes time O(m + n), 
which is better than the O(m + n log n) of the naive implementation (Section 10.3.2). For the 
common case of a sparse network with m ∝ n, O(m + n) is equivalent to O(n) and our algorithm 
runs in time proportional to the number of vertices.151 This seems just about optimal, since the 
algorithm is calculating the distance of all n vertices from the source vertex s. Thus it is assigning 
n numbers to the n elements of the distance array, which in the best possible case must take O(n) 
time. 

On a sparse network, therefore, the breadth-first search algorithm does as well as we can hope 
for in finding the distances from a single vertex to all others, and indeed it is the fastest known 
algorithm for performing this operation.

 



10.3.4 VARIANTS OF BREADTH-FIRST SEARCH  

There are a number of minor variants of breadth-first search that merit a mention. First, one might 
wish to calculate the shortest distance between only a single pair of vertices s and t, rather than 
between s and all others. As mentioned in Section 10.3 there is no known way to do this faster than 
using breadth-first search. We can, however, improve the running time slightly by the obvious 
tactic of stopping the algorithm as soon as the distance to the target vertex t has been found. There 
is no point in continuing to calculate distances to the remaining vertices once we have the answer 
we want. In the worst case, the calculation still takes O(m + n) time since, after all, our particular 
target vertex t might turn out to be the last one the algorithm finds. If we are lucky, however, and 
encounter the target early then the running time might be considerably shorter. 

Conversely, we sometimes want to calculate the shortest distance between every pair of vertices 
in an entire network, which we can do by performing a breadth-first search starting at each vertex 
in the network in turn. The total running time for this “all-pairs shortest path” calculation is n × O
(m + n) = O(n(m + n)), or O(n2) on a sparse graph. As with the standard breadth-first search, this is 
optimal in the sense that we are calculating O(n2) quantities in O(n2) time, which is the best we can 
hope for. 

As mentioned in the previous section, breadth-first search can also be used to identify the 
members of the component to which a vertex s belongs. At the end of the algorithm the distance 
array contains the distance from s to every vertex in its component, while distances to all other 
vertices are recorded as unknown. Thus we can find the size of the component just by counting the 
number of vertices with known distances. It takes time O(n) to perform the count, so the operation 
of finding the component still takes O(m + n) time in total. 

The closeness centrality of Section 7.6 can also be calculated simply using breadth-first search. 
Recall that closeness is defined as the inverse of the mean distance from a vertex to all others in 
the same component. Since our breadth-first search calculates distances to all others in a 
component we need then only go through the distance array, calculate the sum of all known 
distances, divide by the size of the component, and take the inverse. Again the running time is O(n 
+ m). The variant closeness defined in terms of the harmonic mean in Eq. (7.30) can also be 
calculated, in the same running time, by a similar method.

 



10.3.5 FINDING SHORTEST PATHS  

The breadth-first search algorithm as we have described it so far finds the shortest distance from a 
vertex s to all others in the same component of the network. It does not tell us the particular path or 
paths by which that shortest distance is achieved. With only a relatively small modification of the 
algorithm, however, we can calculate the paths as well. The trick is to construct another network 
on top of our original network, this one directed, that represents the shortest paths. This other 
network is often called the shortest path tree, although in the most general case it is a directed 
acyclic graph, not a tree. 

The idea is as follows. At the start of our algorithm we create an extra network, which will 
become our shortest path tree, with the same number n of vertices as our original network and the 
same vertex labels, but with no edges at all. Then we start our breadth-first search algorithm from 
the specified source vertex s as before. The algorithm repeatedly pulls a vertex out of the queue 
and examines its neighbors, as described in Section 10.3.3, but now every time the neighbor j of 
some vertex i turns out to be a previously unseen vertex, one whose distance is recorded as 
“unknown,” we not only assign j a distance and store it in the queue, we also add a directed edge 
to our shortest path tree from vertex j to vertex i. This directed edge tells us that we found j by 
following a path from its neighbor i. However, vertex i will also have a directed edge leading from 
it to one of its neighbors, telling us that we found i by following that path, and so forth. Thus, by 
following a succession of these directed edges we eventually get all the way back to s, and so we 
can reconstruct the entire shortest path between j and s. 

 

Figure 10.2: Shortest path trees. (a) A simple shortest path tree for the network of Fig. 10.1. 
Each vertex has a directed edge pointing to the vertex by which it was reached during the breadth-
first search process. By following directed edges from any vertex we can find a shortest path to the 
starting vertex in the center. (b) The full shortest path tree (which is actually not a tree at all but a 
directed acyclic graph) contains extra directed edges that allow us to reconstruct all possible 
shortest paths. 
  

So, when our breadth-first search is finished, the shortest path tree contains the information we 

 

 

 



need to find the actual shortest path from every vertex in the component containing s to s itself. 
An example of a shortest path tree is shown in Fig. 10.2a for the same network as in Fig. 10.1. 

This algorithm works well and the extra step of adding an edge to the shortest path tree can be 
accompanied quickly—in O(1) time if we store the network in adjacency list format (see Table 
9.2). Thus the overall running time of the algorithm is still O(m + n) to find all distances from s 
and the corresponding shortest paths. 

The algorithm does have one shortcoming, however, which is that it only finds one shortest path 
to each vertex. As pointed out in Section 6.10.1, a pair of vertices may have more than one shortest 
path between them (see Fig. 6.10). Another slight modification of the algorithm allows us to deal 
with this case. 

Multiple shortest paths exist between any vertex and the source vertex s if the path to s splits in 
two or more directions at some point along its length. This occurs if there is a vertex j somewhere 
along that path, say at distance d + 1 from s, that has more than one neighbor at distance d—see 
Fig. 10.2b. We can record this circumstance in our shortest-path tree by adding more than one 
directed edge from j to each of the relevant neighbors. These directed edges tell us that we can find 
a shortest path to vertex s by taking a step to any of those neighboring vertices. 

To do this we modify our algorithm as follows. We perform the breadth-first search starting 
from s as before, and add directed edges from newly found vertices to their neighbor as before. But 
we also add an extra step. If, in the process of examining the neighbors of a vertex i that has 
distance d from the source vertex, we discover a neighbor j that already has an assigned distance, 
and that distance is d + 1, then we know that a path of length d + 1 has already been found to j, but 
we also know that another path of length d + 1 must exist via the current vertex i. So we add an 
extra directed edge to the shortest path tree from j to i. This makes the shortest path tree no longer 
a tree but, as we have said, it’s usually called a tree anyway. In any case, the algorithm gives 
exactly what we want. When it is finished running the shortest path “tree” allows us to reconstruct 
all shortest paths from every vertex in the component to the source vertex s. See Fig. 10.2b.



10.3.6 BETWEENNESS CENTRALITY  

In Section 7.7 we described betweenness centrality, a widely used centrality index that measures 
the extent to which a vertex in a network lies on the paths between other vertices. The betweenness 
centrality of vertex v is the number of geodesic paths between pairs of vertices s, t that pass 
through v. (Sometimes it is normalized to be the fraction of such paths, rather than the total 
number. The difference is only a multiplicative constant—see Section 7.7.) Given that we have a 
method for finding the shortest path (or paths) between any two vertices (Section 10.3.5), we can 
with only a little more work now create an algorithm for calculating betweenness. 

The simplest way to calculate betweenness would be to implement the definition of the measure 
directly: use breadth-first search to find the shortest path between s and t, as described in Section 
10.3.5 (assuming such a path exists), and then work our way along that path checking the vertices 
it passes though to see if the vertex v we are interested in lies among them. Repeating this process 
for every distinct pair s, t, we can then count the total number of paths that pass through v. (Things 
are slightly more complicated for the case in which a pair of vertices are connected by more than 
one shortest path, but let us ignore this complication for the moment—we will come to it soon.) 

This algorithm is certainly a correct algorithm and it would work, but it is also inefficient. As 
we have seen, breadth-first search takes time O(m + n) to find a shortest path between two vertices, 
and there are  distinct pairs of vertices s, t. Thus the work of calculating betweenness for a 
single vertex would take O(n2 (m + n)) time, or O (n3) in the common case of a sparse graph for 
which m ∝ n. (The operation of checking the vertices along each shortest path will take time of 
the order of the length of the path, which is typically O(log n) (Section 8.2), making it negligible 
compared with the time taken to find the path.) This is prohibitively slow: while one might be able 
to calculate the betweenness of a vertex on a given network in, say, an hour’s work, the same 
calculation on a graph ten times larger would take 103 = 1000 hours, or more than a month of 
computer time. 

But we can do a lot better if we make use of some of our results about breadth-first search from 
previous sections. First, the standard breadth-first search can find paths between a source s and all 
other vertices (in the same component) in time O(m + n), which means, as noted in Section 10.3.4, 
we can find paths between all pairs in the network in time O(n(m + n)), or O(n2) on a sparse 
network. 

An improved algorithm for calculating the betweenness of a vertex v might work as follows. For 
each s we use breadth-first search to find shortest paths between s and all other vertices, 
constructing a shortest path tree as described in Section 10.3.5. Then we use that tree to trace the 
paths from each vertex back to s, counting in the process the number of paths that go through v. 
We repeat this calculation for all s and so end up with a count of the total number of shortest paths 
that pass through v. 

Indeed, we can trivially extend this algorithm to calculate betweenness for all vertices at the 
same time—we simply maintain a count of the number of paths that go through every vertex, for 
example in an array.152 

 



 

Figure 10.3: Calculation of betweenness centrality. (a) When there is only a single shortest path 
from a source vertex s (top) to all other reachable vertices, those paths necessarily form a tree, 
which makes the calculation of the contribution to betweenness from this set of paths particularly 
simple, as described in the text. (b) For cases in which there is more than one shortest path to some 
vertices, the calculation is more complex. First we must calculate the number of paths from the 
source s to each other vertex (numbers to the left of vertices), and then use these to weight the path 
counts appropriately and derive the betweenness scores (numbers to the right of vertices). 
  

For any given s, this algorithm will take time O(m + n) to find the shortest paths. Paths have 
length that by definition is less than or equal to the diameter of the network, which is typically of 
order log n, and hence traversing the n paths from each vertex to s will take time O(n log n), for a 
running time of O(m + n log n) for each value of s. Repeating for all s, the whole algorithm will 
then take total time O(n(m + n log n)) or O(n2 log n) on a sparse network. 

This is much better than our earlier O(n3) algorithm, but we can do better still. It is in fact 
possible to cut the running time down to just O(n(m + n)) by exploiting the fact that many of the 
shortest paths in the shortest path tree share many of the same edges. To understand this 
development, consider Fig. 10.3a, which shows a shortest path tree from a vertex s to all other 
vertices on a graph. In this case the shortest path tree really is a tree, meaning there is only one 
shortest path from s to any other vertex. This case is a good first example to study because of its 
simplicity, but we will consider the more general case in just a moment. 

We use the tree to calculate a score for each vertex representing the number of shortest paths 
passing through that vertex. We find first the “leaves” of the tree, i.e., those vertices such that no 
shortest paths from other vertices to s pass through them. (In Fig. 10.3a the leaves are drawn at the 
bottom of the tree.) We assign a score of 1 to each of these leaves—the only path to s that passes 
through these vertices is the one that starts there.153 Then, starting at the bottom of the tree we 
work upward, assigning to each vertex a score that is 1 plus the sum of the scores on the 
neighboring vertices immediately below it. That is, the number of paths through a vertex v is 1 for 
the path that starts at v plus the count of all paths that start below v in the tree and hence have to 
pass through it. 

When we have worked all the way up the tree in this manner and reached vertex s, the scores at 
each vertex are equal to the betweenness counts for paths that end at vertex s. Repeating the 
process for all s and summing the scores, we arrive at the full betweenness scores for all paths. 

In practice, the process of working up the tree can be accomplished by running through the 
vertices in order of decreasing distance from s. Conveniently, we already have a list of vertices in 
order of their distances, namely the entries in the queue array created by the breadth-first search 
process. Thus the betweenness algorithm in practice involves running backwards through the list 
of vertices in this array and calculating the number of paths through each vertex as above until the 
beginning of the array is reached. 

 

 



In the worst case, this process involves going through all n vertices and checking every neighbor 
of every vertex, of which there are a total of 2m, so that the overall running time is O(m + n). The 
breadth-first search itself also takes time O(m + n) (as usual) and hence the total time to count 
paths for each source vertex s is O(m + n), which means the complete betweenness calculation 
takes time O(n(m + n)), as promised. 

In general, however, we cannot assume that the shortest paths to a given vertex form a tree. As 
we saw in Section 10.3.5, often they do not. Consider, for instance, the “tree” shown in Fig. 10.3b. 
Following the definition of betweenness in Section 7.7, multiple shortest paths between the same 
pair of vertices are given equal weights summing to 1, so that for a vertex pair connected by three 
shortest paths, for example, we give each path weight . Note that some of the paths may share 
vertices for part of their length, resulting in vertices with greater weight. 

To calculate correctly the weights of the paths flowing through each vertex in a network, we 
need first to calculate the total number of shortest paths from each vertex to s. This is actually quite 
straightforward to do: the shortest paths from s to a vertex i must pass through one or more 
neighbors of i and the total number of shortest paths to i is simply the sum of the numbers of 
shortest paths to each of those neighbors. We can calculate these sums as part of a modified 
breadth-first search process as follows. 

Consider Fig. 10.3b and suppose we are starting at vertex s. We carry out the following steps:

1. Assign vertex s distance zero, to indicate that it is zero steps from itself, and set d = 0. Also 
assign s a weight ws = 1 (whose purpose will become clear shortly). 

2. For each vertex i whose assigned distance is d, follow each attached edge to the vertex j at 
its other end and then do one of the following three things:

a. If j has not yet been assigned a distance, assign it distance d + 1 and weight wj = wi. 
 

b. If j has already been assigned a distance and that distance is equal to d + 1, then the 
vertex′s weight is increased by wi, that is wj ← wj + wi.  

c. If j has already been assigned a distance less than d + 1, do nothing. 

3. Increase d by 1. 
4. Repeat from step 2 until there are no vertices that have distance d. 

The resulting weights for the example of Fig. 10.3b are shown to the left of each vertex in the 
figure. Each weight is the sum of the ones above it in the “tree.” (It may be helpful to work 
through this example yourself by hand to see how the algorithm arrives at these values for the 
weights.) Physically, the weight on a vertex i represents the number of distinct geodesic paths 
between the source vertex s and i. 

Now if two vertices i and j are connected by a directed edge in the shortest path “tree” pointing 
from j to i, then the fraction of the paths to s that pass through (or starting at) j and that also pass 
through i is given by wi / wj. 

Thus, and finally, to calculate the contribution to the betweenness from shortest paths starting at 
all vertices and ending at s, we need only carry out the following steps:

1. Find every “leaf” vertex t, i.e., a vertex such that no paths from s to other vertices go 
though t, and assign it a score of xt = 1. 

2. Now, starting at the bottom of the tree, work up towards s and assign to each vertex i a 
score xi = 1 + ∑jxjwi / wj, where the sum is over the neighbors j immediately below vertex i. 

3. Repeat from step 2 until vertex s is reached. 

The resulting scores are shown to the right of each vertex in Fig. 10.3b. Now repeating this process 
for all n source vertices s and summing the resulting scores on the vertices gives us the total 
betweenness scores for all vertices in time O(n(m + n)).154

 

 



This algorithm again takes time O(n(m + n)) in general or O(n2) on a sparse network, which is 
the best known running time for any betweenness algorithm at the time of writing, and moreover 
seems unlikely to be beaten by any future algorithm given that the calculation of the betweenness 
necessarily requires us to find shortest paths between all pairs of vertices, which operation also has 
time complexity O(n(m + n)). Indeed, even if we want to calculate the betweenness of only a 
single vertex it seems unlikely we can do better given that such a calculation still requires us to 
find all shortest paths. 



10.4 SHORTEST PATHS IN NETWORKS WITH VARYING EDGE LENGTHS  

In Section 6.3 we discussed weighted networks, networks in which the edges have values or 
strengths representing, for instance, the traffic capacities of connections on the Internet or the 
frequencies of contacts between acquaintances in a social network. In some cases the values on 
edges can be interpreted as lengths for the edges. The lengths could be real lengths, such as 
distances along roads in a road network, or they could represent quantities that act like lengths, 
such as transmission delays for packets traveling along Internet connections. In other cases they 
might just be approximately length-like measures: one might say, for instance, that a pair of 
acquaintances in a social network are twice as far apart as another pair if they see one another half 
as often. 

Sometimes with networks such as these we would like to calculate the shortest path between 
two vertices taking the lengths of the edges into account. For instance, we might want to calculate 
the shortest driving route from A to B via a road network or we might want to calculate the route 
across the Internet that gets a data packet to its destination in the shortest time. (In fact, this is 
exactly what many Internet routers do when routing data packets.) 

But now we notice a crucial—and annoying—fact. The shortest path across a network when we 
take edge lengths into account may not the be same as the shortest path in terms of number of 
edges. Consider Fig. 10.4. The shortest path between s and t in this small network traverses four 
edges, but is still shorter, in terms of total edge length, than the competing path with just two 
edges. Thus we cannot find the shortest path in such a network using standard breadth-first search, 
which finds paths with the minimum number of edges. For problems like this we need a different 
algorithm. We need Dijkstra’s algorithm. 

 

Figure 10.4: The shortest path in a network with varying edge lengths. The numbers on the 
edges in this network represent their lengths. The shortest path between s and t, taking the lengths 
into account, is the upper path marked with the arrow (which has total length 4), even though it 
traverses more edges than the alternative, lower path (which has length 6). 
  

Dijkstra’s algorithm, like breadth-first search, finds the shortest distance from a given source 
vertex s to every other vertex in the same component of a network, but does so taking the lengths 
of edges into account.155 It works by keeping a record of the shortest distance it has found so far to 
each vertex and updating that record whenever a shorter one is found. It can be shown that, at the 
end of the algorithm, the shortest distance found to each vertex is in fact the shortest distance 
possible by any route. In detail the algorithm is as follows. 

We start by creating an array of n elements to hold our current estimates of the distances from s

 

 

 



to every vertex. At all times during the running of the algorithm these estimates are upper 
bounds on the true shortest distances. Initially we set our estimate of the distance from s to itself to 
be zero, which is trivially correct, and from s to every other vertex to be ∞, which is clearly a safe 
upper bound. 

We also create another array of n elements in which we record whether we are certain that the 
distance we have to a given vertex is the smallest possible distance. For instance, we might use an 
integer array with 1s to indicate the distances we are sure about and 0s for the distances that are 
just our best current estimate. Initially, we put a 0 in every element of this array. (You might argue 
that we know for certain that the distance from s to itself is zero and hence that we should put a 1 
in the element corresponding to vertex s. Let us, however, pretend that we don’t know this to begin 
with, as it makes the algorithm work out more neatly.) 

Now we do the following.

1. We find the vertex v in the network that has the smallest estimated distance from s, i.e., the 
smallest distance about which we are not yet certain.  

2. We mark this distance as being certain. 
3. We calculate the distances from s via v to each of the neighbors of v by adding to v′s 

distance the lengths of the edges connecting v to each neighbor. If any of the resulting 
distances is smaller than the current estimated distance to the same neighbor, the new 
distance replaces the older one. 

4. We repeat from step 1 until the distances to all vertices are flagged as being certain. 

 

Figure 10.5: Paths in Dijkstra’s algorithm. If v is the vertex with the smallest estimated (i.e., not 
certain) distance from s then that estimated distance must in fact be the true shortest distance to v. 
If it were not and there were a shorter path s, . . . , x, y, . . . , v then all points along that path must 
have shorter distances from s than v′s estimated distance, which means that y has a smaller 
estimated distance than v, which is impossible. 
  

Simple though it is to describe, it’s not immediately obvious that this algorithm does what it is 
supposed to do and finds true shortest paths. The crucial step is step 2 where we declare the current 
smallest estimated distance in fact to be certain. That is, we claim that among vertices for which 
we don’t yet definitely know the distance, the smallest distance recorded to any vertex is in fact the 
smallest possible distance to that vertex. 

To see why this is true consider such a vertex, which we’ll again call v, and consider a 
hypothetical path from s to v that has a shorter length than the current estimated distance recorded 
for v. The situation is illustrated in Fig. 10.5. Since this hypothetical path is shorter than the 
estimated distance to v, the distance along the path to each vertex in the path must also be less than 
that estimated distance. 

Furthermore, there must exist somewhere along the path a pair of adjacent vertices x, y such that 

 

 

 



x′s distance is known for certain and y′s is not. Vertex x need not necessarily be distinct from 
vertex s (although we have drawn it that way in the figure), but vertex y must be distinct from v: if 
y and v were the same vertex, so that v was a neighbor of x, then we would already have found the 
shorter path to v when we explored the neighbors of x in step 3 above and we would accordingly 
have revised our estimate of v′s distance downward. Since this hasn’t happened, y and v must be 
distinct vertices. 

But notice now that y′s current estimated distance will be at most equal to its distance from s 
along the path because that distance is calculated in step 3 above when we explore x′s neighbors. 
And since, as we have said, all distances along the path are necessarily less than the current 
estimated distance to v, it follows that y′s estimated distance must be less than v′s and we have a 
contradiction, because v is by hypothesis the vertex with the shortest estimated distance. Hence 
there is no path to vertex v with length less than v′s current estimated distance, so we can safely 
mark that distance as being certain, as in step 2 above. 

Thus on each step the algorithm correctly flags one additional distance as being known exactly 
and when all distances have been so flagged the algorithm has done its job. 

As with breadth-first search, the running time of Dijkstra’s algorithm depends on how it is 
implemented. The simplest implementation is one that searches through all vertices on each round 
of the algorithm to find the one that has the smallest estimated distance. This search takes time O
(n). Then we must calculate a new estimated distance to each of the neighbors of the vertex we 
find, of which there are O(m / n) on average. To leading order, one round thus takes time O(m / n + 
n) and the whole algorithm, which runs (in the worst case of a network with a single component) 
for n rounds, takes time O(m + n2) to find the distance from s to every other vertex. 

But we can do better than this. If we store the estimated distances in a binary heap (see Section 
9.7) then we can find the smallest one and remove it from the heap in time O(log n). The operation 
of replacing an estimated distance with a new and better estimate (which in the worst case we have 
to do an average of O(m / n) times per round) also takes O(log n) time, and hence a complete 
round of the algorithm takes time O((m / n) log n + log n) and all n rounds then take O((m + n) log 
n), or O(n log n) on a sparse network with m ∝ n. This is very nearly the best running time known 
for this problem,156 and close to, though not quite as good as, the O(m + n) for the equivalent 
problem on an unweighted network (factors of log n being close to constant given that the 
logarithm is a very slowly growing function of its argument). 

As we have described it, Dijkstra’s algorithm finds the shortest distance from a vertex s to every 
other in the same component but, like breadth-first search, it can be modified also to find the actual 
paths that realize those distances. The modification is very similar to the one for breadth-first 
search. We maintain a shortest path tree, which is initially empty and to which we add directed 
edges pointing from the vertices along the first step of their shortest path to s. We create such a 
directed edge when we first assign a vertex an estimated distance less than ∞ and move the edge to 
point to a new vertex every time we find a new estimated distance that is less than the current one. 
The last position in which an edge comes to rest indicates the true first step in the shortest path. If 
a new estimate of the distance to a vertex is ever exactly the same as the current estimate then we 
put two directed edges in the shortest path tree indicating the two alternative paths that give the 
shortest distance. When the algorithm is finished the shortest path tree, like those in Fig. 10.2, can 
be used to reconstruct the shortest paths themselves, or to calculate other quantities such as a 
weighted version of betweenness centrality (which could be used for instance as a measure of 
traffic flow in a network where traffic always takes the shortest weighted path). 



10.5 MAXIMUM FLOWS AND MINIMUM CUTS  

In Section 6.12 we discussed the ideas of connectivity, independent paths, cut sets, and maximum 
flows in networks. In particular, we defined two paths that connect the same vertices s and t to be 
edge-independent if they share none of the same edges and vertex-independent if they share none 
of the same vertices except for s and t themselves. And the edge or vertex connectivity of the 
vertices is the number of edge–or vertex-independent paths between them. We also showed that 
the edge or vertex connectivity is equal to the size of the minimum edge or vertex cut set—the 
minimum number of edges or vertices that need to be removed from the network to disconnect s 
from t. Connectivity is thus a simple measure of the robustness of the connection between a pair of 
vertices. Finally, we showed that the edge-connectivity is also equal to the maximum flow that can 
pass from s to t if we think of the network as a network of pipes, each of which can carry one unit 
of flow. 

In this section we look at algorithms for calculating maximum flows between vertices on 
networks. As we will see, there is a simple algorithm, the Ford-Fulkerson or augmenting path 
algorithm, that calculates the maximum flow between two vertices in average time O((m + n)m/n). 
Once we have this maximum flow, then we also immediately know the number of edge-
independent paths and the size of the minimum edge cut set between the same vertices. With a 
small extension, the algorithm can also find the particular edges that constitute the minimum edge 
cut set. A simple modification of the augmenting path algorithm allows us also to calculate vertex-
independent paths and vertex cuts sets. 

All the developments of this section are described for undirected networks, but in fact the 
algorithms work perfectly well, without modification, for directed networks as well. Readers who 
want to know more about maximum flow algorithms are recommended to look at the book by 
Ahuja et al. [8], which contains several hundred pages on the topic and covers almost every 
conceivable detail. 

 

A simple breadth-first search finds a path from source s to target t (top) in this network. A second 
search using only the edges not used in the first finds a second path (bottom). 
  

 

 

 



10.5.1 THE AUGMENTING PATH ALGORITHM  

In this section we describe the augmenting path algorithm of Ford and Fulkerson for calculating 
maximum flows between vertices in a network.157 The case of primary interest to us is the one 
where each edge in the network can carry the same single unit of flow. The algorithm can be used 
in the more general case where the edges have varying capacities, but we will not discuss that case 
here.158 

The basic idea behind the augmenting path algorithm is a simple one. We first find a path from 
source s to target t using the breadth-first search algorithm of Section 10.3.159 This “uses up” some 
of the edges in the network, filling them to capacity so that they can carry no more flow. Then we 
find another path from s to t among the remaining edges and we repeat this procedure until no 
more paths can be found. 

Unfortunately, this does not yet give us a working algorithm, because as we have described it 
the procedure will not always find the maximum flow. Consider Fig. 10.6a. If we apply breadth-
first search between s and t we find the path marked in bold. Unfortunately, once we have filled all 
the edges along this path to capacity there are no more paths from s to t that can be constructed 
with the remaining edges, so the algorithm stops after finding just one path. It is clear, however, 
that there are in fact two edge-independent paths from s to t—along the top and bottom of the 
network—and a maximum flow of two, so the algorithm has given the wrong answer. 

 

Figure 10.6: The augmenting path algorithm. (a) We find a first path from source s to target t 
using breadth-first search. This leaves no more independent paths from s to t among the remaining 
edges. (b) However, if we allow flows in both directions along an edge (such as the central edge in 
this network), then we can find another path. Panels (c) and (d) show the residual graphs 
corresponding to panels (a) and (b). 
  

There is however, a simple fix for this problem, which is to allow fluid to flow simultaneously 
both ways down an edge in our network. That is, we allow a state in which there is one unit of flow 
in each direction along any given edge. If the edges were real pipes, then this would not be 
possible: if a pipe is full of fluid flowing one way, then there is no room for fluid flowing the other 
way too. However, if fluid were flowing both ways down an edge, the net flow in and out of either 
end of that edge would be zero—the two flows would effectively cancel out giving zero net flow. 

 

 

 



And zero flow down an edge certainly is possible.
So we use a trick and allow our algorithm to place a unit of flow both ways down any edge, but 

declare this to mean in practice that there is no flow at all on that edge. This means that the paths 
we will find will no longer necessarily be independent paths, since two of them can share an edge 
so long as they pass along it in opposite directions. But this doesn’t matter: the flows the paths 
represent are still allowed flows, since no pipe is ever required to carry more than one unit of flow, 
and we know that in the end our final, maximum flow will be numerically equal to the actual 
number of independent paths, even though those independent paths may be different from the 
paths picked out by the algorithm. Thus we create an algorithm that counts independent paths by 
counting a special class of non-independent paths: strange as this sounds, the max-flow/min-cut 
theorem tells us that it must work, and indeed it does. 

More generally, since the maximum allowed flow down an edge is one unit in either direction, 
we can have any number of units flowing either way down an edge provided they cancel out so 
that net flow is no more than one unit. Thus, two units of flow in either direction would be 
allowed, or three units one way and four the other, and so forth. Three units one way and five the 
other would not be allowed, however.160 

To see how this works in practice, consider Fig. 10.6 again. We begin by performing a breadth-
first search that finds the path shown in panel (a). Now, however, there is a second path to be 
found, as shown in panel (b), making use of the fact that we are still allowed to send one unit of 
flow backwards along the edge in the center of the network. After this, however, there are no more 
paths left from s to t and so the algorithm stops and tells us that the maximum possible flow is two 
units, which is the correct answer. 

This is merely one example of the algorithm: we still have to prove that it gives the correct 
answer in all cases, which we do in Section 10.5.3. To understand the proof, however, we first 
need to understand how the algorithm is implemented.



10.5.2 IMPLEMENTATION AND RUNNING TIME  

Implementation of the augmenting path algorithm makes use of a residual graph, which is a 
directed network in which the edges connect the pairs of vertices on the original network between 
which we still have capacity available to carry one or more units of flow in the given direction. For 
instance, Figs. 10.6c and 10.6d show the residual graphs corresponding to the flow states in 10.6a 
and 10.6b. 

The residual graph is constructed by first taking the initial network and replacing each 
undirected edge with two directed ones, one in each direction. We now perform our breadth-first 
searches on this residual graph, rather than on the original network, respecting the directions of the 
edges. Every time our algorithm finds a new path through the network, we update the residual 
graph by adding a directed edge in the opposite direction to the path between every pair of vertices 
along the path, provided no such edge already exists. If a vertex pair already has such a backward-
pointing edge, we instead take away a forward-pointing one. (There will always be such a forward-
pointing edge, otherwise the path would not exist in the first place.) The largest number of edges 
we update during this process is m, the total number of edges in the original network, so the 
process takes time O(m) and thus makes no difference to the O(m + n) time complexity of the 
breadth-first search. 

Now we find the next path by performing another breadth-first search on the updated residual 
graph. By always working on the residual graph in this way, we insure that we find only paths 
along edges that have not yet reached their maximum flow. Such paths are called augmenting 
paths. The process is repeated until our breadth-first search fails to find any augmenting path from 
s to t, at which point we have found all the paths there are and the number of paths found is equal 
to the number of units in the maximum flow from s to t. 

Each breadth-first search, along with the corresponding updates to the residual graph, takes time 
O(m + n) for a network stored in adjacency list format (see Sections 9.4 and 10.3). Moreover, the 
number of independent paths from s to t can be no greater than the smaller of the two degrees ks 
and kt of the source and target vertices (since each path must leave or enter one of those vertices 
along some edge, and that edge can carry at most one path). Thus the running time of the algorithm 
is O min(ks, kt)(m + n)). If we are interested in the average running time over many pairs of 
vertices, then we can make use of the fact that �min(ks, kt)� ≤ �k� (where the averages are over 

all vertices), and recalling that �k� = 2m/n (Eq. (6.23)), this implies that the average running time 
of the algorithm is O((m + n)m/n), which is O(n) on a sparse network with m ∝ n. (On the other 
hand, on a dense graph where m ∝ n2, we would have O(n3), which is much worse.) 

 



10.5.3 WHY THE ALGORITHM GIVES CORRECT ANSWERS  

It is plausible but not immediately obvious that the augmenting path algorithm correctly finds 
maximum flows. We can prove that it does as follows. 

Suppose at some point during the operation of the algorithm (including the very beginning) we 
have found some (or no) paths for flow from s to t, but any paths we have found do not yet 
constitute the maximum possible flow. That is, there is still room in the network for more flow 
from s to t. If this is the case then, as we will now show, there must exist at least one augmenting 
path from s to t, which by definition carries one unit of flow. And if there exists an augmenting 
path, our breadth-first search will always find it, and so the algorithm will go on finding 
augmenting paths until there is no room in the network for more flow, i.e., we have reached the 
maximum flow, which is equal to the number of paths found. 

Thus the proof that the algorithm is correct requires only that we prove the following theorem:

If at some point in our algorithm the flow from s to t is less than the maximum possible flow, 
then there must exist at least one augmenting path on the current residual graph. 

Consider such a point in the operation of the algorithm and consider the flows on the network as 
represented by ƒ, the set of all individual net flows along the edges of the network. And consider 
also the maximum possible flow from s to t, represented by ƒmax, the corresponding set of 
individual net flows. By hypothesis, the total flow out of s and into t is greater in ƒmax than in ƒ. Let 
us calculate the difference flow Δƒ = ƒmax – ƒ, by which we mean we subtract the net flow along 
each edge in ƒ from the net flow along the corresponding edge in ƒmax, respecting flow direction—
see Fig. 10.7. (For instance, the difference of two unit flows in the same direction would be zero 
while the difference of two in opposite directions would be two in one direction or the other.) 

Since the total flow is greater in ƒmax than in ƒ, the difference flow Δƒ must have a net flow out 
of s and net flow into t. What’s more, because the “fluid” composing the flow is conserved at 
vertices, every vertex except s and t must have zero net flow in or out of it in both ƒmax and ƒ and 
hence also in Δƒ. But if each vertex other than s and t has zero net flow, then the flow from s to t 
must form at least one path across the network—it must leave every vertex it enters, except the last 
one, vertex t. Let us choose any one of these paths formed by the flow from s to t in Δƒ and let us 
call this path p. 

Since there is a positive flow in Δƒ in the forward direction along each edge in p, there must 
have been no such flow in ƒ along any of the same edges. If there were such a flow in ƒ then when 
we performed the subtraction Δƒ = ƒmax – ƒ the flow in Δƒ would be either zero or negative on the 
edge in question (depending on the flow in ƒmax), but could not be positive. Thus we can always 
safely add to ƒ a unit of flow forward along each edge in p without overloading any of the edges. 
But this immediately implies that p is an augmenting path for ƒ. 

Thus, for any flow that is not maximal, at least one augmenting path always exists, and hence it 
follows that the augmenting path algorithm as described above is correct and will always find the 
maximum flow. 

 

 



 

Figure 10.7: Correctness of the augmenting path algorithm. If we subtract from the maximum 
flow ƒmax (upper left) any submaximal flow ƒ (lower left), the resulting difference flow (right) 
necessarily contains at least one path from s to t, and that path is necessarily an augmenting path 
for ƒ. 
  

 

 



10.5.4 FINDING INDEPENDENT PATHS AND MINIMUM CUT SETS  

Once we have found the maximum possible flow between a given pair of vertices, we also 
automatically have the size of the minimum edge cut set and the number of edge-independent 
paths, which are both numerically equal to the number of units in the maximum flow (see Section 
6.12). 

We might also wish to know exactly where the independent paths run. The augmenting path 
algorithm does not give us this directly since, as we have seen, the augmenting paths it finds are 
not necessarily the same as the independent paths, but only a very small extension of the algorithm 
is necessary to find the independent paths: we take the final residual graph produced at the end of 
the algorithm and remove from it every pair of directed edges that joins the same two vertices in 
opposite directions—see Fig. 10.8. In other words we are removing all network edges that carry no 
net flow. The edges remaining after we have done this are necessarily those that actually carry the 
maximum flow and it is a straightforward matter to trace these edges from s to t to reconstruct the 
paths themselves.161 (In fact, as Fig. 10.8 shows, the remaining directed edges in the residual graph 
point backwards from t to s, so it is often easier to reconstruct the paths backwards.) 

 

Figure 10.8: Reconstructing the independent paths from the residual graph. Deleting every 
pair of edges on the residual graph that join the same two vertices in opposite directions leaves a 
graph consisting of the independent paths only, spelled out in directed edges that point backwards 
along those paths from target to source. 
  

Another thing we might want is the set of edges that constitutes the minimum cut set for the 
vertices s and t. In fact in most cases there is more than one cut set of the minimum size, so more 
generally we would like to find one of the minimum cut sets. Again we can do this by a small 
extension of the augmenting path algorithm. The procedure is illustrated in Fig. 10.9. We again 
consider the final residual graph generated at the end of the algorithm. By definition this graph has 
no directed path in it from s to t (since if it did the algorithm would not have stopped yet). Thus we 
can reach some subset of vertices by starting at vertex s, but we cannot reach all of them. (For 
example, we cannot reach t.) Let Vs be the subset of vertices reachable from s by some path on the 
residual graph and let Vt be the set of all the other vertices in the graph that are not in Vs. Then the 
set of edges on the original graph that connect vertices in Vs to vertices in Vt constitutes a 
minimum cut set for s and t. 

Why does this work? Clearly if we removed all edges that connect vertices in Vs to those in Vt 
we disconnect s and t, since then there is no path at all between s and t. Thus the edges between Vs 
and Vt constitute a cut set. That it is a minimum cut set we can see by the following argument. 
Every edge from a vertex in Vs to a vertex in Vt must be carrying a unit of flow from Vs to Vt. If it 
were not, then it would have available capacity away from Vs, meaning that there would be a 

 

 

 



corresponding directed edge away from Vs in the residual graph. In that case, however, the 
vertex at the far end of that edge would be reachable from Vs on the residual graph and therefore 
would be a part of Vs. Since the vertex in question is, by hypothesis, in Vt and not in Vs, it follows 
that it must be carrying a unit of the maximum flow from s to t. 

 

Figure 10.9: Finding a minimum cut set. Once we have found a set of maximum flows for a 
given s and t (left) we can find a corresponding minimum cut set by considering the residual graph 
(right). The set Vs is the set of vertices reachable from s by following directed edges on the residual 
graph and Vt is the rest of the vertices. The minimum cut set is the set of edges (two of them in this 
case) that connect Vs to Vt on the original network. 
  

Now, since every edge in the cut set between Vs and Vt is carrying a unit of flow, the size of that 
cut set is numerically equal to the size of the flow from Vs to Vt, which is also the flow from s to t. 
And, by the max-flow/min-cut theorem, a cut set between s and t that is equal in size to the 
maximum flow between s and t is a minimum cut set, and hence our result is proved. 

 

 



10.5.5 FINDING VERTEX-INDEPENDENT PATHS  

Once we know how to find edge-independent paths it is straightforward to find vertex-independent 
paths as well. First, note that any set of vertex-independent paths between two vertices s and t is 
necessarily also a set of edge-independent paths: if two paths share none of the same vertices, then 
they also share none of the same edges. Thus, we can find vertex-independent paths using the same 
algorithm that we used to find edge-independent paths, but adding the restriction that no two paths 
may pass through the same vertex. One way to impose this restriction is the following. First, we 
replace our undirected network with a directed one, as shown in Fig. 10.10, with a directed edge in 
either direction between every connected pair of vertices. This does not change the maximum flow 
possible in the network and hence does not change the number of independent paths either. 

 

Figure 10.10: Mapping from the vertex-independent path problem to the edge-independent 
path problem. Starting with an undirected network (a), we (b) replace each edge by two directed 
edges, then (c) replace each vertex, except for s and t, with a pair of vertices with a directed edge 
between them (shaded) following the prescription in Fig. 10.11. Edge-independent paths on the 
final network then correspond to vertex-independent paths on the initial network. 
  

Second, we replace each of the vertices in the network, except s and t, with a construct like that 
shown in Fig. 10.11. Each vertex is replaced with two vertices separated by a directed edge. All 
original incoming edges connect to the first of these two (on the left in Fig. 10.11) and all outgoing 
edges to the second. This new construct functions as the original vertex did, allowing flows to pass 
in along ingoing edges and out along outgoing ones, but with one important difference: assuming 
that the new edge joining the two vertices has unit capacity like all others, we are now limited to 
just one unit of flow through the entire construct, since every path through the construct must 
traverse this central edge. Thus every allowed flow on this network corresponds to a flow on the 
original network with at most a single unit passing though each vertex.

 

 

 



 

Figure 10.11: Vertex transformation for the vertex-independent path algorithm. Each vertex 
in the network is replaced by a pair of vertices joined by a single directed edge. All incoming 
edges are connected to one of the pair and all outgoing edges to the other as shown. 
  

Transforming the entire network of Fig. 10.10a using this method gives us a network that looks 
like Fig. 10.10c. Now we simply apply the normal augmenting path algorithm to this directed 
network, and the number of edge-independent paths we find is equal to the number of vertex-
independent paths on the original network. 

 

 

 

 



PROBLEMS  

10.1 What is the time complexity, as a function of the number n of vertices and m of edges, of the 
following network operations if the network in question is stored in adjacency list format?

a. Calculating the mean degree. 
b. Calculating the median degree. 
c. Calculating the air-travel route between two airports that has the shortest total flying time, 

assuming the flying time of each individual flight is known. 
d. Calculating the minimum number of routers that would have to fail to disconnect two given 

routers on the Internet. 

10.2 For an undirected network of n vertices stored in adjacency list format show that:

a. It takes time O(n(n + m)) to find the diameter of the network. 
b. It takes time O(�k�) on average to list the neighbors of a vertex, where �k� is the average 

degree in the network, but time O(�k2�) to list the second neighbors. 

10.3 For a directed network in which in–and out-degrees are uncorrelated, show that it takes time 
O(m2/n) to calculate the reciprocity of the network. Why is the restriction to uncorrelated degrees 
necessary? What could happen if they were correlated? 

10.4 Suppose that we define a new centrality measure xi for vertex i in a network to be a sum of 
contributions as follows: 1 for vertex i itself, α for each vertex at (geodesic) distance 1 from i, α2 
for each vertex at distance 2, and so forth, where α < 1 is a given constant.

a. Write an expression for xi in terms of α and the geodesic distances dij between vertex pairs.
 

b. Describe briefly an algorithm for calculating this centrality measure. What is the time 
complexity of calculating xi for all i? 

 

 

 

 



CHAPTER 11 

MATRIX ALGORITHMS AND GRAPH PARTITIONING 

A discussion of network algorithms that use matrix and linear algebra methods, including 
algorithms for partitioning network nodes into groups 

IN THE preceding chapter we discussed a variety of computer algorithms for calculating quantities 
of interest on networks, including degrees, centralities, shortest paths, and connectivity. We 
continue our study of network algorithms in this chapter with algorithms based on matrix 
calculations and methods of linear algebra applied to the adjacency matrix or other network 
matrices such as the graph Laplacian. We begin with a simple example, the calculation of 
eigenvector centrality, which involves finding the leading eigenvector of the adjacency matrix, and 
then we move on to some more advanced examples, including Fiedler’s spectral partitioning 
method and algorithms for network community detection.

 

 

 



11.1 LEADING EIGENVECTORS AND EIGENVECTOR CENTRALITY  

As discussed in Section 7.2, the eigenvector centrality of a vertex i in a network is defined to be 
the ith element of the leading eigenvector of the adjacency matrix, meaning the eigenvector 
corresponding to the largest (most positive) eigenvalue. Eigenvector centrality is an example of a 
quantity that can be calculated by a computer in a number of different ways, but not all of them are 
equally efficient. One way to calculate it would be to use a standard linear algebra method to 
calculate the complete set of eigenvectors of the adjacency matrix, and then discard all of them 
except the one corresponding to the largest eigenvalue. This, however, would be a wasteful 
approach, since it involves calculating a lot of things that we don’t need. A simpler and faster 
method for calculating the eigenvector centrality is the power method. 

If we start with essentially any initial vector x(0) and multiply it repeatedly by the adjacency 
matrix A, we get

 

(11.1) 
  

and, as shown in Section 7.2, x(t) will converge162 to the required leading eigenvector of A as t 
→ ∞. This is the power method, and, simple though it is, there is no faster method known for 
calculating the eigenvector centrality (or the leading eigenvector of any matrix). There are a few 
caveats, however: 

1. The method will not work if the initial vector x(0) happens to be orthogonal to the leading 
eigenvector. One simple way to avoid this problem is to choose the initial vector to have all 
elements positive. This works because all elements of the leading eigenvector of a real 
matrix with non-negative elements have the same sign,163 which means that any vector 
orthogonal to the leading eigenvector must contain both positive and negative elements. 
Hence, if we choose all elements of our initial vector to be positive, we are guaranteed that 
the vector cannot be orthogonal to the leading eigenvector. 

2. The elements of the vector have a tendency to grow on each iteration—they get multiplied 
by approximately a factor of the leading eigenvalue each time, which is usually greater than 
1. Computers however cannot handle arbitrarily large numbers. Eventually the variables 
storing the elements of the vector will overflow their allowed range. To obviate this 
problem, we must periodically renormalize the vector by dividing all the elements by the 
same value, which we are allowed to do since an eigenvector divided throughout by a 
constant is still an eigenvector. Any suitable divisor will do, but we might, for instance, 
divide by the magnitude of the vector, thereby normalizing it so that its new magnitude is 
1. 

3. How long do we need to go on multiplying by the adjacency matrix before the result 
converges to the leading eigenvalue? This will depend on how accurate an answer we 
require, but one simple way to gauge convergence is to perform the calculation in parallel 
for two different initial vectors and watch to see when they reach the same value, within 
some prescribed tolerance. This scheme works best if, for the particular initial vectors 
chosen, at least some elements of the vector converge to the final answer from opposite 

 

 



directions for the two vectors, one from above and one from below. (We must make the 
comparisons immediately after the renormalization of the vector described in (2) above—if 
we compare unnormalized vectors, then most likely all elements will increase on every 
iteration and no convergence will be visible.) If we can find some elements that do this 
(and we usually can), then it is a fairly safe bet that the difference between the two values 
for such an element is greater than the difference of either from the true value of the same 
element in the leading eigenvector. 

The power method can also be used to calculate the leading eigenvalue κ1 of the adjacency 
matrix. Once the algorithm has converged to the leading eigenvector, one more multiplication by 
the adjacency matrix will multiply that vector by exactly a factor of κ1. Thus, we can take the ratio 
of the values of any element of the vector at two successive iterations of the algorithm after 
convergence and that ratio should equal κ1. Or we could take the average of the ratios for several 
different elements to reduce numerical errors. (We should however avoid elements whose values 
are very small, since a small error in such an element could lead to a large fractional error in the 
ratio; our accuracy will be better if we take the average of some of the larger elements.) 

 



11.1.1 COMPUTATIONAL COMPLEXITY  

How long does the power method take to run? The answer comes in two parts. First, we need to 
know how long each multiplication by the adjacency matrix takes, and second we need to know 
how many multiplications are needed to get a required degree of accuracy in our answer. 

If our network is stored in adjacency matrix form, then multiplying that matrix into a given 
vector is straightforward. Exactly n2 multiplications are needed for one matrix multiplication—one 
for each element of the adjacency matrix. We can do better, however, if our network is in 
adjacency list form. Elements of the adjacency matrix that are zero contribute nothing to the matrix 
multiplication and so can be neglected. The adjacency list allows us to skip the zero terms 
automatically, since it stores only the non-zero ones anyway. 

In an ordinary unweighted network each non-zero element of the adjacency matrix is equal to 1. 
Let {uj}, j = 1 ...ki be the set of neighbors of vertex i (where ki is the degree of i). Then the ith 

element of Ax, which we denote [Ax]i , is given by . The evaluation of this sum 
involves only ki operations, so one element of the matrix multiplication can be completed in time 
proportional to ki and all elements can be completed in time proportional to ∑iki = 2m, where m is 
the total number of edges in the network, or in other words in O(m) time. 

And how many such multiplications must we perform? Equation (7.4) tells us that after t 
iterations our vector is equal to

 

(11.2) 
  

where vi is the normalized ith eigenvector, κi is the corresponding eigenvalue, and the ci are 
constants whose values depend on the choice of initial vector. Rearranging slightly, we can write 
this as

 

(11.3) 
  

which gives us our estimate of the leading eigenvector v1 plus the dominant contribution to the 
error. Neglecting the smaller terms, the root-mean-square error on the eigenvector is then

 

 

 

 

 



(11.4) 
  

and if we want this error to be at most ∈ then we require

 

(11.5) 
  

Neither ∈ nor the constants c1 and c2 depend on the network size. All the variation in the run time 
comes from the eigenvalues κ1 and κ2. The eigenvalues range in value from a maximum of κ1 to a 
minimum of κn ≥ -|κ1| and hence have a mean spacing of at most 2κ1/(n - 1). Thus an order-of-
magnitude estimate for the second eigenvalue is κ2  κ1 -aκ1/n, where a is a constant of order unity, 
and hence

 

(11.6) 
  

Combining Eqs. (11.5) and (11.6), we find that the number of steps required for convergence of 
the power method is t = O(n) to leading order.164 

Overall therefore, the complete calculation of the eigenvector centralities of all n vertices of the 
network takes O(n) multiplications which take O(m) time each, or O(mn) time overall, for a 
network stored in adjacency list format. If our network is sparse with m ∝ n, a running time of O
(mn) is equivalent to O(n2). On the other hand, if the network is dense, with m ∝ n2, then O(mn) is 
equivalent to O(n164). 

Conversely, if our network is stored in adjacency matrix format the multiplications take O(n2) 
time, as noted above, so the complete calculation takes O(n164), regardless of whether the network 
is sparse or dense. Thus for the common case of a sparse matrix the adjacency list is the 
representation of choice for this calculation.

 

 

 

 



11.1.2 CALCULATING OTHER EIGENVALUES AND EIGENVECTORS  

The power method of the previous section calculates the largest eigenvalue of a matrix and the 
corresponding eigenvector. This is probably the most common type of eigenvector calculation 
encountered in the study of networks, but there are cases where we wish to know other 
eigenvectors or eigenvalues as well. One example is the calculation of the so-called algebraic 
connectivity, which is the second smallest (or second most negative) eigenvalue of the graph 
Laplacian. As we saw in Section 6.13.3, the algebraic connectivity is non-zero if and only if a 
network is connected (i.e., has just a single component). The algebraic connectivity also appears in 
Section 11.5 as a measure of how easily a network can be bisected into two sets of vertices such 
that only a small number of edges run between the sets. Moreover, as we will see the elements of 
the corresponding eigenvector of the Laplacian tell us exactly how that bisection should be 
performed. Thus it will be useful to us to have a method for calculating eigenvalues beyond the 
largest one and their accompanying eigenvectors. 

There are a number of techniques that can be used to find non-leading eigenvalues and 
eigenvectors of matrices. For instance, we can calculate the eigenvector corresponding to the most 
negative eigenvalue by shifting all the eigenvalues by a constant amount so that the most negative 
one becomes the eigenvalue of largest magnitude. The eigenvalues of the graph Laplacian L, for 
instance, are all non-negative. If we number them in ascending order as in Section 6.13.2, so that λ1 
≤ λ2 . . . ≤ λn, with v1, v2, . . . , vn being the corresponding eigenvectors, then

 

(11.7) 
  

and hence vi is an eigenvector of λnI – L with eigenvalue λn – λi. These eigenvalues are still all 
non-negative, but their order is reversed from those of the original Laplacian, so that the former 
smallest has become the new largest. Now we can calculate the eigenvector corresponding to the 
smallest eigenvalue of the Laplacian by finding the leading eigenvector of λnI – L using the 
technique described in Section 11.1. We can also find the eigenvalue λ1 by taking the measured 
value of λn- λ1, subtracting λn, and reversing the sign. (Performing these calculations does require 
that we know the value of λn, so the complete calculation would be a two-stage process consisting 
of first finding the largest eigenvalue of L, then using that to find the smallest.165) 

In this particular case, it would not in fact be very useful to calculate the smallest eigenvalue or 
its associated eigenvector since, as we saw in Section 6.13.2, the smallest eigenvalue of the 
Laplacian is always zero and the eigenvector is (1, 1, 1, . . . ). However, if we can find the second-
largest eigenvalue of a matrix we can use the same subtraction method also to find the second-
smallest. And the second-smallest eigenvalue of the Laplacian is, as we have said, definitely of 
interest. 

We can find the second-largest eigenvalue (and the corresponding eigenvector) using the 
following trick. Let v1 be the normalized eigenvector corresponding to the largest eigenvalue of a 
matrix A, as found, for instance, by the power method of Section 11.1. Then we choose any 
starting vector x as before and define

 

 



 

(11.8) 
  

This vector has the property that

 

(11.9) 
  

where vi is again the ith eigenvector of A and δij is the Kronecker delta. In other words it is equal 
to x along the direction of every eigenvector of A except the leading eigenvector, in whose 
direction it has no component at all. This means that the expansion of y in terms of the 
eigenvectors of A, which is given by  with , has no term in v1, since 

. Thus

 

(11.10) 
  

with the sum starting at i = 2. 
Now we use this vector y as the starting vector for repeated multiplication by A, as before. After 

multiplying y by A a total of t times, we have

 

(11.11) 
  

The ratio κi/κ2 is less than 1 for all i > 2 (assuming only a single eigenvalue of value κ2) and hence 
in the limit of large t all terms in the sum disappear except the first so that y(t) tends to a multiple 
of v2 as t → ∞. Normalizing this vector, we then have our result for v2. 

This method has the same caveats as the original power method for the leading eigenvector, as 
well as one additional one: it is in practice possible for the vector y, Eq. (11.8), to have a very 

 

 

 

 

 

 



small component in the direction of v1. This can happen as a result of numerical error in the 
subtraction, or because our value for v1 is not exactly correct. If y does have a component in the 
direction of v1, then although it may start out small it will get magnified relative to the others when 
we multiply repeatedly by A and eventually it may come to dominate y(t), Eq. (11.11), or at least 
to contribute a sufficiently large term as to make the calculation of v2 inaccurate. To prevent this 
happening, we periodically perform a subtraction similar to that of Eq. (11.8), removing any 
component in the direction of v1 from y(t), while leaving the components in all other directions 
untouched. (The subtraction process is sometimes referred to as Gram-Schmidt 
orthogonalization—a rather grand name for a simple procedure. The repeated application of the 
process to prevent the growth of unwanted terms is called reorthogonalization.) 

We could in theory extend this method to find further eigenvectors and eigenvalues of our 
matrix, but in practice the approach does not work well beyond the first couple of eigenvectors 
because of cumulative numerical errors. Moreover it is also slow because for each additional 
eigenvector we calculate we must carry out the entire repeated multiplication process again. In 
practice, therefore, if we wish to calculate anything beyond the first eigenvector or two, other 
methods are used. 



11.1.3 EFFICIENT ALGORITHMS FOR COMPUTING ALL EIGENVALUES AND 
EIGENVECTORS OF MATRICES  

If we wish to calculate all or many of the eigenvalues or eigenvectors of a matrix A then 
specialized techniques are needed. The most widely used such techniques involve finding an 
orthogonal matrix Q such that the similarity transform T = QTAQ gives either a tridiagonal matrix 
(if A is symmetric) or a Hessenberg matrix (if A is asymmetric). If we can find such a 
transformation and if vi is an eigenvector of A with eigenvalue κi, then, bearing in mind that for an 
orthogonal matrix Q-1 = QT, we have

 

(11.12) 
  

In other words, the vector wi = QTvi is an eigenvector of T with eigenvalue κi. Thus if we can find 
the eigenvalues of T and the corresponding eigenvectors, we automatically have the eigenvalues of 
A as well, and the eigenvectors of A are simply vi = Qwi. Luckily there exist efficient numerical 
methods for finding the eigenvalues and eigenvectors of tridiagonal and Hessenberg matrices, such 
as the QL algorithm [273]. The QL algorithm takes time O(n) to reach an answer for an n × n 
tridiagonal matrix and O(n2) for a Hessenberg one. 

The matrix Q can be found in various ways. For a general symmetric matrix the Householder 
algorithm [273] can find Q in time O(n3). More often, however, we are concerned with sparse 
matrices, in which case there are faster methods. For a symmetric matrix, the Lanczos algorithm 
[217] can find Q in time O(mn), where m is the number of network edges in an adjacency matrix, 
or more generally the number of non-zero elements in the matrix. For sparse matrices with m ∝ n 
this gives a running time of O(n2), considerably better than the Householder method. A similar 
method, the Arnoldi algorithm [217], can find Q for an asymmetric matrix. 

Thus, combining the Lanczos and QL algorithms, we expect to be able to find all eigenvalues 
and eigenvectors of a sparse symmetric matrix in time O(mn), which is as good as the worst-case 
run time of our direct multiplication method for finding just the leading eigenvector. (To be fair, 
the direct multiplication is much simpler, so its overall run time will typically be better than that of 
the combined Lanczos/QL algorithm, although the scaling with system size is the same.) 

While there is certainly much to be gained by learning about the details of these algorithms, one 
rarely implements them in practice. Their implementation is tricky (particularly in the asymmetric 
case), and has besides already been done in a careful and professional fashion by many software 
developers. In practice, therefore, if one wishes to solve eigensystem problems for large networks, 
one typically turns to commercial or freely available implementations in professionally written 
software packages. Examples of such packages include Matlab, LAPACK, and Mathematica. We 
will not go into more detail here about the operation of these algorithms.

 

 

 



11.2 DIVIDING NETWORKS INTO CLUSTERS  

We now turn to the topics that will occupy us for much of the rest of the chapter, graph 
partitioning and community detection.166 Both of these terms refer to the division of the vertices of 
a network into groups, clusters, or communities according to the pattern of edges in the network. 
Most commonly one divides the vertices so that the groups formed are tightly knit with many 
edges inside groups and only a few edges between groups. 

Consider Fig. 11.1, for instance, which shows patterns of collaborations between scientists in a 
university department. Each vertex in this network represents a scientist and links between vertices 
indicate pairs of scientists who have coauthored one or more papers together. As we can see from 
the figure, this network contains a number of densely connected clusters of vertices, corresponding 
to groups of scientists who have worked closely together. Readers familiar with the organization of 
university departments will not be surprised to learn that in general these clusters correspond, at 
least approximately, to formal research groups within the department. 

But suppose one did not know how university departments operate and wished to study them. 
By constructing a network like that in Fig. 11.1 and then observing its clustered structure, one 
would be able to deduce the existence of groups within the larger department and by further 
investigation could probably quickly work out how the department was organized. Thus the ability 
to discover groups or clusters in a network can be a useful tool for revealing structure and 
organization within networks at a scale larger than that of a single vertex. In this particular case the 
network is small enough and sparse enough that the groups are easily visible by eye. Many of the 
networks that have engaged our interest in this book, however, are much larger or denser networks 
for which visual inspection is not a useful tool. Finding clusters in such networks is a task for 
computers and the algorithms that run on them.

 



Figure 11.1: Network of coauthorships in a university department. The vertices in this 
network represent scientists in a university department, and edges links pairs of scientists who 
have coauthored scientific papers. The network has clear clusters or “community structure,” 
presumably reflecting divisions of interests and research groups within the department. 
  

 

 



11.2.1 PARTITIONING AND COMMUNITY DETECTION  

There are a number of reasons why one might want to divide a network into groups or clusters, but 
they separate into two general classes that lead in turn to two corresponding types of computer 
algorithm. We will refer to these two types as graph partitioning and community detection 
algorithms. They are distinguished from one another by whether the number and size of the groups 
is fixed by the experimenter or whether it is unspecified. 

Graph partitioning is a classic problem in computer science, studied since the 1960s. It is the 
problem of dividing the vertices of a network into a given number of non-overlapping groups of 
given sizes such that the number of edges between groups is minimized. The important point here 
is that the number and sizes of the groups are fixed. Sometimes the sizes are only fixed roughly—
within a certain range, for instance—but they are fixed nonetheless. For instance, a simple and 
prototypical example of a graph partitioning problem is the problem of dividing a network into two 
groups of equal size, such that the number of edges between them is minimized. 

Graph partitioning problems arise in a variety of circumstances, particularly in computer 
science, but also in pure and applied mathematics, physics, and of course in the study of networks 
themselves. A typical example is the numerical solution of network processes on a parallel 
computer. 

 

Partition of a network into two groups of equal sizes. 
  

In the last part of this book (Chapters 16 to 19) we will study processes that take place on 
networks, such as diffusion processes or the spread of diseases. These processes can be modeled 
mathematically by placing variables on the vertices of a network and evolving them according to 
equations that typically depend on the variables’ current values and the values on neighboring 
vertices. The solution of such equations is often a laborious computational task, but it can be sped 
up by using a parallel computer, a computer with more than one processor or CPU. Many modern 

 

 

 



personal computers have two or more processors and large research organizations sometimes 
use parallel computers with very many processors. Solutions of network equations can be spread 
across several processors by assigning to each processor the task of solving the equations on a 
subset of the vertices. For instance, on a two-processor desktop computer we might give a half of 
the vertices to each processor. 

The catch is that, unless the network consists of totally unconnected components, some vertices 
on one processor are always going to have neighbors that are on the other processor and hence the 
solution of their equations involves variables whose value is known only to the other processor. To 
complete the solution, therefore, those values have to be transmitted from the one processor to the 
other at regular intervals throughout the calculation and this is typically a slow process (or at least 
it’s slow compared to the dazzling speed of most other computer operations). The time spent 
sending messages between processors can, in fact, be the primary factor limiting the speed of 
calculations on parallel computers, so it is important to minimize interprocessor communication as 
much as possible. One way that we do this is by minimizing the number of pairs of neighboring 
vertices assigned to different processors. 

Thus we want to divide up the vertices of the network into different groups, one for each 
processor, such that the number of edges between groups is minimized. Most often we want to 
assign an equal or roughly equal number of vertices to each processor so as to balance the 
workload among them. This is precisely a graph partitioning problem of the type described above. 

The other type of cluster finding problem in networks is the problem we call community 
detection. Community detection problems differ from graph partitioning in that the number and 
size of the groups into which the network is divided are not specified by the experimenter. Instead 
they are determined by the network itself: the goal of community detection is to find the natural 
fault lines along which a network separates. The sizes of the groups are not merely unspecified but 
might in principle vary widely from one group to another. A given network might divide into a few 
large groups, many small ones, or a mixture of all different sizes. 

The most common use for community detection is as a tool for the analysis and understanding 
of network data. We saw in Fig. 11.1 an example of a network for which a knowledge of the group 
structure might help us understand the organization of the underlying system. Figure 7.10 on page 
221 shows another example of clusters of vertices, in a network of friendships between US high-
school students. In this case the network splits into two clear groups, which, as described in 
Section 7.13, are primarily dictated by students’ ethnicity, and this structure and others like it can 
give us clues about the nature of the social interactions within the community represented. 

Community detection has uses in other types of networks as well. Clusters of nodes in a web 
graph for instance might indicate groups of related web pages. Clusters of nodes in a metabolic 
network might indicate functional units within the network. 

Community detection is a less well-posed problem than graph partitioning. Loosely stated, it is 
the problem of finding the natural divisions of a network into groups of vertices such that there are 
many edges within groups and few edges between groups. What exactly we mean by “many” or 
“few,” however, is debatable, and a wide variety of different definitions have been proposed, 
leading to a correspondingly wide variety of different algorithms for community detection. In this 
chapter we will focus mainly on the most widely used formulation of the problem, the formulation 
in terms of modularity optimization, but we will mention briefly a number of other approaches at 
the end of the chapter. 

In summary, the fundamental difference between graph partitioning and community detection is 
that the number and size of the groups into which a network is divided is specified in graph 
partitioning but unspecified in community detection. However, there is also a difference between 
the goals of the two types of calculations. Graph partitioning is typically performed as a way of 
dividing up a network into smaller more manageable pieces, for example to perform numerical 
calculations. Community detection is more often used as a tool for understanding the structure of a 
network, for shedding light on large-scale patterns of connection that may not be easily visible in 
the raw network topology. 

Notice also that in graph partitioning calculations the goal is usually to find the best division of 
a network, subject to certain conditions, regardless of whether any good division exists. If the 
performance of a calculation on a parallel computer, for example, requires us to divide a network 



into pieces, then we had better divide it up. If there are no good divisions, then we must make do 
with the least bad one. With community detection, on the other hand, where the goal is normally to 
understand the structure of the network, there is no need to divide the network if no good division 
exists. Indeed if a network has no good divisions then that in itself may be a useful piece of 
information, and it would be perfectly reasonable for a community detection algorithm only to 
divide up networks when good divisions exist and to leave them undivided the rest of the time.



11.3 GRAPH PARTITIONING  

In the next few sections we consider the graph partitioning problem and look at two well-known 
methods for graph partitioning. The first, the Kernighan–Lin algorithm, is not based on matrix 
methods (and therefore doesn’t strictly belong in this chapter) but it provides a simple introduction 
to the partitioning problem and is worth spending a little time on. In Section 11.5 we look at a 
more sophisticated partitioning method based on the spectral properties of the graph Laplacian. 
This spectral partitioning method both is important in its own right and will also provide a basis 
for our discussion of community detection later in the chapter. 

First, however, we address an important preliminary question: why does one need fancy 
partitioning algorithms at all? Partitioning is an easy problem to state, so is it not just as easy to 
solve? 

 



11.3.1 WHY PARTITIONING IS HARD  

The simplest graph partitioning problem is the division of a network into just two parts. Division 
into two parts is sometimes called graph bisection. Most of the algorithms we consider in this 
chapter are in fact algorithms for bisecting networks rather than for dividing them into arbitrary 
numbers of parts. This may at first appear to be a drawback, but in practice it is not, since if we can 
divide a network into two parts, then we can divide it into more than two by further dividing one or 
both of those parts. This repeated bisection is the commonest approach to the partitioning of 
networks into arbitrary numbers of parts. 

Formally the graph bisection problem is the problem of dividing the vertices of a network into 
two non-overlapping groups of given sizes such that the number of edges running between vertices 
in different groups is minimized. The number of edges between groups is called the cut size.167 

Simple though it is to describe, this problem is not easy to solve. One might imagine that one 
could bisect a network simply by looking through all possible divisions of the network into two 
parts of the required sizes and choosing the one with the smallest cut size. For all but the smallest 
of networks, however, this so-called exhaustive search turns out to be prohibitively costly in terms 
of computer time. 

The number of ways of dividing a network of n vertices into two groups of n1 and n2 vertices 

respectively is n!/(n1! n2!). Approximating the factorials using Stirlingʹs formula  
and making use of the fact that n1 + n2 = n, we get

 

(11.13) 
  

Thus, for instance, if we want to divide a network into two parts of equal size  the number of 
different ways to do it is roughly

 

(11.14) 
  

So the amount of time required to look through all of these divisions will go up roughly 
exponentially with the size of the network. Unfortunately, the exponential is a very rapidly 
growing function of its argument, which means the partitioning task quickly leaves the realm of 
the possible at quite moderate values of n. Values up to about n = 30 are feasible with current 
computers, but go much beyond that and the calculation becomes intractable. 

One might wonder whether it is possible to find a way around this problem. After all, brute-

 

 

 

 

 



force enumeration of all possible divisions of a network is not a very imaginative way to solve 
the partitioning problem. Perhaps one could find a way to limit one’s search to only those divisions 
of the network that have a chance of being the best one? Unfortunately, there are some 
fundamental results in computer science that tell us that no such algorithm will ever be able to find 
the best division of the network in all cases. Either an algorithm can be clever and run quickly, but 
will fail to find the optimal answer in some (and perhaps most) cases, or it always finds the 
optimal answer but takes an impractical length of time to do it. These are the only options.168 

This is not to say, however, that clever algorithms for partitioning networks do not exist or that 
they don’t give useful answers. Even algorithms that fail to find the very best division of a network 
may still find a pretty good one, and for many practical purposes pretty good is good enough. The 
goal of essentially all practical partitioning algorithms is just to find a “pretty good” division in 
this sense. Algorithms that find approximate, but acceptable, solutions to problems in this way are 
called heuristic algorithms or just heuristics. All the algorithms for graph partitioning discussed in 
this chapter are heuristic algorithms. 



11.4 THE KERNIGHAN-LIN ALGORITHM  

The Kernighan-Lin algorithm, proposed by Brian Kernighan169 and Shen Lin in 1970 [171], is one 
of the simplest and best known heuristic algorithms for the graph bisection problem. The algorithm 
is illustrated in Fig. 11.2. 

We start by dividing the vertices of our network into two groups of the required sizes in any way 
we like. For instance, we could divide the vertices randomly. Then, for each pair (i, j) of vertices 
such that i lies in one of the groups and j in the other, we calculate how much the cut size between 
the groups would change if we were to interchange i and j, so that each was placed in the other 
group. Among all pairs (i, j) we find the pair that reduces the cut size by the largest amount or, if 
no pair reduces it, we find the pair that increases it by the smallest amount. Then we swap that pair 
of vertices. Clearly this process preserves the sizes of the two groups of vertices, since one vertex 
leaves each group and another joins. Thus the algorithm respects the requirement that the groups 
take specified sizes. 

 

Figure 11.2: The Kernighan-Lin algorithm. (a) The Kernighan-Lin algorithm starts with any 
division of the vertices of a network into two groups (shaded) and then searches for pairs of 
vertices, such as the pair highlighted here, whose interchange would reduce the cut size between 
the groups. (b) The same network after interchange of the two vertices. 
  

The process is then repeated, but with the important restriction that each vertex in the network 
can only be moved once. Once a vertex has been swapped with another it is not swapped again (at 
least not in the current round of the algorithm—see below). Thus, on the second step of the 
algorithm we consider all pairs of vertices excluding the two vertices swapped on the first step. 

And so the algorithm proceeds, swapping on each step that pair that most decreases, or least 
increases, the number of edges between our two groups, until eventually there are no pairs left to 
be swapped, at which point we stop. (If the sizes of the groups are unequal then there will be 
vertices in the larger group that never get swapped, equal in number to the difference between the 
sizes of the groups.) 

When all swaps have been completed, we go back through every state that the network passed 
through during the swapping procedure and choose among them the state in which the cut size 
takes its smallest value.170 

Finally, this entire process is performed repeatedly, starting each time with the best division of 
the network found on the last time around and continuing until no improvement in the cut size 
occurs. The division with the best cut size on the last round is the final division returned by the 

 

 

 



algorithm. 
Once we can divide a network into two pieces of given size then, as we have said, we can divide 

into more than two simply by repeating the process. For instance, if we want to divide a network 
into three pieces of equal size, we would first divide into two pieces, one twice the size of the 
other, and then further divide the larger one into two equally sized halves. (Note, however, that 
even if the algorithm were able to find the optimal division of the network in each of these two 
steps, there would be no guarantee that we would end up with the optimal division of the network 
into three equal parts. Nonetheless, we do typically find a reasonably good division, which, as we 
have said, is often good enough. This point is discussed further in Section 11.9.) 

Note that if we choose the initial assignment of vertices to groups randomly, then the 
Kernighan-Lin algorithm may not give the same answer if it is run twice on the same network. 
Two different random starting states could (though needn’t necessarily) result in different divisions 
of the network. For this reason, people sometimes run the algorithm more than once to see if the 
results vary. If they do vary then among the divisions of the network returned on the different runs 
it makes sense to take the one with the smallest cut size. 

As an example of the use of the Kernighan-Lin algorithm, consider Fig. 11.3, which shows an 
application of the algorithm to a mesh, a two-dimensional network of the type often used in 
parallel finite-element computations. Suppose we want to divide this network into two parts of 
equal size. Looking at the complete network in Fig. 11.3a there is no obvious division—there is no 
easy cut or bottleneck where the network separates naturally—but we must do the best we can. 
Figure 11.3b shows the best division found by the Kernighan-Lin algorithm, which involves 
cutting 40 edges in the network. Though it might not be the best possible division of the network, 
this is certainly good enough for many practical purposes. 

The primary disadvantage of the Kernighan-Lin algorithm is that it is quite slow. The number of 
swaps performed during one round of the algorithm is equal to the smaller of the sizes of the two 
groups, which lies between zero and  in a network of n vertices. Thus there are O(n) swaps in the 
worst case. For each swap we have to examine all pairs of vertices in different groups, of which 
there are, in the worst case, . And for each of these we need to determine 
the change in the cut size if the pair is swapped. 

 

Figure 11.3: Graph partitioning applied to a small mesh network. (a) A mesh network of 547 
vertices of the kind commonly used in finite element analysis. (b) The edges removed indicate the 
best division of the network into parts of 273 and 274 vertices found by the Kernighan-Lin 
algorithm. (c) The best division found by spectral partitioning. The network is from Bern et al. 
[35]. 
  

 



When a vertex i moves from one group to the other any edges connecting it to vertices in its 
current group become edges between groups after the swap. Let us suppose that there are  such 
edges. Similarly, any edges that i has to vertices in the other group, of which there are say  , 
become within-group edges after the swap, but with one exception. If i is being swapped with 
vertex j and there is an edge between i and j, then that edge lies between groups before the swap 
and still lies between groups after the swap. Thus the change in the cut size due to the movement 

of i is . A similar expression applies for vertex j also and the total change in cut 
size as a result of the swap is

 

(11.15) 
  

For a network stored in adjacency list form, the evaluation of this expression involves running 
through all the neighbors of i and j in turn, and hence takes time of order the average degree in the 
network, or O(m/n), where m is, as usual, the total number of edges in the network. 

Thus the total time for one round of the algorithm is O(n × n2 × m/n) = O(mn2), which is O(n3) 
on a sparse network in which m α n or O(n4) on a dense network. This in itself would already be 
quite bad, but we are not yet done. This time must be multiplied by the number of rounds the 
algorithm performs before the cut size stops decreasing. It is not well understood how the number 
of rounds required varies with network size. In typical applications the number is small, maybe 
five or ten for networks of up to a few thousand vertices, and larger networks are currently not 
possible because of the demands of the algorithm, so in practice the number of rounds is always 
small. Still, it seems quite unlikely that the number of rounds would actually increase as network 
size grows, and even if it remains constant the time complexity of the algorithm will still be O
(mn2), which is relatively slow. 

We can improve the running time of the algorithm a little by a couple of tricks. If we initially 
calculate and store the number of neighbors,  and  , that each vertex has within and 
between groups and update it every time a vertex is moved, then we save ourselves the time taken 
to recalculate these quantities on each step of the algorithm. And if we store our network in 
adjacency matrix form then we can tell whether two vertices are connected (and hence evaluate Aij) 
in time O(1). Together these two changes allow us to calculate Δ above in time O(1) and improve 
the overall running time to O(n3). For a sparse graph this is the same as O(mn2), but for a dense one 
it gives us an extra factor of n. 

Overall, however, the algorithm is quite slow. Even with O(n3) performance the algorithm is 
suitable only for networks up to a few hundreds or thousands of vertices, but not more. 

 

 

 



11.5 SPECTRAL PARTITIONING  

So are there faster methods for partitioning networks? There are indeed, although they are typically 
more complex than the simple Kernighan-Lin algorithm, and may be correspondingly more 
laborious to implement. In this section we discuss one of the most widely used methods, the 
spectral partitioning method of Fiedler [118, 271], which makes use of the matrix properties of the 
graph Laplacian. We describe the spectral partitioning method as applied to the graph bisection 
problem, the problem of dividing a graph into two parts of specified sizes. As discussed in the 
previous section, division into more than two groups is typically achieved by repeated bisection, 
dividing and subdividing the network to give groups of the desired number and size. 

Consider a network of n vertices and m edges and a division of that network into two groups, 
which we will call group 1 and group 2. We can write the cut size for the division, i.e., the number 
of edges running between the two groups, as

 

(11.16) 
  

where the factor of  compensates for our counting each edge twice in the sum. 
Let us define a set of quantities si, one for each vertex i, which represent the division of the 

network thus:

 

(11.17) 
  

Then

 

(11.18) 
  

which allows us to rewrite Eq. (11.16) as

 

 

 

 

 



 

(11.19) 
  

with the sum now over all values of i and j. The first term in the sum is

 

(11.20) 
  

where ki is the degree of vertex i as usual, δij is the Kronecker delta, and we have made use of the 

fact that ∑jAij = ki (see Eq. (6.19)) and  (since si = ±1). Substituting back into Eq. (11.19) we 
then find that

 

(11.21) 
  

where Lij = kiδij - Aij is the ijth element of the graph Laplacian matrix—see Eq. (6.44).
 

Equation (11.21) can be written in matrix form as

 

(11.22) 
  

where s is the vector with elements si. This expression gives us a matrix formulation of the 
graph partitioning problem. The matrix L specifies the structure of our network, the vector s 
defines a division of that network into groups, and our goal is to find the vector s that minimizes 
the cut size (11.22) for given L. 

You will probably not be surprised to learn that, in general, this minimization problem is not an 
easy one. If it were easy then we would have a corresponding easy way to solve the partitioning 
problem and, as discussed in Section 11.3.1, there are good reasons to believe that partitioning has 
no easy solutions. 

What makes our matrix version of the problem hard in practice is that the si cannot take just any 
values. They are restricted to the special values ±1. If they were allowed to take any real values the 
problem would be much easier; we could just differentiate to the find the optimum. 

This suggests a possible approximate approach to the minimization problem. Suppose we indeed 

 

 

 

 



allow the si to take any values (subject to a couple of basic constraints discussed below) and 
then find the values that minimize R. These values will only be approximately the correct ones, 
since they probably won’t be ±1, but they may nonetheless be good enough to give us a handle on 
the optimal partitioning. This idea leads us to the so-called relaxation method, which is one of the 
standard methods for the approximate solution of vector optimization problems such as this one. In 
the present context it works as follows. 

 

The relaxation of the constraint allows s to point to any position on a hypersphere circumscribing 
the original hypercube, rather than just the corners of the hypercube. 
  

The allowed values of the si are actually subject to two constraints. First, as we have said, each 
individual one is allowed to take only the values ±1. If we regard s as a vector in a Euclidean space 
then this constraint means that the vector always points to one of the 2n corners of an n-
dimensional hypercube centered on the origin, and always has the same length, which is √n. Let us 
relax the constraint on the vector’s direction, so that it can point in any direction in its n-
dimensional space. We will however still keep its length the same. (It would not make sense to 
allow the length to vary. If we did that then the minimization of R would have the obvious trivial 
solution s = 0, which would tell us nothing.) So s will be allowed to take any value, but subject to 
the constraint that |s| = √n, or equivalently

 

(11.23) 
  

Another way of putting this is that s can now point to any location on the surface of a hypersphere 
of radius √n in our n-dimensional Euclidean space. The hypersphere includes the original allowed 
values at the corners of the hypercube, but also includes other points in between. 

The second constraint on the si is that the numbers of them that are equal to +1 and −1 
respectively must equal the desired sizes of the two groups. If those two sizes are n1 and n2, this 
second constraint can be written as

 

 

 

 



 

(11.24) 
  

or in vector notation

 

(11.25) 
  

where 1 is the vector (1, 1, 1, . . . ) whose elements are all 1. We keep this second constraint 
unchanged in our relaxed calculations, so that our partitioning problem, in its relaxed form, is a 
problem of minimizing the cut size, Eq. (11.22), subject to the two constraints (11.23) and (11.24). 

This problem is now just a standard piece of algebra. We differentiate with respect to the 
elements si, enforcing the constraints using two Lagrange multipliers, which we denote λ and 2μ 
(the extra 2 being merely for notational convenience):

 

(11.26) 
  

Performing the derivatives, we then find that

 

(11.27) 
  

or, in matrix notation

 

(11.28) 
  

 

 

 

 

 

 

 



We can calculate the value of μ by recalling that 1 is an eigenvector of the Laplacian with 
eigenvalue zero so that L · 1 = 0 (see Section 6.13.2). Multiplying (11.28) on the left by 1T and 
making use of Eq. (11.25), we then find that λ(n1 – n2 ) + μn = 0, or

 

(11.29) 
  

If we define the new vector

 

(11.30) 
  

then Eq. (11.28) tells us that

 

(11.31) 
  

where we have used L · 1 = 0 again. 
In other words, x is an eigenvector of the Laplacian with eigenvalue λ. We are still free to 

choose which eigenvector it is—any eigenvector will satisfy Eq. (11.31)—and clearly we should 
choose the one that gives the smallest value of the cut size R. Notice, however, that

 

(11.32) 
  

where we have used Eq. (11.25). Thus x is orthogonal to 1, which means that, while it should be 
an eigenvector of L, it cannot be the eigenvector (1, 1, 1, . . . ) that has eigenvalue zero. 

So which eigenvector should we choose? To answer this question we note that

 

 

 

 

 

 

 



(11.33) 
  

But from Eq. (11.30) we have

 

(11.34) 
  

and hence

 

(11.35) 
  

Thus the cut size is proportional to the eigenvalue λ. Given that our goal is to minimize R, this 
means we should choose x to be the eigenvector corresponding to the smallest allowed eigenvalue 
of the Laplacian. All the eigenvalues of the Laplacian are non-negative (see Section 6.13.2). The 
smallest one is the zero eigenvalue that corresponds to the eigenvector (1, 1, 1, . . . ) but we have 
already ruled this one out—x has to be orthogonal to this lowest eigenvector. Thus the best thing 
we can do is choose x proportional to the eigenvector v2 corresponding to the second lowest 
eigenvalue λ2, with its normalization fixed by Eq. (11.34). 

Finally, we recover the corresponding value of s from Eq. (11.30) thus:
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or equivalently
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This gives us the optimal relaxed value of s. 
As we have said, however, the real vector s is subject to the additional constraints that its 

elements take the values ±1 and moreover that exactly n1 of them are +1 and the other n2 are–1. 
Typically these constraints will prevent s from taking exactly the value given by Eq. (11.37). Let 
us, however, do the best we can and choose s to be as close as possible to our ideal value subject to 
its constraints, which we do by making the product

 

(11.38) 
  

as large as possible. The maximum of this expression is achieved by assigning si = +1 for the 
vertices with the largest (i.e., most positive) values of xi + (n1 − n 2)/n and si = −1 for the 
remainder. 

Note however that the most positive values of xi + (n1 - n2 )/n are also the most positive values 
of xi, which are in turn also the most positive elements of the eigenvector v2 (to which, as we have 
said, x is proportional). So after this moderately lengthy derivation we actually arrive at a very 
simple final prescription for dividing our network. We calculate the eigenvector v2, which has n 
elements, one for each vertex in the network, and place the n1 vertices with the most positive 
elements in group 1 and the rest in group 2. 

There is one further small subtlety. It is arbitrary which group we call group 1 and which we call 
group 2, and hence which one we assign to the more positive elements of the eigenvector and 
which to the more negative. Thus, if the sizes of the two groups are different there are two 
different ways of making the split—either the larger or the smaller group could correspond to the 
more positive values. (In the geometrical language of our vectors, this is equivalent to saying our 
eigenvector calculation might find the vector x that we actually want, or minus that vector—both 
are good eigenvectors of the Laplacian.) To get around this problem, we simply compute the cut 
size for both splits of the network and choose the one with the smaller value. 

Thus our final algorithm is as follows:

1. Calculate the eigenvector v2 corresponding to the second smallest eigenvalue λ2 of the 
graph Laplacian. 

2. Sort the elements of the eigenvector in order from largest to smallest. 
3. Put the vertices corresponding to the n1 largest elements in group 1, the rest in group 2, and 

calculate the cut size. 
4. Then put the vertices corresponding to the n1 smallest elements in group 1, the rest in group 

2, and recalculate the cut size. 
5. Between these two divisions of the network, choose the one that gives the smaller cut size. 

In Fig. 11.3c we show the result of the application of this method to the same mesh network that 
we studied in conjunction with the Kernighan-Lin algorithm. In this case the spectral method finds 
a division of the network very similar to that given by the Kernighan-Lin algorithm, although the 
cut size is slightly worse—the spectral method cuts 46 edges in this case, where the Kernighan-Lin 
algorithm cut only 40. This is typical of the spectral method. It tends to find divisions of a network 
that have the right general shape, but are not perhaps quite as good as those returned by other 
methods. 

 

 

 



An advantage of the spectral approach, however, is its speed. The time-consuming part of the 
algorithm is the calculation of the eigenvector v2, which takes time O(mn) using either the 
orthogonalization method or the Lanczos method (see Section 11.1.2), or O(n2) on a sparse 
network having m ∝ n. This is one factor of n better than the O(n3) of the Kernighan-Lin 
algorithm, which makes the algorithm feasible for much larger networks. Spectral partitioning can 
be extended to networks of hundreds of thousands of vertices, where the Kernighan-Lin algorithm 
is restricted to networks of a few thousand vertices at most. 

The second eigenvalue of the Laplacian has come up previously in this book in Section 6.13.3, 
where we saw that it is non-zero if and only if a network is connected. The second eigenvalue is 
for this reason sometimes called the algebraic connectivity of a network. In this section we have 
seen it again in another context, that of partitioning. What happens if a network is not connected 
and the second eigenvalue is zero? In that case, the two lowest eigenvalues are the same, and the 
corresponding eigenvectors are indeterminate—any mixture of two eigenvectors with the same 
eigenvalue is also an eigenvector. This is not however a serious problem. If the network is not 
connected, having more than one component, then usually we are interested either in partitioning 
one particular component, such as the largest component, or in partitioning all components 
individually, and so we just treat the components separately as connected networks according to 
the algorithm above. 

The algebraic connectivity itself appears in our expression for the cut size, Eq. (11.35), and 
indeed is a direct measure of the cut size, being directly proportional to it, at least within the 
“relaxed” approximation used to derive the equation. Thus the algebraic connectivity is a 
measure of how easily a network can be divided. It is small for networks that have good cuts and 
large for those that do not. This in a sense is a generalization of our earlier result that the algebraic 
connectivity is non-zero for connected networks and zero for unconnected ones—we now see that 
how non-zero it is is a measure of how connected the network is.



11.6 COMMUNITY DETECTION  

In the last few sections we looked at the problem of graph partitioning, the division of network 
vertices into groups of given number and size, so as to minimize the number of edges running 
between groups. A complementary problem, introduced in Section 11.2.1, is that of community 
detection, the search for the naturally occurring groups in a network regardless of their number or 
size, which is used primarily as a tool for discovering and understanding the large-scale structure 
of networks. 

The basic goal of community detection is similar to that of graph partitioning: we want to 
separate the network into groups of vertices that have few connections between them. The 
important difference is that the number or size of the groups is not fixed. Let us focus to begin with 
on a very simple example of a community detection problem, probably the simplest, which is 
analogous to the graph bisection problems we examined in previous sections. We will consider the 
problem of dividing a network into just two non-overlapping groups or communities, as 
previously, but now without any constraint on the sizes of the groups, other than that the sum of 
the sizes should equal the size n of the whole network. Thus, in this simple version of the problem, 
the number of groups is still specified but their sizes are not, and we wish to find the “natural” 
division of the network into two groups, the fault line (if any) along which the network inherently 
divides, although we haven’t yet said precisely what we mean by that, so that the question we’re 
asking is not yet well defined. 

Our first guess at how to tackle this problem might be simply to find the division with minimum 
cut size, as in the corresponding graph partitioning problem, but without any constraint on the 
sizes of our groups. However, a moment’s reflection reveals that this will not work. If we divide a 
network into two groups with any number of vertices allowed in the groups then the optimum 
division is simply to put all the vertices in one of the groups and none of them in the other. This 
trivial division insures that the cut size between the two groups will be zero—there will be no 
edges between groups because one of the groups contains no vertices! As an answer to our 
community detection problem, however, it is clearly not useful. 

One way to do better would be to impose loose constraints of some kind on the sizes of the 
groups. That is, we could allow the sizes of the groups to vary, but not too much. An example of 
this type of approach is ratio cut partitioning in which, instead of minimizing the standard cut size 
R, we instead minimize the ratio R/(n1n2), where n1 and n2 are the sizes of the two groups. The 
denominator n1n2 has its largest value, and hence reduces the ratio by the largest amount, when n1 

and n2 are equal  . For unequal group sizes the denominator becomes smaller the 
greater the inequality, and diverges when either group size becomes zero. This effectively 
eliminates solutions in which all vertices are placed in the same group, since such solutions never 
give the minimum value of the ratio, and biases the division towards those solutions in which the 
groups are of roughly equal size. 

As a tool for discovering the natural divisions in a network, however, the ratio cut is not ideal. 
In particular, although it allows group sizes to vary it is still biased towards a particular choice, 
that of equally sized groups. More importantly, there is no principled rationale behind its 
definition. It works reasonably well in some circumstances, but there’s no fundamental reason to 
believe it will give sensible answers or that some other approach will not give better ones. 

An alternative strategy is to focus on a different measure of the quality of a division other than 
the simple cut size or its variants. It has been argued that the cut size is not itself a good measure 
because a good division of a network into communities is not merely one in which there are few 
edges between communities. On the contrary, the argument goes, a good division is one where 

 



there are fewer than expected such edges. If we find a division of a network that has few edges 
between its groups, but nonetheless the number of such edges is about what we would have 
expected were edges simply placed at random in the network, then most people would say we 
haven’t found anything significant. It is not the total cut size that matters, but how that cut size 
compares with what we expect to see. 

In fact, in the conventional development of this idea one considers not the number of edges 
between groups but the number within groups. The two approaches are equivalent, however, since 
every edge that lies within a group necessarily does not lie between groups, so one can calculate 
one number from the other given the total number of edges in the network as whole. We will 
follow convention here and base our calculations on the numbers of within-group edges. 

Our goal therefore will be to find a measure that quantifies how many edges lie within groups in 
our network relative to the number of such edges expected on the basis of chance. This, however, 
is an idea we have encountered before. In Section 7.13.1 we considered the phenomenon of 
assortative mixing in networks, in which vertices with similar characteristics tend to be connected 
by edges. There we introduced the measure of assortative mixing known as modularity, which has 
a high value when many more edges in a network fall between vertices of the same type than one 
would expect by chance. This is precisely the type of measure we need to solve our current 
community detection problem. If we consider the vertices in our two groups to be vertices of two 
types then good divisions of the network into communities are precisely those that have high 
values of the corresponding modularity. 

Thus one way to detect communities in networks is to look for the divisions that have the 
highest modularity scores and in fact this is the most commonly used method for community 
detection. Like graph partitioning, modularity maximization is a hard problem (see Section 
11.3.1). It is believed that, as with partitioning, the only algorithms capable of always finding the 
division with maximum modularity take exponentially long to run and hence are useless for all but 
the smallest of networks [54]. Instead, therefore, we turn again to heuristic algorithms, algorithms 
that attempt to maximize the modularity in an intelligent way that gives reasonably good results 
most of the time. 



11.7 SIMPLE MODULARITY MAXIMIZATION  

One straightforward algorithm for maximizing modularity is the analog of the Kernighan-Lin 
algorithm [245]. This algorithm divides networks into two communities starting from some initial 
division, such as a random division into equally sized groups. The algorithm then considers each 
vertex in the network in turn and calculates how much the modularity would change if that vertex 
were moved to the other group. It then chooses among the vertices the one whose movement 
would most increase, or least decrease, the modularity and moves it. Then it repeats the process, 
but with the important constraint that a vertex once moved cannot be moved again, at least on this 
round of the algorithm. 

And so the algorithm proceeds, repeatedly moving the vertices that most increase or least 
decrease the modularity. Notice that in this algorithm we are not swapping pairs as we did in the 
Kernighan-Lin algorithm. In that algorithm we were required to keep the sizes of the groups 
constant, so for every vertex removed from a group we also had to add one. Now we no longer 
have such a constraint and so we can move single vertices on each step. 

When all vertices have been moved exactly once, we go back over the states through which the 
network has passed and select the one with the highest modularity. We then use that state as the 
starting condition for another round of the same algorithm, and we keep repeating the whole 
process until the modularity no longer improves. 

Figure 11.4 shows an example application of this algorithm to the “karate club” network of 
Zachary, which we encountered previously in Chapter 1 (see Fig. 1.2 on page 6). This network 
represents the pattern of friendships between members of a karate club at a North American 
university, as determined by direct observation of the club’s members by the experimenter over a 
period of about two years. The network is interesting because during the period of observation a 
dispute arose among the members of the club over whether to raise the club’s fees and as a result 
the club eventually split into two parts, of 18 and 16 members respectively, the latter departing to 
form their own club. The colors of the vertices in Fig. 11.4 denote the members of the two 
factions, while the shaded regions show the communities identified in the network by our vertex-
moving algorithm. As we can see from the figure, the communities identified correspond almost 
perfectly to the known groups in the network. Just one vertex on the border between the groups is 
incorrectly assigned. Thus in this case our algorithm appears to have picked out structure of 
genuine sociological interest from an analysis of network data alone. It is precisely for results of 
this kind, that shed light on potentially important structural features of networks, that community 
detection methods are of interest. 

 



 

Figure 11.4: Modularity maximization applied to the karate club network. When we apply 
our vertex-moving modularity maximization algorithm to the karate club network, the best 
division found is the one indicated here by the two shaded regions, which split the network into 
two groups of 17 vertices each. This division is very nearly the same as the actual split of the 
network in real life (open and solid circles), following the dispute among the club’s members. Just 
one vertex is classified incorrectly. 
  

The vertex moving algorithm is also quite efficient. At each step of the algorithm we have to 
evaluate the modularity change due to the movement of each of O(n) vertices, and each such 
evaluation, like the corresponding ones for the Kernighan-Lin algorithm, can be achieved in time 
O(m/n) if the network is stored as an adjacency list. Thus each step takes time O(m) and there are n 
steps in one complete round of the algorithm for a total time of O(mn). This is considerably better 
than the O(mn2) of the Kernighan-Lin algorithm, and the algorithm is in fact one of the better of 
the many proposed algorithms for modularity maximization.171 The fundamental reason for the 
algorithm’s speed is that when moving single vertices we only have to consider O(n) possible 
moves at each step, by contrast with the O(n2) possible swaps of vertex pairs that must be consider 
in a step of the Kernighan-Lin algorithm.

 

 



11.8 SPECTRAL MODULARITY MAXIMIZATION  

Having seen in the previous section an algorithm for modularity maximization analogous to the 
Kernighan-Lin algorithm, it is natural to ask whether there also exists an analog for community 
detection of the spectral graph partitioning algorithm of Section 11.5. The answer is yes, there is 
indeed such an algorithm, as we now describe. 

In Section 7.13.1 we wrote an expression for the modularity of a division of a network as 
follows (Eq. (7.69)):

 

(11.39) 
  

where ci is the group or community to which vertex i belongs, δ(m, n) is the Kronecker delta, 
and

 

(11.40) 
  

Note that Bij has the property

 

(11.41) 
  

and similarly for sums over i. (We have made use of Eq. (6.20) in the second equality.) This 
property will be important shortly. 

Let us again consider the division of a network into just two parts (we will consider the more 
general case later) and again represent such a division by the quantities

 

 

 

 

 

 



(11.42) 
  

We note that the quantity  is 1 if i and j are in the same group and zero otherwise, so that

 

(11.43) 
  

Substituting this expression into Eq. (11.39), we find

 

(11.44) 
  

where we have used Eq. (11.41). In matrix terms we can write this as

 

(11.45) 
  

where s is, as before, the vector with elements si, and B is the n × n matrix with elements Bij, also 
called the modularity matrix. 

Equation (11.45) is similar in form to our expression, Eq. (11.22), for the cut size of a network 
in terms of the graph Laplacian. By exploiting this similarity we can derive a spectral algorithm for 
community detection that is closely analogous to the spectral partitioning method of Section 11.5. 

We wish to find the division of a given network that maximizes the modularity Q. That is, we 
wish to find the value of s that maximizes Eq. (11.45) for a given modularity matrix B. The 
elements of s are constrained to take values ±1, so that the vector always points to one of the 
corners of an n-dimensional hypercube, but otherwise there are no constraints on the problem. In 
particular, the number of elements with value +1 or −1 is not fixed as it was in the corresponding 
graph partitioning problem—the sizes of our communities are unconstrained. 

As before, this optimization problem is a hard one, but it can be tackled approximately—and 
effectively—by a relaxation method. We relax the constraint that s must point to a corner of the 
hypercube and allow it to point in any direction, though keeping its length the same, meaning that 
it can take any real value subject only to the constraint that

 

 

 

 

 

 



 

(11.46) 
  

The maximization is now a straightforward problem. We maximize Eq. (11.44) by differentiating, 
imposing the constraint with a single Lagrange multiplier β:
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When we perform the derivatives, this gives us
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or in matrix notation

 

(11.49) 
  

In other words, s is one of the eigenvectors of the modularity matrix. Substituting (11.49) back into 
Eq. (11.45), we find that the modularity itself is given by

 

(11.50) 
  

where we have used Eq. (11.46). For maximum modularity, therefore, we should choose s to be 

 

 

 

 

 

 

 

 



the eigenvector u1 corresponding to the largest eigenvalue of the modularity matrix. 
As before, we typically cannot in fact choose s = u1, since the elements of s are subject to the 

constraint si = ±1. But we do the best we can and choose it as close to u1 as possible, which means 
maximizing the product
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where [u1]i is the ith element of u1. The maximum is achieved when each term in the sum is 
non-negative, i.e., when

 

(11.52) 
  

In the unlikely event that a vector element is exactly zero, either value of si is equally good and we 
can choose whichever we prefer. 

And so we are led the following very simple algorithm. We calculate the eigenvector of the 
modularity matrix corresponding to the largest (most positive) eigenvalue and then assign vertices 
to communities according to the signs of the vector elements, positive signs in one group and 
negative signs in the other. 

In practice this method works very well. For example, when applied to the karate club network 
of Fig. 11.4 it works perfectly, classifying every one of the 34 vertices into the correct group. 

One potential problem with the algorithm is that the matrix B is, unlike the Laplacian, not 
sparse, and indeed usually has all elements non-zero. At first sight, this appears to make the 
algorithm’s complexity significantly worse than that of the normal spectral bisection algorithm; as 
discussed in Section 11.1.1, finding the leading eigenvector of a matrix takes time O(mn), which is 
equivalent to O(n3) in a dense matrix, as opposed to O(n2) in a sparse one. In fact, however, by 
exploiting special properties of the modularity matrix it is still possible to find the eigenvector in 
time O(n2) on a sparse network. The details can be found in [246]. 

Overall, this means that the spectral method is about as fast as, but not significantly faster than, 
the vertex-moving algorithm of Section 11.7. Both have time complexity O(n2) on sparse 
networks.172 There is, however, merit to having both algorithms. Given that all practical modularity 
maximizing algorithms are merely heuristics—clever perhaps, but not by any means guaranteed to 
perform well in all cases—having more than one fast algorithm in our toolkit is always a good 
thing. 

 

 

 



11.9 DIVISION INTO MORE THAN TWO GROUPS  

The community detection algorithms of the previous two sections both perform a limited form of 
community detection, the division of a network into exactly two communities, albeit of 
unspecified sizes. But “communities” are defined to be the natural groupings of vertices in 
networks and there is no reason to suppose that networks will in general have just two of them. 
They might have two, but they might have more than two, and we would like to be able to find 
them whatever their number. Moreover we don’t, in general, want to have to specify the number of 
communities; that number should be fixed by the structure of the network and not by the 
experimenter. 

In principle, the modularity maximization method can handle this problem perfectly well. 
Instead of maximizing modularity over divisions of a network into two groups, we should just 
maximize it over divisions into any number of groups. Modularity is supposed to be largest for the 
best division of the network, no matter how many groups that division possesses. 

There are a number of community detection algorithms that take this “free maximization” 
approach to determining community number, and we discuss some of them in the following 
section. First, however, we discuss a simpler approach which is a natural extension of the methods 
of previous sections and of our graph partitioning algorithms, namely repeated bisection of a 
network. We start by dividing the network first into two parts and then we further subdivide those 
parts in to smaller ones, and so on. 

One must be careful about how one does this, however. We cannot proceed as one can in the 
graph partitioning case and simply treat the communities found in the initial bisection of a network 
as smaller networks in their own right, applying our bisection algorithm to those smaller networks. 
The modularity of the complete network does not break up (as cut size does) into independent 
contributions from the separate communities and the individual maximization of the modularities 
of those communities treated as separate networks will not, in general, produce the maximum 
modularity for the network as a whole. 

Instead, we must consider explicitly the change ΔQ in the modularity of the entire network upon 
further bisecting a community c of size nc. That change is given by

 

(11.53) 
  

where we have made use of , and B(c) is the nc × nc matrix with elements

 

 

 



(11.54) 
  

Since Eq. (11.53) has the same general form as Eq. (11.45) we can now apply our spectral 
approach to this generalized modularity matrix, just as before, to maximize ΔQ, finding the leading 
eigenvector and dividing the network according to the signs of its elements. 

In repeatedly subdividing a network in this way, an important question we need to address is at 
what point to halt the subdivision process. The answer is quite simple. Given that our goal is to 
maximize the modularity for the entire network, we should only go on subdividing groups so long 
as doing so results in an increase in the overall modularity. If we are unable to find any division of 
a community that results in a positive change ΔQ in the modularity, then we should simply leave 
that community undivided. The practical indicator of this situation is that our bisection algorithm 
will put all vertices in one of its two groups and none in the other, effectively refusing to subdivide 
the community rather than choose a division that actually decreases the modularity. When we have 
subdivided our network to the point where all communities are in this indivisible state, the 
algorithm is finished and we stop. 

This repeated bisection method works well in many situations, but it is by no means perfect. A 
particular problem is that, as in the equivalent approach to graph partitioning, there is no guarantee 
that the best division of a network into, say, three parts, can be found by first finding the best 
division into two parts and then subdividing one of the two. Consider for instance the simple 
network shown in Fig. 11.5, which consists of eight vertices joined together in a line. The bisection 
of this network with highest modularity is the one shown in Fig. 11.5a, down the middle of the 
network, splitting it into two equally sized groups of four vertices each. The best modularity if the 
number of groups is unconstrained, however, is that shown in Fig. 11.5b, with three groups of 
sizes 3, 2, and 3, respectively. A repeated optimal bisection algorithm would never find the 
division in 11.5b because, having first made the bisection in 11.5a, there is no further bisection that 
will get us to 11.5b. 

 

Figure 11.5: Division of a simple network by repeated maximization of the modularity. (a) 
The optimal bisection of this network of eight vertices and seven edges is straight down the 
middle. (b) The optimal division into an arbitrary number of groups is this division into three. 
  

As mentioned above, an alternative method for dividing networks into more than two 
communities is to attempt to find directly the maximum modularity over divisions into any number 
of groups. This approach can, in principle, find better divisions than repeated bisection, but in 
practice is more complicated to implement and often runs slower. A number of promising methods 
have been developed, however, some of which are discussed in the next section. 

 

 

 

 



11.10 OTHER MODULARITY MAXIMIZATION METHODS  

There are a great variety of general algorithms for maximizing (or minimizing) functions over sets of 
states, and in theory any one of them could be brought to bear on the modularity maximization 
problem, thereby creating a new community detection algorithm. We describe briefly here three 
approaches that have met with some success. Each of these approaches attempts to maximize 
modularity over divisions into any number of communities of any sizes and thus to determine both the 
number and size of communities in the process. 

One of the most widely used general optimization strategies is simulated annealing, which proceeds 
by analogy with the physics of slow cooling or “annealing” of solids. It is known that a hot system, 
such as a molten metal, will, if cooled sufficiently slowly to a low enough temperature, eventually find 
its ground state, that state of the system that has the lowest possible energy. Simulated annealing 
works by treating the quantity of interest—modularity in this case—as an energy and then simulating 
the cooling process until the system finds the state with the lowest energy. Since we are interested in 
finding the highest modularity, not the lowest, we equate energy in our case with minus the modularity, 
rather than with the modularity itself. 

The details of the simulated annealing method are beyond the scope of this book, but the application 
to modularity maximization is a straightforward one and it appears to work very well [85, 150, 151, 
215, 281]. For example, Danon et al. [85] performed an extensive test in which they compared the 
performance of a large number of different community detection algorithms on standardized tasks and 
found that the simulated annealing method gave the best results of any method tested. The main 
disadvantage of the approach is that it is slow, typically taking several times as long to reach an answer 
as competing methods do. 

Another general optimization method is the genetic algorithm, a method inspired by the workings of 
biological evolution. Just as fitter biological species reproduce more and so pass on the genes that 
confer that fitness to future generations, so one can consider a population of different divisions of the 
same network and assign to each a “fitness” proportional to its modularity. Over a series of generations 
one simulates the preferential “reproduction” of highmodularity divisions, while those of low 
modularity die out. Small changes or mutations are introduced into the offspring divisions, allowing 
their modularity values either to improve or get worse and those that improve are more likely to 
survive in the next generation while those that get worse are more likely to be killed off. After many 
generations one has a population of divisions with good modularity and the best of these is the final 
division returned by the algorithm. Like simulated annealing the method appears to give results of high 
quality, but is slow, which restricts its use to networks of a few hundred vertices or fewer [295]. 

A third method makes use of a so-called greedy algorithm. In this very simple approach we start out 
with each vertex in our network in a one-vertex group of its own, and then successively amalgamate 
groups in pairs, choosing at each step the pair whose amalgamation gives the biggest increase in 
modularity, or the smallest decrease if no choice gives an increase. Eventually all vertices are 
amalgamated into a single large community and the algorithm ends. Then we go back over the states 
through which the network passed during the course of the algorithm and select the one with the 
highest value of the modularity. A naive implementation of this idea runs in time O(n2), but by making 
use of suitable data structures the run time can be improved to O(n log2n) on a sparse graph [71, 319]. 
Overall the algorithm works only moderately well: it gives reasonable divisions of networks, but the 
modularity values achieved are in general somewhat lower than those found by the other methods 
described here. On the other hand, the running time of the method may be the best of any current 
algorithm, and this is one of the few algorithms fast enough to work on the very largest networks now 
being explored. Wakita and Tsurumi [319] have given one example of an application to a network of 
more than five million vertices, something of a record for studies of this kind.

 



11.11 OTHER ALGORITHMS FOR COMMUNITY DETECTION  

As we have seen, the problem of detecting communities in networks is a less well-posed one than 
the problem of graph partitioning. In graph partitioning the goal is clear: to find the division of a 
network with the smallest possible cut size. There is, by contrast, no universally agreed upon 
definition of what constitutes a good division of a network into communities. In the previous 
sections we have looked at algorithms based one particular definition in terms of the modularity 
function, but there are a number of other definitions in common use that lead to different 
algorithms. In the following sections we look briefly at a few of these other algorithms. 

 



11.11.1 BETWEENNESS-BASED METHODS  

One alternative way of finding communities of vertices in a network is to look for the edges that 
lie between communities. If we can find and remove these edges, we will be left with just the 
isolated communities. 

There is more than one way to quantify what we mean when we say an edge lies “between 
communities,” but one common approach is to use betweenness centrality. As described in Section 
7.7, the betweenness centrality of a vertex in a network is the number of geodesic (i.e., shortest) 
paths in the network that pass through that vertex. Similarly, we can define an edge betweenness 
that counts the number of geodesic paths that run along edges and, as shown in Fig. 11.6, edges 
that lie between communities can be expected to have high values of the edge betweenness. 

 

Figure 11.6: Identification of between-group edges. This simple example network is divided 
into two groups of vertices (denoted by the dotted lines), with only two edges connecting the 
groups. Any path joining vertices in different groups (such as vertices u and v) must necessarily 
pass along one of these two edges. Thus if we consider a set of paths between all pairs of vertices 
(such as geodesic paths, for instance), we expect the between-group edges to carry more paths than 
most. By counting the number of paths that pass along each edge we can in this way identify the 
between-group edges. 
  

The calculation of edge betweenness is precisely analogous to the vertex case: we consider the 
geodesic path or paths between every pair of vertices in the network (except vertices in different 
components, for which no such path exists), and count how many such paths go along each edge. 
Edge betweenness can be calculated for all edges in time O(n(m + n)) using a slightly modified 
version of the algorithm described in Section 10.3.6 [250]. 

Our algorithm for detecting communities is then as follows. We calculate the betweenness 
scores of all edges in our network and then search through them for the edge with the highest score 
and remove it. In removing the edge we will change the betweenness scores of some edges, 
because any shortest paths that previously traversed the removed edge will now have to be 
rerouted another way. So we must recalculate the betweenness scores following the removal. Then 
we search again for the edge with the highest score and remove it, and so forth. As we remove one 
edge after another an initially connected network will eventually split into two pieces, and then 
into three, and so on. 

The progress of the algorithm can be represented using a tree or dendrogram like that depicted 
in Fig. 11.7. At the bottom of the figure we have the “leaves” of the tree, which each represent one 
of the vertices of the network, and as we move up the tree, the leaves join together first in pairs and 
then in larger groups, until at the top of the tree all are joined together to form a single whole. Our 
algorithm in fact generates the dendrogram from the top, rather than the bottom, starting with a 

 

 

 



single connected network and splitting it repeatedly until we get to the level of single vertices. 
Individual intermediate configurations of the network during the run of the algorithm correspond 
to horizontal cuts through the dendrogram, as indicated by the dotted line in the figure. Each 
branch of the tree that intersects this dotted line represents one group of vertices, whose 
membership we can determine by following the branch down to its leaves at the bottom of the 
figure. Thus the dendrogram captures in a single diagram the configuration of groups in the 
network at every stage from start to finish of the algorithm. 

 

Figure 11.7: A dendrogram. The results of the edge betweenness algorithm can be represented as 
a tree or “dendrogram” in which the vertices are depicted (conventionally) at the bottom of the tree 
and the “root” at the top represent the whole network. The progressive fragmentation of the 
network as edges are removed one by one is represented by the successive branching of the tree as 
we move down the figure and the identities of the vertices in a connected subset at any point in the 
procedure can be found by following the lines of the tree down to the bottom of the picture. Each 
intermediate division of the network through which the algorithm passes corresponds to a 
horizontal cut through the dendrogram. For instance, the cut denoted by the dotted line in this 
dendrogram splits the network into four groups of 6, 1, 2, and 3 vertices respectively. 
  

This algorithm is somewhat different from previous ones, therefore, in that it doesn’t give a 
single decomposition of a network into communities, but a selection of different possibilities, 
ranging from coarse divisions into just a few large communities (at the top of the dendrogram) to 
fine divisions into many small communities (at the bottom). It is up to the user to decide which of 
the many divisions represented is most useful for their purposes. One could in principle use a 
measure such as modularity to quantify the quality of the different divisions and select the one 
with the highest quality in this sense. This, however, somewhat misses the point. If high 
modularity is what you care about, then you are better off simply using a modularity maximization 
algorithm in the first place. It is more appropriate simply to think of this betweenness-based 
algorithm as producing a different kind of output, one that has its own advantages and 
disadvantages but that can undoubtedly tell us interesting things about network structure. 

The betweenness-based algorithm is, unfortunately, quite slow. As we have said the calculation 
of betweenness for all edges takes time of order O(n(m + n)) and we have to perform this 
calculation before the removal of each of the m edges, so the entire algorithm takes time O(mn(m + 
n)), or O(n3) on a sparse graph with m ∝ n. This makes this algorithm one of the slower 
algorithms considered in this chapter. The algorithm gives quite good results in practice [138, 
250], but has mostly been superseded by the faster modularity maximization methods of previous 
sections. 

Nonetheless, the ability of the algorithm to return an entire dendrogram, rather than just a single 
division of a network, could be useful in some cases. The divisions represented in the dendrogram 
form a hierarchical decomposition in which the communities at one level are completely contained 
within the larger communities at all higher levels. There has been some interest in hierarchical 

 

 



structure in networks and hierarchical decompositions that might capture it. We look at another 
algorithm for hierarchical decomposition in Section 11.11.2. 

An interesting variation on the betweenness algorithm has been proposed by Radicchi et al. 
[276]. Their idea revolves around the same basic principle of identifying the edges between 
communities and removing them, but the measure used to perform the identification is different. 
Radicchi et al. observe that the edges that fall between otherwise poorly connected communities 
are unlikely to belong to short loops of edges, since doing so would require that there be two 
nearby edges joining the same groups—see Fig. 11.8. Thus one way to identify the edges between 
communities would be to look for edges that belong to an unusually small number of short loops. 
Radicchi et al. found that loops of length three and four gave the best results. By repeatedly 
removing edges that belong to small numbers of such loops they were able to accurately uncover 
communities in a number of example networks. 

An attractive feature of this method is its speed. The calculation of the number of short loops to 
which an edge belongs is a local calculation and can be performed for all edges in time that goes 
like the total size of the network. Thus, in the worst case, the running time of the algorithm will 
only go as O(n2) on a sparse graph, which is one order of system size faster than the betweenness-
based algorithm and as fast as the earlier methods based on modularity maximization. 

 

Figure 11.8: The algorithm of Radicchi et al. The algorithm of Radicchi et al. uses a different 
measure to identify between-group edges, looking for the edges that belong to the fewest short 
loops. In many networks, edges within groups typically belong to many short loops, such as the 
loops of length three and four labeled “1” and “2.” But edges between groups, such as the edge 
labeled “3” here, often do not belong to such loops, because to do so would require there to be a 
return path along another between-group edge, of which there are, by definition, few. 
  

On the other hand, the algorithm of Radicchi et al. has the disadvantage that it only works on 
networks that have a significant number of short loops in the first place. This restricts the method 
primarily to social networks, which indeed have large numbers of short loops (see Section 7.9). 
Other types of network, such as technological and biological networks, tend to have smaller 
numbers of short loops, and hence there is little to distinguish between-group edges from within-
group ones. 

 

 



11.11.2 HIERARCHICAL CLUSTERING  

The algorithms of the previous section differ somewhat from the other community detection 
algorithms in this chapter in that they produce a hierarchical decomposition of a network into a set 
of nested communities, visualized in the form of a dendrogram as in Fig. 11.7, rather than just a 
single division into a unique set of communities. In this section we look at another algorithm that 
also produces a hierarchical decomposition, one of the oldest of community detection methods, the 
method of hierarchical clustering.173 

Hierarchical clustering is not so much a single algorithm as an entire class of algorithms, with 
many variations and alternatives. Hierarchical clustering is an agglomerative technique in which 
we start with the individual vertices of a network and join them together to form groups. This 
contrasts with most of the other methods we have looked at for community detection and graph 
partitioning, which were divisive methods that took a complete network and split it apart. (One 
earlier algorithm, the greedy modularity maximization algorithm of Section 11.10, was an 
agglomerative method.) 

The basic idea behind hierarchical clustering is to define a measure of similarity or connection 
strength between vertices, based on the network structure, and then join together the closest or 
most similar vertices to form groups. We discussed measures of vertex similarity in networks at 
some length in Section 7.12. Any of the measures of structural equivalence introduced there would 
be suitable as a starting point for hierarchical clustering, including cosine similarity (Section 
7.12.1), correlation coefficients between rows of the adjacency matrix (Section 7.12.2), or the so-
called Euclidean distance (Section 7.12.3). The regular equivalence measures of Section 7.12.4 
might also be good choices, although the author is not aware of them having been used in this 
context. 

That there are many choices for similarity measures is both a strength and a weakness of the 
hierarchical clustering method. It gives the method flexibility and allows it to be tailored to 
specific problems, but it also means that the method gives different answers depending on which 
measure we choose, and in many cases there is no way to know if one measure is more correct or 
will yield more useful information than another. Most often the choice of measure is determined 
more by experience or experiment than by argument from first principles. 

 

If the connections (A,B) and (B,C) are strong but (A,C) is weak, should A and C be in the same 
group or not? 
  

Once a similarity measure is chosen we calculate it for all pairs of vertices in the network. Then 
we want to group together those vertices having the highest similarities. This, however, leads to a 
further problem: the similarities can give conflicting messages about which vertices should be 
grouped. Suppose vertices A and B have high similarity, as do vertices B and C. One might 
therefore argue that A, B, and C should all be in a group together. But suppose that A and C have 
low similarity. Now we are left with a dilemma. Should A and C be in the same group or not?

 

 

 



The basic strategy adopted by the hierarchical clustering method is to start by joining together 
those pairs of vertices with the highest similarities, forming a group or groups of size two. For 
these there is no ambiguity, since each pair only has one similarity value. Then we further join 
together the groups that are most similar to form larger groups, and so on. When viewed in terms 
of agglomeration of groups like this, the problem above can be stated in a new and useful way. Our 
process requires for its operation a measure of the similarity between groups, so that we can join 
the most similar ones together. But what we actually have is a measure of similarity between 
individual vertices, so we need to combine these vertex similarities somehow to create similarities 
for the groups. If we can do this, then the rest of the algorithm is straightforward and the ambiguity 
is resolved. 

There are three common ways of combining vertex similarities to give similarity scores for 
groups. They are called single-, complete-, and average-linkage clustering. Consider two groups of 
vertices, group 1 and group 2, containing n1 and n2 vertices respectively. There are then n1n2 pairs 
of vertices such that one vertex is in group 1 and the other in group 2. In the single-linkage 
clustering method, the similarity between the two groups is defined to be the similarity of the most 
similar of these n1n2 pairs of vertices. Thus if the values of the similarities of the vertex pairs range 
from 1 to 100, the similarity of the two groups is 100. This is a very lenient definition of similarity: 
only a single vertex pair need have high similarity for the groups themselves to be considered 
similar. (This is the origin of the name “single-linkage clustering”—similarity between groups is a 
function of the similarity between only the single most similar pair of vertices.) 

At the other extreme, complete-linkage clustering defines the similarity between two groups to 
be the similarity of the least similar pair of vertices. If the similarities range from 1 to 100 then the 
similarity of the groups is 1. By contrast with single-linkage clustering this is a very stringent 
definition of group similarity: every single vertex pair must have high similarity for the groups to 
have high similarity (hence the name “complete-linkage clustering”). 

In between these two extremes lies average-linkage clustering, in which the similarity of two 
groups is defined to be the mean similarity of all pairs of vertices. Average-linkage clustering is 
probably the most satisfactory choice of the three, being a moderate one—not extreme in either 
direction—and depending on the similarity of all vertex pairs and not just of the most or least 
similar pair. It is, however, relatively rarely used, for reasons that are not entirely clear. 

The full hierarchical clustering method is as follows:

1. Choose a similarity measure and evaluate it for all vertex pairs. 
2. Assign each vertex to a group of its own, consisting of just that one vertex. The initial 

similarities of the groups are simply the similarities of the vertices. 
3. Find the pair of groups with the highest similarity and join them together into a single 

group. 
4. Calculate the similarity between the new composite group and all others using one of the 

three methods above (single-, complete-, or average-linkage clustering). 
5. Repeat from step 3 until all vertices have been joined into a single group. 

In practice, the calculation of the new similarities is relatively straightforward. Let us consider 
the three cases separately. For single-linkage clustering the similarity of two groups is equal to the 
similarity of their most similar pair of vertices. In this case, when we join groups 1 and 2 together, 
the similarity of the composite group to another group 3, is the greater of the similarities of 1 with 
3 and 2 with 3, which can be found in O(1) time. 

For complete-linkage clustering the similarity of the composite group is the smaller of the 
similarities of 1 with 3 and 2 with 3, which can also be found in O(1) time. 

The average-linkage case is only slightly more complicated. Suppose as before that the groups 1 
and 2 that are to be joined have n1 and n vertices respectively. Then if the similarities of 1 with 3 
and 2 with 3 were previously σ and σ23, the similarity of the composite group with another group 3 
is given by the weighted average

 



 

(11.55) 
  

Again this can be calculated in O(1) time. 
On each step of the algorithm we have to calculate similarities in this way for the composite 

group with every other group, of which there are O(n). Hence the recalculation of similarities will 
take O(n) time on each step. A naive search through the similarities to find the greatest one, on the 
other hand, takes time O(n2), since there are O(n2) pairs of groups to check, so this will be the most 
time-consuming step in the algorithm. We can speed things up, however, by storing the similarities 
in a binary heap (see Section 9.7174), which allows us to add and remove entries in time O(log n) 
and find the greatest one in time O(1). This slows the recalculation of the similarities to O(n log n) 
but speeds the search for the largest to O(1). 

Then the whole process of joining groups has to be repeated n - 1 times until all vertices have 
been joined into a single group. (To see this, simply consider that the number of groups goes down 
by one every time two groups are joined, so it takes n – 1 joins to go from n initial groups to just a 
single one at the end.) Thus the total running time of the algorithm is O(n3) in the naive 
implementation or O(n2 log n) if we use a heap.175 

Figure 11.9: Partitioning of the karate club network by average linkage hierarchical 
clustering. This dendrogram is the result of applying the hierarchical clustering method described 
in the text to the karate club network of Fig. 11.4, using cosine similarity as our measure of vertex 
similarity. The shapes of the nodes represent the two known factions in the network, as in the two 
previous figures. 
  

And how well does it work in practice? The answer depends on which similarity measure one 
chooses and which linkage method, but a typical application, again to the karate club network, is 

 

 

 

 



shown in Fig. 11.9. This figure shows what happens when we apply average-linkage clustering 
to the karate network using cosine similarity as our similarity measure. The figure shows the 
dendrogram that results from such a calculation and we see that there is a clear division of the 
dendrogram into two communities that correspond perfectly to the two known groups in the 
network. 

Hierarchical clustering does not always work as well as this, however. In particular, though it is 
often good at picking out the cores of groups, where the vertices are strongly similar to one 
another, it tends to be less good at assigning peripheral vertices to appropriate groups. Such 
vertices may not be strongly similar to any others and so tend to get left out of the agglomerative 
clustering process until the very end. A common result of hierarchical clustering is therefore a set 
of tightly knit cores surrounded by a loose collection of single vertices or smaller groups. Such a 
result may nonetheless contain a lot of valuable information about the underlying network 
structure. 
  

Many other methods have been proposed for community detection and there is not room in this 
book to describe them all. For the reader interested in pursuing the topic further the review articles 
by Fortunato [124] and Schaeffer [291] provide useful overviews. 

 
 



PROBLEMS  

11.1 Show that the inverse of a symmetric matrix M is given by M–1 = UDUT where U is the 
orthogonal matrix whose columns are the normalized eigenvectors of M and D is the diagonal 
matrix whose elements are the reciprocals of the eigenvalues of M. Hence argue that the time 
complexity of the best algorithm for inverting a symmetric matrix can be no worse than the time 
complexity of finding all of its eigenvalues and eigenvectors. (In fact they are the same—both are 
O(n) for an n × n matrix.) 
  

11.2 Consider a general n × n matrix M with eigenvalues μi where i = 1 . . . n.

a. Show that the matrix M – aI has the same eigenvectors as M and eigenvalues μi – a.
 

b. Suppose that the matrix’s two eigenvalues of largest magnitude are both positive. Show 
that the time taken to find the leading eigenvector of the matrix using the power method of 
Section 11.1 can be improved by performing the calculation instead for the matrix M − aI, 
where a is positive. 

c. What stops us from increasing the constant a arbitrarily until the calculation takes no time 
at all? 

11.3 Consider a “line graph” consisting of n vertices in a line like this:

 

a. Show that if we divide the network into two parts by cutting any single edge, such that one 
part has r vertices and the other has n – r, the modularity, Eq. (7.76), takes the value

 

b. Hence show that when n is even the optimal such division, in terms of modularity, is the 
division that splits the network exactly down the middle. 

11.4 Using your favorite numerical software for finding eigenvectors of matrices, construct the 
Laplacian and the modularity matrix for this small network:

 

 

 

 

 

 



a. Find the eigenvector of the Laplacian corresponding to the second smallest eigenvalue and 
hence perform a spectral bisection of the network into two equally sized parts. 

b. Find the eigenvector of the modularity matrix corresponding to the largest eigenvalue and 
hence divide the network into two communities. 

You should find that the division of the network generated by the two methods is, in this case, the 
same. 
  

11.5 Consider this small network with five vertices:

 

a. Calculate the cosine similarity for each of the  pairs of vertices. 
b. Using the values of the ten similarities construct the dendrogram for the single-linkage 

hierarchical clustering of the network according to cosine similarity. 
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CHAPTER 12 

RANDOM GRAPHS 

An introduction to the most basic of network models, the random graph 

SO FAR in this book we have looked at how we measure the structure of networks and at 
mathematical, statistical, and computational methods for making sense of the network data we get 
from our measurements. We have seen for instance how to measure the structure of the Internet, 
and once we have measured it how to determine its degree distribution, or the centrality of its 
vertices, or the best division of the network into groups or communities. An obvious next question 
to ask is, “If I know a network has some particular property, such as a particular degree 
distribution, what effect will that have on the wider behavior of the system?” It turns out that 
properties like degree distributions can in fact have huge effects on networked systems, which is 
one of the main reasons we are interested in them. And one of the best ways to understand and get 
a feel for these effects is to build mathematical models. The remainder of this book is devoted to 
the examination of some of the many network models in common use. 

In Chapters 12 to 15 we consider models of the structure of networks, models that mimic the 
patterns of connections in real networks in an effort to understand the implications of those 
patterns. In Chapters 16 to 19 we consider models of processes taking place on networks, such as 
epidemics on social networks or search engines on the Web. In many cases these models of 
network processes are themselves built on top of our models of network structure, combining the 
two to shed light on the interplay between structure and dynamics in networked systems. 

In Section 8.4, for instance, we noted that many networks have degree distributions that roughly 
follow a power law—the so-called scale-free networks. A reasonable question would be to ask 
how the structure and behavior of such scale-free networks differs from that of their non-scale-free 
counterparts. A good way to address this question would be to create, on a computer for example, 
two artificial networks, one with a power-law degree distribution and one without, and explore 
their differences empirically. Better still, one could create a large number of networks in each of 
the two classes, to see what statistically significant features appear in one class and not in the 
other. This is precisely the rationale behind random graph models, which are the topic of this 
chapter and the following one. In random graph models, one creates networks that possess 
particular properties of interest, such as specified degree distributions, but which are otherwise 
random. Random graphs are interesting in their own right for the light they shed on the structural 
properties of networks, but have also been widely used as a substrate for models of dynamical 
processes on networks. In Chapter 17, for instance, we examine their use in epidemic modeling. 

We also look at a number of other types of network model in succeeding chapters. In Chapter 14 
we look at generative models of networks, models in which the network is “grown” according to a 
specified set of growth rules. Generative models are particularly useful for understanding how 
network structure arises in the first place. By growing networks according to a variety of different 
rules and comparing the results with real networks, we can get a feel for which growth processes 
are plausible and which can be ruled out. In Chapter 15 we look at “small-world models,” which 
model the phenomenon of network transitivity or clustering (see Section 7.9), and at “exponential 
random graphs,” which are particularly useful when we want to create model networks that match 
the properties of observed networks as closely as possible.

 

 

 



12.1 RANDOM GRAPHS  

In general, a random graph is a model network in which some specific set of parameters take fixed 
values, but the network is random in other respects. One of the simplest examples of a random 
graph is the network in which we fix only the number of vertices n and the number of edges m. 
That is, we take n vertices and place m edges among them at random. More precisely, we choose m 
pairs of vertices uniformly at random from all possible pairs and connect them with an edge. 
Typically one stipulates that the network should be a simple graph, i.e., that it should have no 
multiedges or self-edges (see Section 6.1), in which case the position of each edge should be 
chosen among only those pairs that are distinct and not already connected.176 This model is often 
referred to by its mathematical name G(n, m). 

Another entirely equivalent definition of the model is to say that the network is created by 
choosing uniformly at random among the set of all simple graphs with exactly n vertices and m 
edges. 

Strictly, in fact, the random graph model is not defined in terms of a single randomly generated 
network, but as an ensemble of networks, i.e., a probability distribution over possible networks. 
Thus the model G(n, m) is correctly defined as a probability distribution P(G) over all graphs G in 
which P(G) = 1/Ω for simple graphs with n vertices and m edges and zero otherwise, where Ω is 
the total number of such simple graphs. We will see more complicated examples of random graph 
ensembles shortly. 

When one talks about the properties of random graphs one typically means the average 
properties of the ensemble. For instance, the “diameter” of G(n, m) would mean the diameter ℓ(G) 
of a graph G, averaged over the ensemble thus

 

(12.1) 
  

This is a useful definition for a several of reasons. First, it turns out to lend itself well to analytic 
calculations; many such average properties of random graphs can be calculated exactly, at least in 
the limit of large graph size. Second, it often reflects exactly the thing we want to get at in making 
our model network in the first place. Very often we are interested in the typical properties of 
networks. We might want to know, for instance, what the typical diameter is of a network with a 
given number of edges. Certainly there are special cases of such networks that have particularly 
large or small diameters, but these don’t reflect the typical behavior. If it’s typical behavior we are 
after, then the ensemble average of a property is often a good guide. Third, it can be shown that the 
distribution of values for many network measures is sharply peaked, becoming concentrated more 
and more narrowly around the ensemble average as the size of the network becomes large, so that 
in the large n limit essentially all values one is likely to encounter are very close to the mean. 

Some properties of the random graph G(n, m) are straightforward to calculate: obviously the 
average number of edges is m, for instance, and the average degree is �k� = 2m/n. Unfortunately, 
other properties are not so easy to calculate, and most mathematical work has actually been 

 

 

 



conducted on a slightly different model that is considerably easier to handle. This model is 
called G(n, p). In G(n, p) we fix not the number but the probability of edges between vertices. 
Again we have n vertices, but now we place an edge between each distinct pair with independent 
probability p. In this network the number of edges is not fixed. Indeed it is possible that the 
network could have no edges at all, or could have edges between every distinct pair of vertices. 
(For most values of p these are not likely outcomes, but they could happen.) 

Again, the technical definition of the random graph is not in terms of a single network, but in 
terms of an ensemble, a probability distribution over all possible networks. To be specific, G(n, p) 
is the ensemble of networks with n vertices in which each simple graph G appears with probability 
where m is the number of edges in the graph, and non-simple graphs have probability zero. 

 

(12.2) 
  

G(n, p) was first studied, to this author’s knowledge, by Solomonoff and Rapoport [303], but it 
is most closely associated with the names of Paul Erdős and Alfréd Rényi, who published a 
celebrated series of papers about the model in the late 1950s and early 1960s [105-107]. If you 
read scientific papers on this subject, you will sometimes find the model referred to as the “Erdős-
Rényi model” or the “Erdős-Rényi random graph” in honor of their contribution. It is also 
sometimes called the “Poisson random graph” or the “Bernoulli random graph,” names that refer to 
the distributions of degrees and edges in the model. And sometimes the model is referred to simply 
as “the” random graph—there are many random graph models, but G(n, p) is the most fundamental 
and widely studied of them, so if someone is talking about a random graph but doesn’t bother to 
mention which one, they are probably thinking of this one. 

In this chapter we describe the basic mathematics of the random graph G(n, p), focusing 
particularly on the degree distribution and component sizes, which are two of the model’s most 
illuminating characteristics. The techniques we develop in this chapter will also prove useful for 
some of the more complex models examined later in the book.

 

 



12.2 MEAN NUMBER OF EDGES AND MEAN DEGREE  

Let us start our study of the random graph G(n, p) with a very simple calculation, the calculation of 
the expected number of edges in our model network. We have said that the number of edges in the 
model is not fixed, but we can calculate its mean or expectation value as follows. The number of 
graphs with exactly n vertices and m edges is equal to the number of ways of picking the positions 
of the edges from the  distinct vertex pairs. Each of these graphs appears with the same 
probability P(G), given by Eq. (12.2), and hence the total probability of drawing a graph with m 
edges from our ensemble is

 

(12.3) 
  

which is just the standard binomial distribution. Then the mean value of m is

 

(12.4) 
  

This result comes as no surprise. The expected number of edges between any individual pair of 
vertices is just equal to the probability p of an edge between the same vertices, and Eq. (12.4) thus 
says merely that the expected total number of edges in the network is equal to the expected number 
p between any pair of vertices, multiplied by the number of pairs. 

We can use this result to calculate the mean degree of a vertex in the random graph. As pointed 
out in the previous section, the mean degree in a graph with exactly m edges is �k� = 2m/n, and 
hence the mean degree in G(n, p) is

 

(12.5) 
  

where we have used Eq. (12.4) and the fact that n is constant. The mean degree of a random 

 

 

 

 

 



graph is often denoted c in the literature, and we will adopt this convention here also, writing

 

(12.6) 
  

This result is also unsurprising. It says that the expected number of edges connected to a vertex is 
equal to the expected number p between the vertex and any other vertex, multiplied by the number 
n – 1 of other vertices. 

 

 



12.3 DEGREE DISTRIBUTION  

Only slightly more taxing is the calculation of the degree distribution of G(n, p). A given vertex in 
the graph is connected with independent probability p to each of the n – 1 other vertices. Thus the 
probability of being connected to a particular k other vertices and not to any of the others is pk(1 – 
p)n-1-k. There are  ways to choose those k other vertices, and hence the total probability of 
being connected to exactly k others is

 

(12.7) 
  

which is a binomial distribution again. In other words, G(n, p) has a binomial degree distribution. 
In many cases we are interested in the properties of large networks, so that n can be assumed to 

be large. Furthermore, as discussed in Section 6.9, many networks have a mean degree that is 
approximately constant as the network size becomes large. (For instance, the typical number of 
friends a person has does not depend strongly on the total number of people in the world.) In such 
a case Eq. (12.7) simplifies as follows. 

Equation (12.6) tells us that p = c/(n– 1) will become vanishingly small as n → ∞, which allows 
us to write

 

(12.8) 
  

where we have expanded the logarithm as a Taylor series, and the equalities become exact as n 
→ ∞. Taking exponentials of both sizes, we thus find that (1 – p)n–1–k = e–c in the large-n limit. 
Also for large n we have

 

(12.9) 
  

 

 

 

 



and thus Eq. (12.7) becomes

 

(12.10) 
  

in the limit of large n. 
Equation (12.10) is the Poisson distribution: in the limit of large n, G(n, p) has a Poisson degree 

distribution. This is the origin of the name Poisson random graph, which we will use occasionally 
to distinguish this model from some of the more sophisticated random graphs in the following 
chapter that don’t in general have Poisson degree distributions.

 



12.4 CLUSTERING COEFFICIENT  

A very simple quantity to calculate for the Poisson random graph is the clustering coefficient. 
Recall that the clustering coefficient C is a measure of the transitivity in a network (Section 7.9) 
and is defined as the probability that two network neighbors of a vertex are also neighbors of each 
other. In a random graph the probability that any two vertices are neighbors is exactly the same—
all such probabilities are equal to p = c/(n– 1). Hence

 

(12.11) 
  

This is one of several respects in which the random graph differs sharply from most from real-
world networks, many of which have quite high clustering coefficients—see Table 8.1—while Eq. 
(12.11) tends to zero in the limit n → ∞ if the mean degree c stays fixed. This discrepancy is 
discussed further in Section 12.8. 

 

 

 



12.5 GIANT COMPONENT  

Consider the Poisson random graph G(n, p) for p = 0. In this case there are no edges in the network 
at all and it is completely disconnected. Each vertex is an island on its own; the network has n 
separate components of exactly one vertex each. 

In the opposite limit, when p = 1, every possible edge in the network is present and the network 
is an n-vertex clique in the technical sense of the word (see Section 7.8.1) meaning that every 
vertex is connected directly to every other. In this case, all the vertices are connected together in a 
single component that spans the entire network. 

Now let us focus on the size of the largest component in the network in each of these cases. In 
the first case (p = 0) the largest component has size 1. In the second (p = 1) the largest component 
has size n. Apart from the second being much larger than the first, there is an important qualitative 
difference between these two cases: in the first case the size of the largest component is 
independent of the number of vertices n in the network; in the second it is proportional to n, or 
extensive in the jargon of theoretical physics. In the first case, the largest component will stay the 
same size if we make the network larger, but in the second it will grow with the network. 

The distinction between these two cases is an important one. In many applications of networks it 
is crucial that there be a component that fills most of the network. For instance, in the Internet it is 
important that there be a path through the network from most computers to most others. If there 
were not, the network wouldn’t be able to perform its intended role of providing computer-to-
computer communications for its users. Moreover, as discussed in Section 8.1, most networks do 
in fact have a large component that fills most of the network. We can gain some useful insights 
about what is happening in such networks by considering how the components in our random 
graph behave. Although the random graph is a very simple network model and doesn’t provide an 
accurate representation of the Internet or other real-world networks, we will see that when trying to 
understand the world it can be very helpful to study such simplified models. 

So let us consider the largest component of our random graph, which, as we have said, has 
constant size 1 when p = 0 and extensive size n when p = 1. An interesting question to ask is how 
the transition between these two extremes occurs if we construct random graphs with gradually 
increasing values of p, starting at 0 and ending up at 1. We might guess, for instance, that the size 
of the largest component somehow increases gradually with p, becoming extensive only in the 
limit where p = 1. In reality, however, something much more interesting happens. As we will see, 
the size of the largest component undergoes a sudden change, or phase transition, from constant 
size to extensive size at one particular special value of p. Let us take a look at this transition. 

A network component whose size grows in proportion to n we call a giant component. We can 
calculate the size of the giant component in the Poisson random graph exactly in the limit of large 
network size n → ∞ as follows. We denote by u the average fraction of vertices in the random 
graph that do not belong to the giant component. Thus if there is no giant component in our graph, 
we will have u = 1, and if there is a giant component we will have u < 1. Alternatively, we can 
regard u as the probability that a randomly chosen vertex in the graph does not belong to the giant 
component. 

For a vertex i not to belong to the giant component it must not be connected to the giant 
component via any other vertex. That means that for every other vertex j in the graph either (a) i is 
not connected to j by an edge, or (b) i is connected to j but j is itself not a member of the giant 
component. The probability of outcome (a) is simply 1 – p, the probability of not having an edge 
between i and j, and the probability of outcome (b) is pu, where the factor of p is the probability of 
having an edge and the factor of u is the probability that vertex j doesn’t belong to the giant 
component.177 Thus the total probability of not being connected to the giant component via vertex j

 



is 1 – p + pu. 
Then the total probability of not being connected to the giant component via any of the n − 1 

other vertices in the network is

 

(12.12) 
  

where we have used Eq. (12.6). Now we take logs of both sides thus:

 

(12.13) 
  

where the approximate equality becomes exact in the limit of large n. Taking exponentials of 
both sides, we then find that

 

(12.14) 
  

But if u is the fraction of vertices not in the giant component, then the fraction of vertices that are 
in the giant component is S = 1 − u. Eliminating u in favor of S then gives us

 

(12.15) 
  

This equation, which was first given by Erdős and Rényi in 1959 [105], tells us the size of the 
giant component as a fraction of the size of the network in the limit of large network size, for any 
given value of the mean degree c. Unfortunately, though the equation is very simple it doesn’t 
have a simple solution for S in closed form.178 We can however get a good feeling for its behavior 
from a graphical solution. Consider Fig. 12.1. The three curves show the function y = 1 - e-cS for 
different values of c. Note that S can take only values from zero to one, so only this part of the 
curve is shown. The dashed line in the figure is the function y = S. Where line and curve cross we 
have S = 1 − e−cS and the corresponding value of S is a solution to Eq. (12.15). 

 

 

 

 

 

 



Figure 12.1: Graphical solution for the size of the giant component. (a) The three curves in the 
left panel show y = 1 - e-cS for values of c as marked, the diagonal dashed line shows y = S, and the 
intersection gives the solution to Eq. (12.15), S = 1 - e-cS . For the bottom curve there is only one 
intersection, at S = 0, so there is no giant component, while for the top curve there is a solution at S 
= 0.583 ... (vertical dashed line). The middle curve is precisely at the threshold between the regime 
where a non-trivial solution for S exists and the regime where there is only the trivial solution S = 
0. (b) The resulting solution for the size of the giant component as a function of c. 
  

As the figure shows, depending on the value of c there may be either one solution for S or two. 
For small c (bottom curve in the figure) there is just one solution at S = 0, which implies that there 
is no giant component in the network. (You can confirm for yourself that S = 0 is a solution 
directly from Eq. (12.15).) On the other hand, if c is large enough (top curve) then there are two 
solutions, one at S = 0 and one at S > 0. Only in this regime can there be a giant component. 

The transition between the two regimes corresponds to the middle curve in the figure and falls at 
the point where the gradient of the curve and the gradient of the dashed line match at S = 0. That 
is, the transition takes place when
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or
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Figure 12.2: Growth of a vertex set in a random graph. (a) A set of vertices (inside the gray 
circles) consists of a core (dark gray) and a periphery (lighter). (b) If we grow the set by adding to 
it those vertices immediately adjacent to the periphery, then the periphery vertices become a part 
of the new core and a new periphery is added. 
  

Setting S = 0 we then deduce that the transition takes place at c = 1. 
In other words, the random graph can have a giant component only if c > 1. At c = 1 and below 

we have S = 0 and there is no giant component. 
This does not entirely solve the problem, however. Technically we have proved that there can be 

no giant component for c ≤ 1, but not that there has to be a giant component at c > 1—in the latter 
regime there are two solutions for S, one of which is the solution S = 0 in which there is no giant 
component. So which of these solutions is the correct one that describes the true size of the giant 
component? 

In answering this question, we will see another way to think about the formation of the giant 
component. Consider the following process. Let us find a small set of connected vertices 
somewhere in our network—say a dozen or so, as shown in Fig. 12.2a. In the limit of large n → ∞ 
such a set is bound to exist somewhere in the network, so long as c > 0. We will divide the set into 
its core and its periphery. The core is the vertices that have connections only to other vertices in 
the set—the darker gray region in the figure. The periphery is the vertices that have at least one 
neighbor outside the set—the lighter gray. 

Now imagine enlarging our set by adding to it all those vertices that are immediate neighbors, 
connected by at least one edge to the set—Fig. 12.2b. Now the old periphery is part of the core and 
there is a new periphery consisting of the vertices just added. How big is this new periphery? We 
don’t know for certain, but we know that each vertex in the old periphery is connected with 
independent probability p to every other vertex. If there are s vertices in our set, then there are n − 
s vertices outside the set, and the average number of connections a vertex in the periphery has to 
outside vertices is where the equality becomes exact in the limit n → ∞. This means that the 
average number of immediate neighbors of the set—the size of the new periphery when we grow 
the set—is c times the size of the old periphery.

 

 

 



 

(12.18) 
  

We can repeat this argument, growing the set again and again, and each time the average size of 
the periphery will increase by another factor of c. Thus if c > 1 the average size of the periphery 
will grow exponentially. On the other hand, if c < 1 it will shrink exponentially and eventually 
dwindle to zero. Furthermore, if it grows exponentially our connected set of vertices will 
eventually form a component comparable in size to the whole network—a giant component—
while if it dwindles the set will only ever have finite size and no giant component will form. 

So we see that indeed we expect a giant component if (and only if) c > 1. And when there is a 
giant component the size of that giant component will be given by the larger solution to Eq. 
(12.15). This now allows us to calculate the size of the giant component for all values of c. (For c 
> 1 we have to solve for the larger solution of Eq. (12.15) numerically, since there is no exact 
solution, but this is easy enough to do.) The results are shown in Fig. 12.1. As the figure shows, 
the size of the giant component grows rapidly from zero as the value of c passes 1, and tends 
towards S = 1 as c becomes large. 

 

 



12.6 SMALL COMPONENTS  

In this section we look at the properties of random graphs from a different point of view, the point 
of view of the non-giant components. We have seen that in a random graph with c > 1 there exists 
a giant component that fills an extensive fraction of the network. That fraction is typically less than 
100%, however. What is the structure of the remainder of the network? The answer is that it is 
made up of many small components whose average size is constant and doesn’t increase with the 
size of the network. 

The first step in demonstrating this result and shedding light on the structure of the small 
components is to show that there is only one giant component in a random graph, and hence that 
all other components are “non-giant” components. This is fairly easy to establish. Suppose that 
there were two or more giant components in a random graph. Take any two giant components, 
which have size S1n and S2n, where S1 and S2 are the fractions of the network filled by each. The 
number of distinct pairs of vertices (i, j), where i is in the first giant component and j is in the 
second, is just S1n × S2n = S1S2n 2. Each of these pairs is connected by an edge with probability p, 
or not with probability 1 − p. For the two giant components to be separate components we require 
that there be zero edges connecting them together, which happens with probability q given by
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where we have made use of Eq. (12.6). 
Taking logs of both sides and going to the limit n → ∞, we then find
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where we have dropped terms of order 1/n. Taking the exponential again, we get
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where , which is independent of n if c is constant. Thus, for constant c, the 
probability that the two giant components are really separate components dwindles exponentially 
with increasing n, and in the limit of large n will vanish altogether. In a large random graph, 
therefore, there is only the very tiniest of probabilities that we will have two giant components, and 
for infinite n the probability is formally zero and it will never happen. 

Given then that there is only one giant component in our random graph and that in most 
situations it does not fill the entire network, it follows that there must also be some non-giant 
components, i.e., components whose size does not increase in proportion to the size of the 
network. These are the small components.



12.6.1 SIZES OF THE SMALL COMPONENTS  

The small components can, in general, come in various different sizes. We can calculate the 
distribution of these sizes as follows. 

The basic quantity we focus on is the probability πs that a randomly chosen vertex belongs to a 
small component of size exactly s vertices total. Note that if there is a giant component in our 
network then some vertices do not belong to a small component of any size and hence πs is not 
normalized to unity. The sum of πs over all sizes s is equal to the fraction of vertices that are not in 
the giant component. That is,

 

(12.22) 
  

where S is, as before, the fraction of vertices in the giant component. 

Recall that a tree is a graph or subgraph that has no loops—see Section 6.7. 

The crucial insight that allows us to calculate πs is that the small components are trees, as we can 
see by the following argument. Consider a small component of s vertices that takes the form of a 
tree. A tree of s vertices contains s − 1 edges, as shown in Section 6.7, and this is the smallest 
number of edges that is needed to connect this many vertices together. If we add another edge to 
our component then we will create a loop, since we will be adding a new path between two 
vertices that are already connected (see figure). In a Poisson random graph the probability of such 
edge being present is the same as for any other edge, p = c/(n − 1). The total number of places 
where we could add such an extra edge to the component is given by the number of distinct pairs 
of vertices minus the number that are already connected by an edge, or

 

(12.23) 
  

and the total number of extra edges in the component is . Assuming that s 
increases more slowly than √n (and we will shortly see that it does), this probability tends to zero 
in the limit n → ∞, and hence there are no loops in the component and the component is a tree.

 

 

 

 



 

If we add an edge (dashed) to a tree we create a loop. 
  

We can use this observation to calculate the probability πs as follows. Consider a vertex i in a 
small component of a random graph, as depicted in Fig. 12.3. Each of i’s edges leads to a separate 
subgraph—the shaded regions in the figure—and because the whole component is a tree we know 
that these subgraphs are not connected to one another, other than via vertex i, since if they were 
there would be a loop in the component and it would not be a tree. Thus the size of the component 
to which i belongs is the sum of the sizes of the subgraphs reachable along each of its edges, plus 1 
for vertex i itself. To put that another way, vertex i belongs to a component of size s if the sizes of 
the subgraphs to which its neighbors n1, n2, . . . belong sum to s − 1. 

 

Figure 12.3: The size of one of the small components in a random graph. (a) The size of the 
component to which a vertex i belongs is the sum of the number of vertices in each of the 
subcomponents (shaded regions) reachable via i’s neighbors n1, n2, n3, plus one for i itself. (b) If 
vertex i is removed the subcomponents become components in their own right. 
  

Bearing this in mind, consider now a slightly modified network, the network in which vertex i is 
completely removed, along with all its edges.179 This network is still a random graph with the same 
value of p—each possible edge is still present with independent probability p—but the number of 
vertices has decreased by one, from n to n − 1. In the limit of large n, however, this decrease is 
negligible. The average properties, such as size of the giant component and size of the small 
components will be indistinguishable for random graphs with sizes n and n - 1, but the same p. 

In this modified network, what were previously the subgraphs of our small component are now 

 

 

 

 



separate small components in their own right. And since the network has the same average 
properties as the original network for large n, that means that the probability that neighbor n1 
belongs to a small component of size s1 (or a subgraph of size s1 in the original network) is itself 
given by πs1

. We can use this observation to develop a self-consistent expression for the probability 

πs. 
Suppose that vertex i has degree k. As we have said, the probability that neighbor n1 belongs to a 

small component of size s1 when i is removed from the network is πs1
 . So the probability P(s|k) 

that vertex i belongs to a small component of size s, given that its degree is k, is the probability that 
its k neighbors belong to small components of sizes s , ... ,sk—which is —and that those 
sizes add up to s − 1:

 

(12.24) 
  

where δ(m,n) is the Kronecker delta. 
To get πs, we now just average P(s|k) over the distribution pk of the degree thus:

 

(12.25) 
  

where we have made use of Eq. (12.10) for the degree distribution of the random graph. 
This expression would be easy to evaluate if it were not for the delta function: one could 

separate the terms in the product, distribute them among the individual summations, and complete 
the sums in closed form. With the delta function, however, it is difficult to see how the sum can be 
completed. 

Luckily there is a trick for problems like these, a trick that we will use many times in the rest of 
this book. We introduce a generating function or z-transform, defined by

 

(12.26) 
  

This generating function is a polynomial or series in z whose coefficients are the probabilities πs . 

 

 

 

 



It encapsulates all of the information about the probability distribution in a single function. Given 
h(z) we can recover the probabilities by differentiating:

 

(12.27) 
  

Thus h(z) is a complete representation of our probability distribution and if we can calculate it, 
then we can calculate πs. We will look at generating functions in more detail in the next section, 
but for now let us complete the present calculation. 

We can calculate h(z) by substituting Eq. (12.25) into Eq. (12.26), which gives

 

(12.28) 
  

Thus we have a simple, self-consistent equation for h(z) that eliminates the awkward delta function 
of (12.25). 

Unfortunately, like the somewhat similar Eq. (12.15), this equation doesn’t have a known 
closed-form solution for h(z), but that doesn’t mean the expression is useless. In fact we can 
calculate many useful things from it without solving for h(z) explicitly. For example, we can 
calculate the mean size of the component to which a randomly chosen vertex belongs, which is 
given by
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where hʹ(z) denotes the first derivative of h(z) with respect to its argument and we have made 

 

 

 

 

 



use of Eqs. (12.22) and (12.26). (The denominator in this expression is necessary because πs is 
not normalized to 1.) 

From Eq. (12.28) we have
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or, rearranging,
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and thus

 

(12.32) 
  

But , from Eqs. (12.22) and (12.26), so that
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And so the average size �s� of Eq. (12.29) becomes

 

(12.34) 

 

 

 

 

 

 

 



  

When c < 1 and there is no giant component, this gives simply �s� = 1/(1 − c). When there is a 
giant component, the behavior is more complicated, because we have to solve for S first before 
finding the value of �s�, but the calculation can still be done. We first solve Eq. (12.15) for S and 
then substitute into Eq. (12.34). 

It’s interesting to note that Eq. (12.34) diverges when c = 1. (At this point S = 0, so the 
denominator vanishes.) Thus, if we slowly increase the mean degree c of our network from some 
small initial value less than 1, the average size of the component to which a vertex belongs gets 
bigger and bigger and finally becomes infinite exactly at the point where the giant component 
appears. For c > 1 Eq. (12.34) measures only the sizes of the non-giant components and the 
equation tells us that these get smaller again above c = 1. Thus the general picture we have is in 
one in which the small components get larger up to c = 1, where they diverge and the giant 
component appears, then smaller again as the giant component grows larger. Figure 12.4 shows a 
plot of �s� as a function of c with the divergence clearly visible. 

Although the random graph is certainly not a realistic model of most networks, this general 
picture of the component structure of the network turns out to be a good guide to the behavior of 
networks in the real world. If a network has a low density of edges then typically it consists only of 
small components, but if the density is becomes enough then a single large component forms, 
usually accompanied by many separate small ones. Moreover, the small components tend on 
average to be smaller if the largest component is very large. This is a good example of the way in 
which simple models of networks can give us a feel for how more complicated real-world systems 
should behave in general.

 



12.6.2 AVERAGE SIZE OF A SMALL COMPONENT  

A further important point to notice about Eq. (12.34) is that the average size of the small 
components does not grow with the number of vertices n. The typical size of the small components 
in a random graph remains constant as the graph gets larger. We must, however, be a little careful 
with these statements. Recall that πs is the probability that a randomly chosen vertex belongs to a 

component of size s, and hence �s� as calculated here is not strictly the average size of a 
component, but the average size of the component to which a randomly chosen vertex belongs. 
Because larger components have more vertices in them, the chances of landing on them when we 
choose a random vertex is larger, in proportion to their size, and hence �s� is a biased estimate of 
the actual average component size. To get a correct figure for the average size of a component we 
need to make a slightly different calculation. 

 

Figure 12.4: Average size of the small components in a random graph. The upper curve shows 
the average size �s� of the component to which a randomly chosen vertex belongs, calculated 
from Eq. (12.34). The lower curve shows the overall average size R of a component, calculated 
from Eq. (12.40). The dotted vertical line marks the point c = 1 at which the giant component 
appears. Note that, as discussed in the text, the upper curve diverges at this point but the lower one 
does not. 
  

Let ns be the actual number of components of size s in our random graph. Then the number of 
vertices that belong to components of size s is sns and hence the probability of a randomly chosen 
vertex belonging to such a component is

 

 

 

 

 



(12.35) 
  

The average size of a component, which we will denote R, is
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where we have made use of Eq. (12.22). The remaining sum we can again evaluate using our 
generating function by noting that

 

(12.37) 
  

A useful expression for h(z)/z can be obtained by rearranging Eq. (12.31) to yield
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and hence we find that

 

(12.39) 
  

where we have used  for the upper integration limit. 
Substituting this result into Eq. (12.36), we find that the average component size is

 

 

 

 

 

 



(12.40) 
  

As with Eq. (12.34), this expression is independent of n, so the average size of a small component 
indeed does not grow as the graph becomes large. 

On the other hand, R does not diverge at c = 1 as �s� does. At c = 1, with S = 0, Eq. (12.40) 
gives just R = 2. The reason for this is that, while the largest component in the network for c = 1 
does become infinite in the limit of large n, so also does the total number of components. So the 
average size of a component is the ratio of two diverging quantities. Depending on the nature of 
the divergences, such a ratio could be infinite itself, or zero, or finite but non-zero in the special 
case where the two divergences have the same asymptotic form. In this instance the latter situation 
holds—both quantities are diverging linearly with n—and the average component size remains 
finite. A plot of R is included in Fig. 12.4 for comparison with �s�. 

 

 



12.6.3 THE COMPLETE DISTRIBUTION OF COMPONENT SIZES  

So far we have calculated the average size of a small component in the random graph, but not the 
individual probabilities πs that specify the complete distribution of sizes. In principle, we should be 
able to calculate the πs by solving Eq. (12.28) for the generating function h(z) and then 
differentiating according to Eq. (12.27) to get πs . Unfortunately we cannot follow this formula in 
practice because, as mentioned above, Eq. (12.28) does not have a known solution. 

Remarkably, however, it turns out that we can still calculate the values of the individual πs, by 
an alternative route. The calculations involve some more advanced mathematical techniques and if 
you are not particularly interested in the details it will do no harm to skip this section. If you’re 
interested in this rather elegant development, however, read on. 

To calculate an explicit expression for the probabilities πs of the component sizes we make use 
of a beautiful result from the theory of complex variables, the Lagrange inversion formula. The 
Lagrange inversion formula is a formula that allows the explicit solution of equations of the form

 

(12.41) 
  

for the unknown function ƒ (z), where φ( ƒ ) is a known function which at ƒ = 0 is finite, non-
zero, and differentiable. 

Equation (12.41) has precisely the form of the equation for our generating function, Eq. (12.28). 
What’s more, the Lagrange formula gives a solution for ƒ(z) in terms of the coefficients of the 
series expansion of ƒ(z) in powers of z, which is precisely what we want in the present case, since 
the coefficients are the probabilities πs , which is what we want to calculate. The Lagrange formula 
is thus perfectly suited to the problem in hand. Here we first derive the general form of the formula 
then apply it to the current problem.180 

Let us write the function ƒ(z) in Eq. (12.41) as a series expansion thus:
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The coefficient as in this expansion is given explicitly by

 

 

 

 

 

 



(12.43) 
  

Cauchy’s formula for the nth derivative of a function g(z) at z = z0 says that

 

(12.44) 
  

where the integral is around a contour that encloses z0 in the complex plane but encloses no poles 
in g(z). We will use an infinitesimal circle around z0 as our contour. 

Applying Cauchy’s formula to (12.43) with g(z) = ƒʹ (z), z0 = 0, and n = s – 1, we get

 

(12.45) 
  

where the second integral is now around a contour in ƒ rather than z. In this equation we are now 
thinking of z as being a function of ƒ, z = z(ƒ), rather than the other way around. We are perfectly 
entitled to do this—knowing either quantity specifies the value of the other.181 

It will be important later that the contour followed by ƒ surrounds the origin, so let us pause for 
a moment to demonstrate that it does. Our choice of contour for z in the first integral of Eq. (12.45) 
is an infinitesimal circle around the origin. Expanding Eq. (12.41) to leading order around the 
origin, we find that

 

(12.46) 
  

where we have made use of the fact that ƒ (0) = 0, which is easily seen from Eq. (12.41) given 
that φ(ƒ) is non-zero and finite at ƒ = 0 by hypothesis. In the limit of small |z| where the terms of 
order z2 can be neglected, Eq. (12.46) implies that ƒ traces a contour about the origin if z does, 
since the two are proportional to one another. 

We now rearrange our original equation, Eq. (12.41), to give the value of z in terms of ƒ thus

 

 

 

 

 

 



(12.47) 
  

and then substitute into Eq. (12.45) to get

 

(12.48) 
  

Since, as we have said, the contour encloses the origin, this expression can be written in terms of a 
derivative evaluated at the origin by again making use of Cauchy’s formula, Eq. (12.44):

 

(12.49) 
  

 

Figure 12.5: Sizes of small components in the random graph. This plot shows the probability πs 
that a randomly chosen vertex belongs to a small component of size s in a Poisson random graph 
with c = 0.75 (top), which is in the regime where there is no giant component, and c = 1.5 
(bottom), where there is a giant component. 
  

 

 

 

 

 



This is the Lagrange inversion formula. This remarkably simple formula gives us, in effect, a 
complete series solution to Eq. (12.41). 

To apply the formula to the current problem, of the component size distribution for the random 
graph, we set ƒ (z) → h(z) and φ(ƒ) → ec(h-1) . Then the coefficients πs of h(z) are given by

 

(12.50) 
  

These are the probabilities that a randomly chosen vertex belongs to a small component of size s in 
a random graph with mean degree c. Figure 12.5 shows the shape of πs as a function of s for two 
different values of c. As the plot shows, the distribution is heavily skewed, with many components 
of small size and only a few larger ones.

 

 

 



12.7 PATH LENGTHS  

In Sections 3.6 and 8.2 we discussed the small-world effect, the observation that the typical lengths 
of paths between vertices in networks tend to be short. Most people find the small-world effect 
surprising upon first learning about it. We can use the random graph model to shed light on how 
the effect arises by examining the behavior of the network diameter in the model. 

See Section 6.10.1 for a discuss of geodesic distances and diameters. 

Recall that the diameter of a network is the longest geodesic distance between any two vertices 
in the same component of the network. As we now show, the diameter of a random graph varies 
with the number n of vertices as ln n. Since ln n is typically a relatively small number even when n 
is large, this offers some explanation of the small-world effect, although it also leaves some 
questions open, as discussed further below. 

The basic idea behind the estimation of the diameter of a random graph is simple. As discussed 
in Section 12.5, the average number of vertices s steps away from a randomly chosen vertex in a 
random graph is cs. Since this number grows exponentially with s it doesn’t take very many such 
steps before the number of vertices reached is equal to the total number of vertices in the whole 
network; this happens when cs n or equivalently s  ln n/ ln c. At this point, roughly speaking, 
every vertex is within s steps of our starting point, implying that the diameter of the network is 
approximately ln n/ ln c. 

Although the random graph is, as we have said, not an accurate model of most real-world 
networks, this is, nonetheless, believed to be the basic mechanism behind the small-world effect in 
most networks: the number of vertices within distance s of a particular starting point grows 
exponentially s and hence the diameter is logarithmic in n. We discuss the comparison with real-
world networks in more detail below. 

The argument above is only approximate. It’s true that there are on average cs vertices s steps 
away from any starting point so long as s is small. But once cs becomes comparable with n the 
result has to break down since clearly the number of vertices at distance s cannot exceed the 
number of vertices in the whole graph. (Indeed it cannot exceed the number in the giant 
component.) 

One way to deal with this problem is to consider two different starting vertices i and j. The 
average numbers of vertices s and t steps from them respectively will then be equal to cs and ct so 
long as we stay in the regime where both these numbers are much less than n. In the following 
calculation we consider only configurations in which both remain smaller than order n in the limit 
n → ∞ so as to satisfy this condition. 

The situation we consider is depicted in Fig. 12.6, with the two vertices i and j each surrounded 
by a “ball” or neighborhood consisting of all vertices with distances up to and including s and t 
respectively. If there is an edge between the “surface” (i.e., most distant vertices) of one 
neighborhood and the surface of the other, as depicted by the dashed line, then it is straightforward 
to show that there is also an edge between the surfaces of any pair of neighborhoods with larger s 
or t (or both). Turning that statement around, if there is no edge between the surfaces of our 
neighborhoods, then there is also no edge between any smaller neighborhoods, which means that 
the shortest path between i and j must have length greater than s + t + 1. The reverse is also 
trivially true, that a shortest path longer than s + t + 1 implies there is no edge between our 
surfaces. Thus the absence of an edge between the surfaces is a necessary and sufficient condition 
for the distance dij between i and j to be greater than s + t + 1. This in turn implies that the 
probability P(dij > s + t + 1 ) is equal to the probability that there is no edge between the two 

 

 



surfaces. 

 

Figure 12.6: Neighborhoods of two vertices in a random graph. In the argument given in the 
text we consider the sets of vertices within distances s and t respectively of two randomly chosen 
vertices i and j. If there is an edge between any vertex on the surface of one neighborhood and any 
vertex on the surface of the other (dashed line), then there is a path between i and j of length s + t + 
1. 
  

There are on average cs × ct pairs of vertices such that one lies on each surface, and each pair is 
connected with probability p = c/(n − 1) c/n (assuming n to be large) or not with probability 1 - p. 

Hence . Defining for convenience ℓ = s + t + 1, we can also write this 
as

 

(12.51) 
  

Taking logs of both sides, we find

 

(12.52) 
  

where the approximate inequality becomes exact as n → ∞. Thus in this limit

 

 

 

 

 

 



(12.53) 
  

The diameter of the network is the smallest value of l such that P(dij > l) is zero, i.e., the value 
such that no matter which pair of vertices we happen to pick there is zero chance that they will be 
separated by a greater distance. In the limit of large n, Eq. (12.53) will tend to zero only if cℓ 
grows faster than n, meaning that our smallest value of ℓ is the value such that cℓ = an1+∈ with a 
constant and ∈ → 0 from above. Note that we can, as promised, achieve this while keeping both 
cs and ct smaller than order n, so that our argument remains valid. 

Rearranging for ∈ l, we now find our expression for the diameter:

 

(12.54) 
  

where A is a constant.182 Apart from the constant, this is the same result as we found previously 
using a rougher argument. The constant is known—it has a rather complicated value in terms of 
the Lambert W-function [114]—but for our purposes the important point is that it is 
(asymptotically) independent of n. Thus the diameter indeed increases only slowly with n, as ln n, 
making it relatively small in large random graphs. 

The logarithmic dependence of the diameter on n offers some explanation of the small-world 
effect of Section 3.6. Even in a network such as the acquaintance network of the entire world, with 
nearly seven billion inhabitants (at the time of writing), the value of ln n/ ln c can be quite small. 
Supposing each person to have about a thousand acquaintances,183 we would get

 

(12.55) 
  

which is easily small enough to account for the results of, for example, the small-world 
experiments of Milgram and others [93, 219, 311]. 

On the other hand, although this calculation gives us some insight into the nature of the small-
world effect, this cannot be the entire explanation. There are clearly many things wrong with the 
random graph as a model of real social networks, as we now discuss.

 

 

 

 

 



12.8 PROBLEMS WITH THE RANDOM GRAPH  

The Poisson random graph is one of the best studied models of networks. In the half century since 
its first proposal it has given us a tremendous amount of insight into the expected structure of 
networks of all kinds, particularly with respect to component sizes and network diameters. The fact 
that it is both simple to describe and straightforward to study using analytic methods makes it an 
excellent tool for investigating all sorts of network phenomena. We will return to the random 
graph many times in the remainder of this book to help us understand the way networks behave. 

The random graph does, however, have some severe shortcomings as a network model. There 
are many ways in which it is completely unlike the real-world networks we have seen in the 
previous chapters. One clear problem is that it shows essentially no transitivity or clustering. In 
Section 12.4 we saw at the clustering coefficient of a random graph is C = c/(n − 1), which tends to 
zero in the limit of large n. And even for the finite values of n appropriate to real-world networks 
the value of C in the random graph is typically very small. For the acquaintance network of the 
human population of the world, with its n  7 billion people, each having about 1000 
acquaintances [175], a random graph with the same n and c would have a clustering coefficient of

 

(12.56) 
  

Whether the clustering coefficient of the real acquaintance network is 0.01 or 0.5 hardly matters. 
(It is probably somewhere in between.) Either way it is clear that the random graph and the true 
network are in strong disagreement.184 

The random graph also differs from real-world networks in many other ways. For instance, there 
is no correlation between the degrees of adjacent vertices—necessarily so, since the edges are 
placed completely at random. The degrees in real networks, by contrast, are usually correlated, as 
discussed in Section 8.7. Many, perhaps most, real-world networks also show grouping of their 
vertices into “communities,” as discussed on Section 11.2.1, but random graphs have no such 
structure. And there are many other examples of interesting structure in real networks that is absent 
from the random graph. 

 

 

 



 

Figure 12.7: Degree distribution of the Internet and a Poisson random graph. The dark bars in 
this plot show the fraction of vertices with the given degrees in the network representation of the 
Internet at the level of autonomous systems. The lighter bars represent the same measure for a 
random graph with the same average degree as the Internet. Even though the two distributions 
have the same averages, it is clear that they are entirely different in shape. 
  

However, perhaps the most significant respect in which the properties of random graphs diverge 
from those of real-world networks is the shape of their degree distribution. As discussed in Section 
8.3, real networks typically have right-skewed degree distributions, with most vertices having low 
degree but with a small number of high-degree “hubs” in the tail of the distribution. The random 
graph on the other hand has a Poisson degree distribution, Eq. (12.10), which is not right-skewed 
to any significant extent. Consider Fig. 12.7, for example, which shows a histogram of the degree 
distribution of the Internet (darker bars), measured at the level of autonomous systems (Section 
2.1.1). The right-skewed form is clearly visible in this example. On the same figure we show the 
Poisson degree distribution of a random graph (lighter bars) with the same average degree c as the 
Internet example. Despite having the same averages, the two distributions are clearly entirely 
different. It turns out that this difference has a profound effect on all sorts of properties of the 
network—we will see many examples in this book. This makes the Poisson random graph 
inadequate to explain many of the interesting phenomena we see in networks today, including 
resilience phenomena, epidemic spreading processes, percolation, and many others. 

Luckily it turns out to be possible to generalize the random graph model to allow for non-
Poisson degree distributions. This development, which leads to some of the most beautiful results 
in the mathematics of networks, is described in the next chapter. 

 

 

 

 



PROBLEMS  

12.1 Consider the random graph G(n, p) with mean degree c.

a. Show that in the limit of large n the expected number of triangles in the network is . This 
means that the number of triangles is constant, neither growing nor vanishing in the limit of 
large n. 

b. Show that the expected number of connected triples in the network (as defined on page 
200) is . 

c. Hence calculate the clustering coefficient C, as defined in Eq. (7.41), and confirm that it 
agrees for large n with the value given in Eq. (12.11). 

12.2 Consider the random graph G(n, p) with mean degree c.

a. Argue that the probability that a vertex of degree k belongs to a small component is (1 − S)
k , where S is the fraction of the network occupied by the giant component. 

b. Thus, using Bayes’ theorem (or otherwise) show that the fraction of vertices in small 
components that have degree k is e−cck (1 − S)k−1/k!. 

12.3 Starting from the generating function h(z) defined in Eq. (12.26), or otherwise, show that

a. the mean-square size of the component in a random graph to which a randomly chosen 
vertex belongs is 1/(1 − c)3 in the regime where there is no giant component; 

b. the mean-square size of a randomly chosen component in the same regime is 
. 

Note that both quantities diverge at the phase transition where the giant component appears. 
  

12.4 In Section 7.8.2 we introduced the idea of a bicomponent. A vertex in a random graph 
belongs to a bicomponent if two or more of its neighbors belong to the giant component of the 
network (since the giant component completes a loop between those neighbors forming a 
bicomponent). In principle, a vertex can also be in a bicomponent if two or more of its neighbors 
belong to the same small component, but in practice this never happens, since that would imply 
that the small component in question contained a loop and, as we have seen, the small components 
in a random graph are trees and so have no loops.

a. Show that the fraction of vertices in a random graph that belong to a bicomponent is S2 = (1 
− cu) (1 − u), where u is defined by Eq. (12.14). 

b. Show that this expression can be rewritten as S2 = S + (1 − S) ln(1 − S), where S is the size 
of the giant component. 

c. Hence argue that the random graph contains a giant bicomponent whenever it contains an 
ordinary giant component. 

 

 

 

 

 



12.5 The cascade model is a simple mathematical model of a directed acyclic graph, sometimes 
used to model food webs. We take n vertices labeled i = 1 ... n and place an undirected edge 
between each distinct pair with independent probability p, just as in the ordinary random graph. 
Then we add directions to the edges such that each edge runs from the vertex with numerically 
higher label to the vertex with lower label. This ensures that all directed paths in the network run 
from higher to lower labels and hence that the network is acyclic, as discussed in Section 6.4.2.

a. Show that the average in-degree of vertex i in the ensemble of the cascade model is 
 and the average out-degree is  

b. Show that the expected number of edges that connect to vertices i and lower from vertices 
above i is (ni − i2) p. 

c. Assuming n is even, what are the largest and smallest values of this quantity and where do 
they occur? 

In a food web this expected number of edges from high–to low-numbered vertices is a rough 
measure of energy flow and the cascade model predicts that energy flow will be largest in the 
middle portions of a food web and smallest at the top and bottom. 

12.6 We can make a simple random graph model of a network with clustering or transitivity as 
follows. We take n vertices and go through each distinct trio of three vertices, of which there are (

), and with independent probability p we connect the members of the trio together using three 
edges to form a triangle, where  with c a constant.

a. Show that the mean degree of a vertex in this model network is 2 c. 
b. Show that the degree distribution is

 

c. Show that the clustering coefficient, Eq. (7.41), is C = 1/(2c + 1). 
d. Show that when there is a giant component in the network its expected size S as a fraction 

of network size satisfies S = 1 − e−cS(2−S) . 
e. What is the value of the clustering coefficient when the giant component fills half of the 

network? 

 

 



CHAPTER 13 

RANDOM GRAPHS WITH GENERAL DEGREE DISTRIBUTIONS 

This chapter describes more sophisticated random graph models that mimic networks with 
arbitrary degree distributions 

IN THE previous chapter we looked at the classic random graph model, in which pairs of vertices 
are connected at random with uniform probabilities. Although this model has proved tremendously 
useful as a source of insight into the structure of networks, it also has, as described in Section 12.8, 
a number of serious shortcomings. Chief among these is its degree distribution, which follows the 
Poisson distribution and is quite different from the degree distributions seen in most real-world 
networks. In this chapter we show how we can create more sophisticated random graph models, 
which incorporate arbitrary degree distributions and yet are still exactly solvable for many of their 
properties in the limit of large network size. 

The fundamental mathematical tool that we will use to derive the results of this chapter is the 
probability generating function. We have already seen in Section 12.6 one example of a generating 
function, which was useful in the calculation of the distribution of component sizes in the Poisson 
random graph. We begin this chapter with a more formal introduction to generating functions and 
to some of their properties which will be useful in later calculations. Readers interested in pursuing 
the mathematics of generating functions further may like to look at the book by Wilf [329].185

 

 

 



13.1 GENERATING FUNCTIONS  

Suppose we have a probability distribution for a non-negative integer variable, such that separate 
instances, occurrences, or draws of this variable are independent and have value k with probability 
pk. A good example of such a distribution is the distribution of the degrees of randomly chosen 
vertices in a network. If the fraction of vertices in a network with degree k is pk then pk is also the 
probability that a randomly chosen vertex from the network will have degree k. 

The generating function for the probability distribution pk is the polynomial

 

(13.1) 
  

Sometimes a function of this kind is called a probability generating function to distinguish it from 
another common type of function, the exponential generating function. We will not use 
exponential generating functions in this book, so for us all generating functions will be probability 
generating functions. 

If we know the generating function for a probability distribution pk then we can recover the 
values of pk by differentiating:

 

(13.2) 
  

Thus the generating function gives us complete information about the probability distribution and 
vice versa. The distribution and the generating function are really just two different representations 
of the same thing. As we will see, it is easier in many cases to work with the generating function 
than with the probability distribution and doing so leads to many useful new results about 
networks. 

 

 

 

 

 



13.1.1 EXAMPLES  

Right away let us look at some examples of generating functions. Suppose our variable k takes 
only the values 0, 1, 2, and 3, with probabilities p0, p1, p2, and p3, respectively, and no other values. 
In that case the corresponding generating function would take the form of a cubic polynomial:

 

(13.3) 
  

For instance, if we had a network in which vertices of degree 0, 1, 2, and 3 occupied 40%, 30%, 
20%, and 10% of the network respectively then

 

(13.4) 
  

As another example, suppose that k follows a Poisson distribution with mean c:

 

(13.5) 
  

Then the corresponding generating function would be

 

(13.6) 
  

Alternatively, suppose that k follows an exponential distribution of the form

 

 

 

 

 

 

 

 

 



 

(13.7) 
  

with λ > 0. The normalizing constant is fixed by the condition that ∑kpk = 1, which gives C = 1 -e-λ 
and hence

 

(13.8) 
  

Then

 

(13.9) 
  

so long as z < eλ. (If z ≥ eλ the generating function diverges. Normally, however, we will be 
interested in generating functions only in the range 0 ≤ z ≤ 1 so, given that λ > 0 and hence λ > 1, 
the divergence at eλ will not be a problem.)

 

 

 

 



13.1.2 POWER-LAW DISTRIBUTIONS  

One special case of particular interest in the study of networks is the power-law distribution. As 
we saw in Section 8.4, a number of networks, including the World Wide Web, the Internet, and 
citation networks, have degree distributions that follow power laws quite closely and this turns out 
to have interesting consequences that set these networks apart from others. To create and solve 
models of these networks it will be important for us to be able to write down generating functions 
for power-law distributions. 

There are various forms that are used to represent power laws in practice but the simplest 
choice, which we will use in many of our calculations, is the “pure” power law

 

(13.10) 
  

for constant α > 0. This expression cannot apply all the way down to k = 0, however, or it would 
diverge. So commonly one stops at k = 1. The normalization constant C can then be calculated 
from the condition that , which gives

 

(13.11) 
  

The sum unfortunately cannot be performed in closed form. It is, however, a common enough sum 
that it has a name—it is called the Riemann zeta function, denoted ζ(α):

 

(13.12) 
  

Thus we can write C = 1/ζ(α) and

 

 

 

 

 

 

 

 



(13.13) 
  

Although there is no closed-form expression for the zeta function, there exist good numerical 
methods for calculating its value accurately, and many programming languages and numerical 
software packages include functions to calculate it. 

For this probability distribution the generating function is

 

(13.14) 
  

Again the sum cannot be expressed in closed form, but again it has a name—it is called the 
polylogarithm of z and is denoted Liα (z):

 

(13.15) 
  

Thus we can write

 

(13.16) 
  

This is not completely satisfactory. We would certainly prefer a closed-form expression as in the 
case of the Poisson and exponential distributions of Eqs. (13.6) and (13.9). But we can live with it. 
Enough properties of the polylogarithm and zeta functions are known that we can carry out useful 
manipulations of the generating function. In particular, since derivatives of our generating 
functions will be important to us, we note the following useful relation:

 

 

 

 

 

 

 

 

 



(13.17) 
  

We should note also that in real-world networks the degree distribution does not usually follow 
a power law over its whole range—the distribution is not a “pure” power law in the sense above. 
Instead, it typically obeys a power law reasonably closely for values of k above some minimum 
value kmin but below that point it has some other behavior. In this case the generating function will 
take the form

 

(13.18) 
  

where  is a polynomial in z of degree n and C is a normalizing constant. The 
sum in Eq. (13.18) also has its own name: it is called the Lerch transcendent.186 In the calculations 
in this book we will stick to the pure power law, since it illustrates nicely the interesting properties 
of power-law degree distributions and is relatively simple to deal with, but for serious modeling 
one might sometimes have to use the cut-off form, Eq. (13.18).

 

 



13.1.3 NORMALIZATION AND MOMENTS  

Let us now look briefly at some of the properties of generating functions that will be useful to us. 
First of all, note that if we set z = 1 in the definition of the generating function,  (Eq. 
(13.1)), we get

 

(13.19) 
  

If the probability distribution is normalized to unity, ∑kpk = 1, as are all the examples above, then 
this immediately implies that

 

(13.20) 
  

For most of the generating functions we will look at, this will be true, but not all. As a counter-
example, consider the generating function for the sizes of the small components in the Poisson 
random graph defined in Eq. (12.26). The probabilities πs appearing in this generating function 
were the probabilities that a randomly chosen vertex belongs to a small component of size s. If we 
are in the regime where there is a giant component in the network then not all vertices belong to a 
small component, and hence the probabilities πs do not add up to one. In fact, their sum is equal to 
the fraction of vertices not in the giant component. 

The derivative of the generating function g(z) of Eq. (13.1) is

 

(13.21) 
  

(We will use the primed notation gʹ(z) for derivatives of generating functions extensively in this 
chapter, as it proves much less cumbersome than the more common notation dg/dz.) 

If we set z = 1 in Eq. (13.21) we get

 

 

 

 

 

 

 



 

(13.22) 
  

which is just the average value of k. Thus, for example, if pk is a degree distribution, we can 
calculate the average degree directly from the generating function by differentiating. This is a very 
convenient trick. In many cases we will calculate a probability distribution of interest by 
calculating first its generating function. In principle, we can then extract the distribution itself by 
applying Eq. (13.2) and so derive any other quantities we want such as averages. But Eq. (13.22) 
shows us that we don’t always have to do this. Some of the quantities we will be interested in can 
be calculated directly from the generating function without going through any intermediate steps. 

In fact, this result generalizes to higher moments of the probability distribution as well. For 
instance, note that

 

(13.23) 
  

and hence, setting z = 1, we can write

 

(13.24) 
  

It is not hard to show that this result generalizes to all higher moments as well:

 

(13.25) 
  

This result can also be written as

 

 

 

 

 

 



 

(13.26) 
  

 

 



13.1.4 POWERS OF GENERATING FUNCTIONS  

Perhaps the most useful property of generating functions—and the one that makes them important 
for the study of networks—is the following. Suppose we are given a distribution pk with generating 
function g(z). And suppose we have m integers ki, i = 1 . . . m, which are independent random 
numbers drawn from this distribution. For instance, they could be the degrees of m randomly 
chosen vertices in a network with degree distribution pk. Then the probability distribution of the 
sum  of those m integers has generating function [g(z)]m. This is a very powerful result and it 
is worth taking a moment to see how it arises and what it means. 

Given that our integers are independently drawn from the distribution pk, the probability that 
they take a particular set of values {ki} is simply  and the probability πs that the values drawn 
add up to a specific sum s is the sum of these probabilities over all sets {ki} that add up to s:

 

(13.27) 
  

where δ(a, b) is the Kronecker delta. Then the generating function h(z) for the distribution πs is

 

(13.28) 
  

Thus, for example, if we know the degree distribution of a network, it is a straightforward matter 
to calculate the probability distribution of the sum of the degrees of m randomly chosen vertices 
from that network. This will turn out to be important in the developments that follow. 

 

 

 

 



13.2 THE CONFIGURATION MODEL  

Let us turn now to the main topic of this chapter, the development of the theory of random graphs 
with general degree distributions. 

We can turn the random graph of Chapter 12 into a much more flexible model for networks by 
modifying it so that the degrees of its vertices are no longer restricted to having a Poisson 
distribution, and in fact it is possible to modify the model so as to give the network any degree 
distribution we please. Just as with the Poisson random graph, which can be defined in several 
slightly different ways, there is more than one way to define random graphs with general degree 
distributions. Here we describe two of them, which are roughly the equivalent of the G(n, m) and 
G(n, p) random graphs of Section 12.1. 

The most widely studied of the generalized random graph models is the configuration model. 
The configuration model is actually a model of a random graph with a given degree sequence, 
rather than degree distribution. That is, the exact degree of each individual vertex in the network is 
fixed, rather than merely the probability distribution from which those degrees are chosen. This in 
turn fixes the number of edges in the network, since the number of edges is given by Eq. (6.21) to 

be . Thus this model is in some ways analogous to G(n, m), which also fixes the 
number of edges. (It is quite simple, however, to modify the model for cases where only the degree 
distribution is known and not the exact degree sequence. We describe how this is done at the end 
of this section.) 

See Section 8.3 for a discussion of the distinction between degree sequences and degree 
distributions. 

Suppose then that we specify the degree ki that each vertex i = 1 . . . n in our network is to take. 
We can create a random network with these degrees as follows. We give each vertex i a total of ki 

“stubs” of edges as depicted in Fig. 13.1. There are  stubs in total, where m is the total 
number of edges. Then we choose two of the stubs uniformly at random and we create an edge by 
connecting them to one another, as indicated by the dashed line in the figure. Then we choose 
another pair from the remaining 2m - 2 stubs, connect those, and so on until all the stubs are used 
up. The end result is a network in which every vertex has exactly the desired degree. 

More specifically the end result is a particular matching of the stubs, a particular set of pairings 
of stubs with other stubs. The process above generates each possible matching of stubs with equal 
probability. Technically the configuration model is defined as the ensemble in which each 
matching with the chosen degree sequence appears with the same probability (those with any other 
degree sequence having probability zero), and the process above is a process for drawing networks 
from the configuration model ensemble.

 

 



 

Figure 13.1: The configuration model. Each vertex is given a number of “stubs” of edges equal 
to its desired degree. Then pairs of stubs are chosen at random and connected together to form 
edges (dotted line). 
  

The uniform distribution over matchings in the configuration model has the important 
consequence that any stub in a configuration model network is equally likely to be connected to 
any other. This, as we will see, is the crucial property that makes the model solvable for many of 
its properties. 

There are a couple of minor catches with the network generation process described here. First, 
there must be an even number of stubs overall if we want to end up with a network consisting only 
of vertices and edges, with no dangling stubs left over. This means that the sum  of the degrees 
must add up to an even number. We will assume that the degrees we have chosen satisfy this 
condition, otherwise it is clearly not possible to create a graph with the given degree sequence. 

A second issue is that the network may contain self-edges or multiedges, or both. There is 
nothing in the network generation process that prevents us from creating an edge that connects a 
vertex to itself or that connects two vertices that are already connected by another edge. One might 
imagine that one could avoid this by rejecting the creation of any such edges during the process, 
but it turns out that this is not a good idea. A network so generated is no longer drawn uniformly 
from the set of possible matchings, which means that properties of the model can no longer be 
calculated analytically, at least by any means currently known. It can also mean that the network 
creation process breaks down completely. Suppose, for example, that we come to the end of the 
process, when there are just two stubs left to be joined, and find that those two both belong to the 
same vertex so that joining them would create a self-edge. Then either we create the self-edge or 
the network generation process fails. 

In practice, therefore, it makes more sense to allow the creation of both multiedges and self-
edges in our networks and the standard configuration model does so. Although some real-world 
networks have self-edges or multiedges in them, most do not, and to some extent this makes the 
configuration model less satisfactory as a network model. However, as shown below, the average 
number of self-edges and multiedges in the configuration model is a constant as the network 
becomes large, which means that the density of self-edges and multiedges tends to zero in this 
limit. This means, to all intents and purposes, that we can ignore the self-edges and multiedges in 
the large size limit.187 

A further issue with the configuration model is that, while all matchings of stubs appear with 
equal probability in the model, that does not mean that all networks appear with equal probability 
because more than one matching can correspond to the same network, i.e., the same topological 
connections between vertices. If we label the stubs to keep track of which is which, then there are 
typically many different ways we can join up pairs of labeled stubs to create the same final 
configuration of edges. Figure 13.2 shows an example of a set of eight matchings that all 
correspond to the same three-vertex network.

 

 



 

Figure 13.2: Eight stub matchings that all give the same network. This small network is 
composed of three vertices of degree two and hence having two stubs each. The stubs are lettered 
to identify them and there are two distinct permutations of the stubs at each vertex for a total of 
eight permutations overall. Each permutation gives rise to a different matching of stub to stub but 
all matchings correspond to the same topological configuration of edges, and hence there are eight 
ways in which this particular configuration can be generated by the stub matching process. 
  

In general, one can generate all the matchings that correspond to a given network by taking any 
one matching for that network and permuting the stubs at each vertex in every possible way. Since 
the number of permutations of the ki stubs at a vertex i is ki!, this implies that the number of 
matchings corresponding to each network is N({ki}) = ∏iki!, which takes the same value for all 
networks, since the degrees are fixed. This implies that in fact networks occur with equal 
probability in the configuration model: if there are Ω({ki}) matchings, each occurring with the 
same probability, then each network occurs with probability N/Ω. 

However, this is not completely correct. If a network contains self-edges or multiedges then not 
all permutations of the stubs in the network result in a new matching of stubs. Consider Fig. 13.3. 
Panel (a) shows a network with the same degree sequence as those of Fig. 13.2, but a different 
matching of the stubs that creates a network with one self-edge and a multiedge consisting of two 
parallel single edges. In panel (b) we have permuted the stubs a and b at the ends of the self-edge 
but, as we can see, this has not resulted in a new matching of the stubs themselves. Stubs a and b 
are still connected to one another just as they were before. (The network is drawn differently now, 
but in terms of the matching and the topology of the edges nothing has changed from panel (a).) In 
panel (c) we have identically permuted the stubs at both ends of the multiedge. Again this has no 
effect on which stubs are matched with which others. 

 

Figure 13.3: Permutations that do not produce new matchings. (a) The network shown here 
has the same degree sequence as those of Fig. 13.2 but a different configuration of edges, having 
one self-loop and a multiedge consisting of two parallel edges. (b) If we permute the stubs a and b

 

 

 



of the self-edge we do not generate a new matching, because a is still matched with b, just as 
before. (c) If we permute the stubs at either end of a multiedge in exactly the same way we do not 
generate a new matching, since each stub at one end of the multiedge is still matched with the 
same stub at the other end. 
  

In general, for each multiedge in a network a permutation of the stubs at one end fails to 
generate a new matching if we simultaneously permute the stubs at the other end in the same way. 
This means that the total number of matchings is reduced by a factor of Aij!, since Aij is equal to the 
multiplicity of the edge between i and j. Indeed, this expression is correct even for vertex pairs not 
connected by a multiedge, if we adopt the convention that 0! = 1. For self-edges there is a further 
factor of two because the interchange of the two ends of the edge does not generate a new 
matching. Combining these results, the number of matchings corresponding to a network turns out 
to be

 

(13.29) 
  

where n!! = n(n - 2)(n - 4) ... 2 with n even is the so-called double factorial of n. Then the total 
probability of a particular network within the configuration model ensemble is N/Ω as before. 
Since the denominator in Eq. (13.29) depends not only on the degree sequence but also on the 
structure of the network itself, different networks do appear with different probabilities. 

As we mentioned, however, the average densities of self-edges and multiedges in the 
configuration model vanish as n becomes large, so that the variation in probabilities is relatively 
small in the large-n limit, but it nonetheless does occasionally assume some importance and is 
therefore worth bearing in mind (see, for instance, Ref. [220]). 

As discussed above, we are sometimes (indeed often) interested in the case where it is the 
degree distribution of the network that is specified rather than the degree sequence. That is, we 
specify the probability distribution pk from which the degree sequence is drawn rather than the 
sequence itself. We can define an obvious extension of the configuration model to this case: we 
draw a degree sequence from the specified distribution and then generate a network with that 
degree sequence using the technique described above. More precisely, we define an ensemble in 
which each degree sequence {ki} appears with probability . Then if we can calculate an 
average value X({ki}) for some quantity of interest X in the standard configuration model, the 
average value in the extended model is given by

 

(13.30) 
  

In practice the difference between the two models is not actually very great. As we will see, the 
crucial parameter that enters into most of our configuration model calculations is the fraction of 
vertices that have each possible degree k. In the extended model above, this fraction is, by 
definition, equal to pk in the limit of large n. If, on the other hand, the degree sequence is fixed then 

 

 

 

 



we simply calculate the fraction from the degree sequence and then use those numbers. In either 
the case the formulas for calculated quantities are the same.



13.2.1 EDGE PROBABILITY IN THE CONFIGURATION MODEL  

A central property of the configuration model is the probability pij of the occurrence of an edge 
between two specified vertices, i and j. Obviously if either vertex i or vertex j has degree zero then 
the probability of an edge is zero, so let us assume that ki, kj > 0. Now consider any one of the 
stubs that emerges from vertex i. What is the probability that this stub is connected by an edge to 
any of the stubs of vertex j? There are 2m stubs in total, or 2m - 1 excluding the one connected to i 
that we are currently looking at. Of those 2m - 1, exactly kj of them are attached to vertex j. So, 
given that any stub in the network is equally likely to be connected to any other, the probability 
that our particular stub is connected to any of those around vertex j is kj/(2m– 1). But there are ki 
stubs around vertex i, so the total probability of a connection between i and j is

 

(13.31) 
  

Technically, since we have added the probabilities of independent events, this is really the average 
number of edges between i and j, rather than the probability of having an edge at all. But in the 
limit of large m, this number becomes small (for given ki, kj), and the average number of edges and 
the probability of an edge become equal. Also in the limit of large m we can ignore the – 1 in the 
denominator and hence we can write

 

(13.32) 
  

Note that, even though we assumed ki,kj > 0, this expression also gives the right result if either 
degree is zero, namely that in that case the probability of connection is zero. 

We can use this result, for example, to calculate the probability of having two edges between the 
same pair of vertices. The probability of having one edge between vertices i and j is pij as above. 
Once we have one edge between the vertices the number of available stubs at each is reduced by 
one, and hence the probability of having a second edge is given by Eq. (13.32) but with ki and kj 
each reduced by one: (ki– 1)(kj– 1)/2m. Thus the probability of having (at least) two edges, i.e., of 
having a multiedge between i and j, is kikj(ki– 1) (kj– 1)/(2m)2 and, summing this probability over 
all vertices and dividing by two (to avoid double counting of vertex pairs), we find that the 
expected total number of multiedges in the network is

 

 

 

 

 



 

(13.33) 
  

where

 

(13.34) 
  

and we have used 2m = �k�n (see Eq. (6.23)). Thus the expected number of multiedges 
remains constant as the network grows larger, so long as �k2� is constant and finite, and the 

density of multiedges—the number per vertex—vanishes as 1/n. We used this result in a number of 
our earlier arguments.188 

Another way to derive the expression in Eq. (13.32) is to observe that there are kikj possible 
edges we could form between vertices i and j, while the total number of possible edges in the 
whole graph is the number of ways of choosing a pair of stubs from the 2m total stubs, or 

. The probability that any particular edge falls between i and j is thus given by the 
ratio kikj/m(2m– 1), and if we make a total of m edges then the expected total number of edges 
between i and j is m times this quantity, which gives us Eq. (13.31) again. 

The only case in which this derivation is not quite right is for self-edges. In that case the number 

of pairs of stubs is not kikj but instead is  and hence the probability of a self-edge 
from vertex i to itself is

 

(13.35) 
  

We can use this result to calculate the expected number of self-edges in the network, which is 
given by the sum over all vertices i:

 

 

 

 

 

 



(13.36) 
  

This expression remains constant as n → ∞ provided �k2� remains constant, and hence, as with 

the multiedges, the density of self-edges in the network vanishes as 1/n in the limit of large 
network size. 

We can use Eqs. (13.32) and (13.35) to calculate a number of other properties of vertices in the 
configuration model. For instance, we can calculate the expected number nij of common neighbors 
that vertices i and j share. The probability that i is connected to another vertex l is pil and the 
probability that j is connected to the same vertex would likewise normally be pjl. However, as with 
the calculation of multiedges above, if we already know that i is connected to l, then the number of 
available stubs at vertex l is reduced by one and, rather than being given by the normal expression 
(13.32), the probability of a connection between j and l is kj (kl– 1)/2m. Multiplying the 
probabilities for the two edges and summing over l, we then get our expression for the expected 
number of common neighbors of i and j:

 

(13.37) 
  

Thus the probability of sharing a common neighbor is equal to the probability pij = kikj/2m of 
having a direct connection times a multiplicative factor that depends only on the mean and 
variance of the degree distribution but not on the properties of the vertices i and j themselves. 

In this calculation we have ignored the fact that the probability of self-edges, Eq. (13.35), is 
different from the probability for other edges. As we have seen, however, the density of self-edges 
in the configuration model tends to zero as n → ∞, so in that limit it is usually safe to make the 
approximation that Eq. (13.32) applies for all i and j.

 

 

 



13.2.2 RANDOM GRAPHS WITH GIVEN EXPECTED DEGREE  

The configuration model of the previous section is, as we have said, similar in some ways to the 
standard random graph G(n, m) described in Section 12.1, in which we distribute a fixed number m 
of edges at random between n vertices. In the configuration model the total number of edges is 

again fixed, having value  but in addition we now also fix the individual degree of 
every vertex as well. 

It is natural to ask whether there is also an equivalent of G(n, p)—the model in which only the 
probability of edges is fixed and not their number—and indeed there is. We simply place an edge 
between each pair of vertices i, j with independent probabilities taking the form of Eq. (13.32). We 
define a parameter ci for each vertex and then place an edge between vertices i and j with 
probability pij = cicj/2m. As with the configuration model, we must allow self-edges if the model is 
to be tractable, and again self-edges have to be treated a little differently from ordinary edges. It 
turns out that the most satisfactory definition of the edge probability is

 

(13.38) 
  

where m is now defined by

 

(13.39) 
  

With this choice the average number of edges in the network is

 

(13.40) 
  

as before. We can also calculate the average number of ends of edges connected to a vertex i, i.e., 
its average degree �ki�. Allowing for the fact that a self-edge contributes two ends of edges to the 

degree, we get

 

 

 

 

 



 

(13.41) 
  

In other words the parameters ci appearing in the definition of pij, Eq. (13.38), are the average or 
expected degrees in this model, just as the parameter c in G(n, p) is the average degree of a vertex. 
The actual degree of a vertex could in principle take almost any value, depending on the luck of 
the draw about which edges happen to get randomly created and which do not. In fact one can 
show that the degree of vertex i will have a Poisson distribution with mean ci, meaning that in 
practice it will be quite narrowly distributed about ci, but there will certainly be some variation, 
unless ci is zero.191 Note that ci does not have to be an integer, unlike the degrees ki appearing in 
the configuration model. 

Thus in this model we specify the expected number of edges m and the expected degree 
sequence {ci} of the network but not the actual number of edges and actual degree sequence. This 
is again analogous to G(n, p), in which we specify only the expected number of edges and not the 
actual number. Unfortunately, this means we usually cannot choose the degree distribution of our 
network, because the distribution of the actual degrees ki is not the same as the distribution of the 
expected degrees ci. This is a substantial disadvantage of the model since the degree distribution is 
widely considered to be a crucial property of networks.192 

This is unfortunate, because this model is in other respects a very nice one. It is straightforward 
to treat analytically and many of the derivations are substantially simpler for this model than for 
the configuration model. Nonetheless, because we place such a premium on being able to choose 
the degree distribution, this model is in fact hardly ever used in real calculations of the properties 
of networks. Instead, most calculations are made using the configuration model and this is the 
direction that we will take in this book as well. In the following sections, we describe how one can 
make use of the machinery of generating functions to calculate many of the properties of the 
configuration model exactly in the limit of large network size.

 

 



13.3 EXCESS DEGREE DISTRIBUTION  

In the remainder of this chapter we describe the calculation of a variety of properties of the 
configuration model. We begin our discussion with some fundamental observations about the 
model—and networks in general—that will prove central to later developments. 

Consider a configuration model with degree distribution pk, meaning that a fraction pk of the 
vertices have degree k. (We can consider either the standard version of the model in which the 
degree sequence is fixed, as in Section 13.2, or the version of Eq. (13.30) in which only the 
distribution is fixed but not the exact degree sequence.) The distribution pk tells us the probability 
that a vertex chosen uniformly at random from our network has degree k. But suppose instead that 
we take a vertex (randomly chosen or not) and follow one of its edges (assuming it has at least 
one) to the vertex at the other end. What is the probability that this vertex will have degree k? 

The answer cannot just be pk. For instance, there is no way to reach a vertex with degree zero by 
following an edge in this way, because a vertex with degree zero has no edges. So the probability 
of finding a vertex of degree zero is itself zero, and not p0. 

In fact, the correct probability for general k is not hard to calculate. We know that an edge 
emerging from a vertex in a configuration model network has equal chance of terminating at any 
“stub” of an edge anywhere else in the network (see Section 13.2). Since there are ∑iki = 2m stubs 
in total, or 2m– 1 excluding the one at the beginning of our edge, and k of them are attached to any 
particular vertex with degree k, our edge has probability k/(2m– 1) of ending at any particular 
vertex of degree k. In the limit of large network size, where m becomes large (assuming the degree 
distribution, and hence the average degree, remain constant), we can ignore the – 1 and just write 
this as k/2m. 

Given that pk is the total fraction of vertices in the network with degree k, the total number of 
such vertices is npk, and hence the probability of our edge attaching to any vertex with degree k is

 

(13.42) 
  

where �k� is the average degree over the whole network and we have made use of the fact that 

2m = n�k�, Eq. (6.23). 
Thus the probability that we reach a vertex of degree k upon following an edge in this way is 

proportional not to pk but to kpk. To put that another way, the vertex you reach by following an 
edge is not a typical vertex in the network. It is more likely to have high degree than a typical 
vertex. Physically, the reasoning behind this observation is that a vertex with degree k has k edges 
attached to it, and you can reach that vertex by following any one of them. Thus if we choose an 
edge and follow it you have k times the chance of reaching a vertex with degree k that you have of 
reaching a vertex with degree 1. 

It is important to recognize that this is a property specifically of the configuration model (or 
similar random graph models). In the real world, the degrees of adjacent vertices in networks are 

 

 



often correlated (see Section 7.13) and hence the probability of reaching a vertex of degree k
when we follow an edge depends on what vertex we are coming from.193 Nonetheless, it is found to 
apply approximately to many real-world networks, which is one of the reasons why insights gained 
from the configuration model are useful for understanding the world around us. 

Equation (13.42) has some strange and counter-intuitive consequences. As an example, consider 
a randomly chosen vertex in the configuration model and let us calculate the average degree of a 
neighbor of that vertex. If we were using the configuration model to model a friendship network, 
for instance, the average degree of an individual’s network neighbor would correspond to the 
average number of friends their friend has. This number is the average of the distribution in Eq. 
(13.42), which we get by multiplying by k and then summing over k thus:

 

(13.43) 
  

Note that the average degree of a neighbor is thus different from the average degree �k� of a 
typical vertex in the network. In fact, it is in general larger, as we can show by calculating the 
difference

 

(13.44) 
  

where  is the variance of the degree distribution. The variance, which is the square 
of the standard deviation, is necessarily non-negative and indeed is strictly positive unless every 
single vertex in the network has the same degree. Let us assume that there is some variation in the 
degrees so that  is greater than zero. The average degree �k� is also greater than zero, unless all 
vertices have degree zero. Thus Eq. (13.44) implies that �k2�/�k� – �k� > 0, or

 

(13.45) 
  

In other words, the average degree of the neighbor of a vertex is greater than the average degree of 
a vertex. In colloquial terms, “Your friends have more friends than you do.” 

At first sight, this appears to be a very strange result. Certainly it seems likely that there will be 
some vertices in the network with higher degree than the average. But there will also be some who 
have lower degree and when you average over all neighbors of all vertices surely the two should 

 

 

 

 

 



cancel out. Surely the average degree of a neighbor should be the same as the average degree in 
the network as a whole. Yet Eq. (13.45) tells us that this is not so. And the equation really is 
correct. You can create a configuration model network on a computer and average the degrees of 
the neighbors of every vertex, and you’ll find that the formula works to very high accuracy. Even 
more remarkably, as first shown by Feld [113], you can do the same thing with real networks and, 
although the configuration model formula doesn’t apply exactly to these networks, the basic 
principle still seems to hold. Here, for instance, are some measurements for two academic 
collaboration networks, in which scientists are connected together by edges if they have 
coauthored scientific papers, and for a recent snapshot of the structure of the Internet at the 
autonomous system level:

 

According to these results a biologist’s collaborators have, on average, more than four times as 
many collaborators as they do themselves. On the Internet, a node’s neighbors have more than 50 
times the average degree! Note that in each of the cases in the table the configuration model value 
of �k2�/�k� overestimates the real average neighbor degree, in some cases by a substantial 

margin.195 This is typical of calculations using simplified network models: they can give you a feel 
for the types of effect one might expect to see, or the general directions of changes in quantities. 
But they usually don’t give quantitatively accurate predictions for the behavior of real networks. 

The fundamental reason for the result, Eq. (13.45), is that when you go through the vertices of a 
network and average the degrees of the neighbors of each one, many of those neighbors appear in 
more than one average. In fact, a vertex with degree k will appear as one of the neighbors of 
exactly k other vertices, and hence appear in k of the averages. This means that high-degree 
vertices are over-represented in the calculations compared with low-degree ones and it is this bias 
that pushes up the overall average value. 

In most of the calculations that follow, we will be interested not in the total degree of the vertex 
at the end of an edge but in the number of edges attached to that vertex other than the one we 
arrived along. For instance, if we want to calculate the size of the component to which a vertex i 
belongs then we will want to know first of all how many neighbors i has, and then how many 
neighbors those neighbors have, other than i, and so on. 

The number of edges attached to a vertex other than the edge we arrived along is called the 
excess degree of the vertex and it is just one less than the total degree. Since the vertex at the end 
of an edge always has degree at least 1 (because of that edge) the minimum value of the excess 
degree is zero. 

We can calculate the probability distribution of the excess degree from Eq. (13.43). The 
probability qk of having excess degree k is simply the probability of having total degree k + 1 and, 
putting k → k + 1 in Eq. (13.43), we get

 

(13.46) 
  

 

 

 



(Note that the denominator is still just �k�, and not �k+1�, as you can verify for yourself by 
checking that Eq. (13.46) is correctly normalized so that  = 1.) 

The distribution qk is called the excess degree distribution and it will come up repeatedly in the 
sections that follow. It is the probability distribution, for a vertex reached by following an edge, of 
the number of other edges attached to that vertex.



13.4 CLUSTERING COEFFICIENT  

As a simple application of the excess degree distribution, let us calculate the clustering coefficient 
for the configuration model. Recall that the clustering coefficient is the average probability that 
two neighbors of a vertex are neighbors of each other. 

Consider then a vertex v that has at least two neighbors, which we will denote i and j. Being 
neighbors of v, i and j are both at the ends of edges from v, and hence the number of other edges 
connected to them, ki and kj are distributed according to the excess degree distribution, Eq. (13.46). 
The probability of an edge between i and j is then kikj/2m (see Eq. (13.32)) and, averaging both ki 
and kj over the distribution qk, we get an expression for the clustering coefficient thus:

 

(13.47) 
  

where we have made use of 2m = n�k�, Eq. (6.23). 
Like the clustering coefficient of the Poisson random graph, Eq. (12.11), this expression goes as 

n-1 for fixed degree distribution, and so vanishes in the limit of large system size. Hence, like the 
Poisson random graph, the configuration model appears to be an unpromising model for real-world 
networks with high clustering. Note, however, that Eq. (13.47) contains the second moment �k2� 

of the degree distribution in its numerator which can become large, for instance in networks with 
power-law degree distributions (see Section 8.4.2). This can result in surprisingly large values of C 
in the configuration model. For further discussion of this point see Section 8.6. 

 

 



13.5 GENERATING FUNCTIONS FOR DEGREE DISTRIBUTIONS  

In the calculations that follow, we will make heavy use of the generating functions for the degree 
distribution and the excess degree distribution of a network. We will denote these generating 
functions by g0(z) and g1(z) respectively. They are defined by

 

(13.48) 
  

 

(13.49) 
  

Although it will be convenient to have separate notations for these two commonly occurring 
functions, they are not really independent, since the excess degree distribution is itself defined in 
terms of the ordinary degree distribution via Eq. (13.46). Using Eq. (13.46) we can write g1(z) as

 

(13.50) 
  

But Eq. (13.22) tells us that the average vertex degree is , so

 

 

 

 

 

 

 

 

 



(13.51) 
  

Thus if we can find g0(z), we can also find g1(z) directly from it, without the need to calculate the 
excess degree distribution explicitly. 

For example, suppose our degree distribution is a Poisson distribution with mean c:

 

(13.52) 
  

Then its generating function is given by Eq. (13.6) to be

 

(13.53) 
  

Applying Eq. (13.51), we then find that

 

(13.54) 
  

In other words, g0(z) and g1(z) are identical in this case. (This is one reason why calculations are 
relatively straightforward for the Poisson random graph—there is no difference between the degree 
distribution and the excess degree distribution in that case, a fact you can easily demonstrate for 
yourself by substituting Eq. (13.52) directly into Eq. (13.46).) 

A more complicated example is the power-law distribution, Eq. (13.10), which has a generating 
function given by Eq. (13.16) to be

 

(13.55) 
  

 

 

 

 

 

 

 

 



where Liα (z) is the polylogarithm function and α is the exponent of the power law. Substituting 
this result into Eq. (13.51) and making use of Eq. (13.17) gives

 

(13.56) 
  

where we have made use of the fact that Liα(1) = ζ(α) (see Eqs. (13.12) and (13.15)).
 

 



13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX  

Armed with these results, we are now in a position to make some more detailed calculations of 
the properties of the configuration model. The first question we will address is a relatively simple 

one: what is the probability  that a vertex has exactly k second neighbors in the network? 
Let us break this probability down by writing it in the form

 

(13.57) 
  

where P(2)(k|m) is the probability of having k second neighbors given that we have m first 
neighbors and pm is the ordinary degree distribution. Equation (13.57) says that the total 
probability of having k second neighbors is the probability of having k second neighbors given that 
we have m first neighbors, averaged over all possible values of m. We assume that we are given 
the degree distribution pm; we need to find P(2) (k|m) and then complete the sum. 

 

Figure 13.4: Calculation of the number of second neighbors of a vertex. The number of second 
neighbors of a vertex (top) is equal to the sum of the excess degrees of the first neighbors. 
  

As illustrated in Fig. 13.4, the number of second neighbors of a vertex is equal to the sum of the 
excess degrees of the first neighbors. And as discussed in the previous section, the excess degrees 
are distributed according to the distribution qk, Eq. (13.46), so that the probability that the excess 
degrees of our m first neighbors take the values j1 . . . jm is . Summing over all sets of values 
j1 . . . jm, the probability that the excess degrees sum to k and hence that we have k second 
neighbors is

 

 

 

 

 

 



(13.58) 
  

Substituting this expression into (13.57), we find that

 

(13.59) 
  

By now, you may be starting to find sums of this type familiar. We saw them previously in Eqs. 
(12.25) and (13.27), for example. We can handle this o ne by the same trick we used before: 

instead of trying to calculate  directly, we calculate instead its generating function g(2) (z) thus:

 

(13.60) 
  

But now we notice an interesting thing: the sum in square brackets in the last line is none other 
than the generating function g1(z) for the excess degree distribution, Eq. (13.49). Thus Eq. (13.60) 
can be written as

 

(13.61) 
  

where g0(z) is the generating function for the ordinary degree distribution, defined in Eq. (13.48). 
So once we know the generating functions for our two basic degree distributions the generating 
function for the distribution of the second neighbors is very simple to calculate. 

 

 

 

 

 

 



In fact, there was no need to go through this lengthy calculation to reach Eq. (13.61). We can 
derive the same result much more quickly by making use of the “powers” property of generating 
functions that we derived in Section 13.1.4. There we showed (Eq. (13.28)) that, given a quantity k 
distributed according to a distribution with generating function g(z), m independent quantities 
drawn from the same distribution have a sum whose distribution is given by the generating 
function [g(z)]m. We can apply this result here, by noting that the m excess degrees of the first 
neighbors of our vertex are just such a set of independent quantities. Given that g1(z) is the 
generating function for the distribution of a single one of them (Eq. (13.49)), the distribution P(2)

(k|m) of their sum—which is the number of second neighbors—has generating function [g1(z)]m. 
That is,

 

(13.62) 
  

Now, using Eq. (13.57), the generating function for  is

 

(13.63) 
  

In future calculations, we will repeatedly make use of this shortcut to get our results, rather than 
taking the long route exemplified in Eq. (13.60). 

We can also use similar methods to calculate the probability distribution of the number of third 
neighbors. The number of third neighbors is the sum of the excess degrees of each of the second 
neighbors. Thus, if there are m second neighbors, then the probability distribution P(3) (k|m) of the 
number of third neighbors has generating function [g1(z)]m and the overall probability of having k 
third neighbors is exactly analogous to Eq. (13.63):

 

(13.64) 

 

 

 

 

 



  

Indeed, the generating function for the number of neighbors at any distance d can be expressed this 
way as

 

(13.65) 
  

In other words g(d)(z) = g0 (g1 (. . . g1 (z) . . .)), with d - 1 copies of g1 nested inside a single g0. This 
expression is correct at arbitrary distances on an infinite network. On a finite network it will break 
down if d becomes large enough but will be accurate for small values of d. 

These results are all very good, but what use are they? Even given the generating function g(2)(z) 
it is typically quite difficult to extract explicit probabilities for numbers of second neighbors in the 
network. For instance, if our degree distribution were Poisson with mean c then g0(z) = g1 (z) = ec

(z−1) as in Eqs. (13.53) and (13.54) and

 

(13.66) 
  

But to find the actual probabilities we have to apply Eq. (13.2), which involves calculating 
derivatives of g(2) (z). One can, with a little work, calculate the first few derivatives, but finding a 
general formula for the nth derivative is hard.196 

What we can do, however, is calculate the average number of neighbors at distance d. The 
average of a distribution is given by the first derivative of its generating function evaluated at z = 1 
(see Eq. (13.22)) and the derivative of Eq. (13.63) is

 

(13.67) 
  

Setting z = 1 and recalling that g1(1) = 1 (Eq. (13.20)), we find that the average number c2 of 
second neighbors is

 

 

 

 

 

 

 



 

(13.68) 
  

But  and

 

(13.69) 
  

where we have used Eq. (13.46). Thus the mean number of second neighbors can also be written

 

(13.70) 
  

We can take this approach further and calculate the mean number cd of neighbors at any distance 
d. Differentiating Eq. (13.65) we get

 

(13.71) 
  

and setting z = 1 we get

 

(13.72) 
  

 

 

 

 

 

 

 

 



Making use of Eq. (13.68) to write  where c1 = �k�, this can be expressed in the 

simple form

 

(13.73) 
  

which implies that

 

(13.74) 
  

In other words, once we know the mean numbers of first and second neighbors, c1 and c2, we 
know everything. What’s more, the average number of neighbors at distance d either grows or falls 
off exponentially, depending on whether c2 is greater or less than c1. This observation is strongly 
reminiscent of the argument we made in Section 12.5 for the appearance of a giant component in a 
random graph. There we argued that if the number of vertices you can reach within a certain 
distance is increasing with that distance (on average) then you must have a giant component in the 
network, while if it is decreasing there can be no giant component. Applying the same reasoning 
here, we conclude that the configuration model has a giant component if and only if we have

 

(13.75) 
  

Using Eq. (13.70) for c2 and putting c1 = �k�, we can also write this condition as �k2� – �k� > 

�k� or

 

(13.76) 
  

This condition for the existence of a giant component in the configuration model was first given by 
Molloy and Reed [224] in 1995.197 

 

 

 

 

 

 

 



13.7 GENERATING FUNCTIONS FOR THE SMALL COMPONENTS  

In this section and the following one we examine the sizes of components in the configuration 
model. As we will see, the situation is qualitatively similar to that for the Poisson random graph in 
that a configuration model network generally has at most one giant component, plus a large 
number of small components. We will approach the calculation of component sizes by a route 
different from the one we took for the Poisson random graph and examine first the properties of 
the small components. We will see that it is possible to calculate the distribution of the sizes of the 
small components by a method similar to the one we used in the Poisson case. Then we can use 
these results to get at the properties of the giant component: once we have the sizes of the small 
components, we can subtract them from the size of the graph as a whole and whatever is left, if 
anything, must be the giant component. 

Let πs be the probability that a randomly chosen vertex belongs to a small (non-giant) 
component of size s. We will calculate πs by first calculating its generating function

 

(13.77) 
  

Note that the minimum value of s is 1, since every vertex belongs to a component of size at least 
one (namely itself). 

By an argument exactly analogous to that of Section 12.6.1 we can show that the small 
components in the configuration model are trees (in the limit of large n, provided the degree 
distribution is held constant as we go to the limit). We can use this fact to derive an expression for 
the distribution of small component sizes as follows. 

Consider Fig. 13.5 (which is actually the same as the figure for the Poisson random graph in the 
previous chapter (Fig. 12.3), but it works just as well as an illustration of the configuration model). 
If vertex i is a member of a small component then that component is necessarily a tree. Just as in 
the Poisson case, this implies that the sets of vertices reachable along each of its edges (shaded 
areas in Fig. 13.5a) are not connected, other than via vertex i, since if they were connected there 
would be a loop in the component and hence it would not be a tree. 

Now, taking a hint from our argument in the Poisson case, let us remove vertex i from the 
network along with all its edges—see Fig. 13.5b. The shaded areas in the figure are now not 
connected to one another at all and hence are each now separate components in their own right. 
And the size of the component to which vertex i belongs on the original network is equal to the 
sum of the sizes of these new components, plus one for vertex i itself. 

A crucial point to notice, however, is that the neighbors n1, n2, ... of vertex i are, by definition, 
reached by following an edge. Hence, as we have discussed, these are not typical network vertices, 
being more likely to have high degree than the typical vertex. Thus the components that they 
belong to in Fig. 13.5b—the shaded regions in the figure—are not distributed according to πs. 
Instead they must have some other distribution. Let us denote this distribution by ρs. More 
specifically, let ρs be the probability that the vertex at the end of an edge belongs to a small 

 

 

 



component of size s after that edge is removed. Let us also define the generating function for 
this distribution to be

 

(13.78) 
  

 

Figure 13.5: The size of one of the small components in the configuration model. (a) The size 
of the component to which a vertex i belongs is the sum of the number of vertices in each of the 
subcomponents (shaded regions) reachable via is neighbors n1, n2, n3, plus one for i itself. (b) If 
vertex i is removed the subcomponents become components in their own right. 
  

We don’t yet know the value of ρs or its generating function and we will have to calculate them 
later, but for the moment let us proceed with the information we have. 

Suppose that vertex i on the original network has degree k and let us denote by P(s|k) the 
probability that, after i is removed, its k neighbors belong to small components of sizes summing 
to exactly s. Alternatively, P(s − 1|k) is the probability that i itself belongs to a small component of 
size s given that its degree is k. Then the total probability πs that i belongs to a small component of 
size s is this probability averaged over k thus:

 

(13.79) 
  

Substituting this expression into Eq. (13.77) we then get an expression for the generating function 
for πs as follows:

 

 

 

 

 

 



 

(13.80) 
  

The final sum in this expression is the generating function for the probability that the k neighbors 
belong to small components whose size sums to s. But the sizes of the small components are 
independent of one another and hence we can use the “powers” property of generating functions 
(Section 13.1.4), which tells us that the generating function we want is just equal to the generating 
function for the size of the component any single neighbor belongs to—the function that we 
denoted h1 (z) above—raised to the kth power. Thus

 

(13.81) 
  

We still don’t know the generating function h1(z) but we can derive it now quite easily. We 
consider the network in which vertex i is removed and ask what is the probability ρs that one of the 
neighbors of i belongs to a component of size s in this network. In the limit of large network size, 
the removal of the single vertex i will have no effect on the degree distribution, so the network still 
has the same distribution as before, which means that if the neighbor has degree k then its 
probability of belonging to a component of size s is P(s − 1|k), just as before. Note, however, that 
the degree k does not follow the ordinary degree distribution. Since the neighbor was reached by 
following an edge from i, its degree, discounting the edge to i that has been removed, follows the 
excess degree distribution qk defined in Eq. (13.46), rather than the ordinary degree distribution. 
Thus

 

(13.82) 
  

and, substituting this expression into Eq. (13.78), we have

 

 

 

 

 

 

 



(13.83) 
  

As before, the last sum is the generating function for P(s|k), which is equal to [h1(z)]k, and hence

 

(13.84) 
  

Collecting together our results, the generating functions for πs and ρs thus satisfy

 

(13.85) 
  

 

(13.86) 
  

If we can solve the second of these equations for h1(z) then we can substitute the result into the 
first equation and we have our answer for h0(z). In practice, it is often not easy to solve for h1(z), 
and, even if it is, extracting the actual component size distribution from the generating function can 
be difficult. But that does not mean that these results are useless. On the contrary, there are many 
useful things we can deduce from them. One important quantity we can calculate is the size of the 
giant component. 

 

 

 

 

 

 

 



13.8 GIANT COMPONENT  

Given the definition , where πs is the probability that a randomly chosen vertex 
belongs to a small component of size s, we have h0(1) = , which is the total probability that a 
randomly chosen vertex belongs to a small component. Unlike most generating functions, it is not 
necessarily the case that h(1) = 1 because there may be a giant component in the network. If there 
is a giant component then some of the vertices do not belong to any small component and  
will be less than 1. In fact,  will be simply the fraction of vertices that belong to small 
components and hence the fraction S of vertices belonging to the giant component is

 

(13.87) 
  

where we have used Eq. (13.85). The value of h1(1) we can get from Eq. (13.86):

 

(13.88) 
  

The quantity h1(1) will occur frequently in subsequent developments, so for convenience let us 
define the shorthand notation

 

(13.89) 
  

in which case Eqs. (13.87) and (13.88) can be written

 

(13.90) 
  

 

 

 

 

 

 



 

(13.91) 
  

In other words, u is a fixed point of the function g1(z)—a point where the function is equal to its 
own argument—and if we can find this fixed point then we need only substitute the result into Eq. 
(13.90) and we have the size of the giant component. 

Since g1(1) = 1 (see Eq. (13.20) and the discussion that precedes it), there is always a fixed point 
of g1 at u = 1, but this solution gives S = 1 − g0(1) = 0 and hence no giant component. If there is to 
be a giant component there must be at least one other non-trivial solution to Eq. (13.91). We will 
see some examples of such solutions shortly. 

The quantity u = h1(1) has a simple physical interpretation. Recall that  is the 
generating function for the probability ρs that the vertex reached by following an edge belongs to a 
small component of size s if that edge is removed. Thus  is the total probability that 
such a vertex belongs to a small component of any size, or equivalently the probability that it 
doesn’t belong to the giant component. 

This observation suggests an alternative and simpler derivation of Eqs. (13.90) and (13.91) for 
the size of a giant component, as follows. To belong to the giant component, a vertex A must be 
connected to the giant component via at least one of its neighbors. Or equivalently, A does not 
belong to the giant component if (and only if) it is not connected to the giant component via any of 
its neighbors. Let us define u to be the average probability that a vertex is not connected to the 
giant component via its connection to some particular neighboring vertex. If vertex A has k 
neighbors, then the probability that it is not connected to the giant component via any of them is 
thus uk. And the average of this probability over the whole network is , which is the 
average probability that a vertex is not in the giant component. But this probability is also, by 
definition, equal to 1 − S, where S is the fraction of the graph occupied by the giant component and 
hence 1 − S = g0(u) or

 

(13.92) 
  

which is Eq. (13.90) again. 
Now let us ask what the value of u is. The probability that you are not connected to the giant 

component via a particular neighboring vertex is equal to the probability that that vertex is not 
connected to the giant component via any of its other neighbors. If there are k of those other 
neighbors, then that probability is again uk. But because we are talking about a neighboring vertex, 
k is now distributed according to the excess degree distribution qk, Eq. (13.46), and hence taking 
the average, we find that  or

 

 

 

 

 

 



(13.93) 
  

which is Eq. (13.91) again. Thus we have rederived our two equations for the size of the giant 
component, but by a much shorter route. The main disadvantage of this method is that it only gives 
the size of the giant component and not the complete generating function for all the other 
components as well, and this is the reason why we took the time to go through the longer 
derivation. There are many further results we can derive by knowing the entire generating 
function, as we show in the next section.



13.8.1 EXAMPLE  

Let’s take a look at a concrete example and see how calculations for the configuration model work 
out in practice. Consider a network like that of the first example in Section 13.1.1 that has vertices 
only of degree 0, 1, 2 and 3, and no vertices of higher degree. Then the generating functions g0(z) 
and g1(z) take the form

 

(13.94) 
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Equation (13.91) is thus quadratic in this case, u = q0 + q1u + q2u
2, which has the solutions

 

(13.96) 
  

However, we know that ∑kqk = 1, and hence in this case 1 − q1 = q0 + q2. Using this result to 
eliminate q1 we get

 

 

 

 

 

 

 

 

 



(13.97) 
  

Thus, as expected we have a solution u = 1, but we also have another non-trivial solution which 
might imply that we have a giant component. 

If q2 < q0 then this non-trivial solution gives u > 1. Since u is a probability it cannot be greater 
than 1, so in this case we definitely do not have a giant component. On the other hand, if q2 > q0 
we have a viable non-trivial solution u < 1 equal to

 

(13.98) 
  

where we have extracted values of q0 and q2 from Eq. (13.95). We can also write the condition 
q2 > q0 in terms of the pk as

 

(13.99) 
  

In other words, there can be a giant component if the number of vertices of degree three exceeds 
one third the number of degree one. This is a remarkable result. It says that the number of vertices 
of degree zero and degree two don’t matter at all (except to the extent that their absence makes 
room for more vertices of the other degrees). As we will see, this is actually a general result—the 
values of p0 and p2 never make any difference to the presence or absence of a giant component. On 
the other hand, the size of the giant component for the current example is given by Eq. (13.90) to 
be

 

(13.100) 
  

Thus the size of the giant component does depend on p0 and p2, even though its presence or 
absence does not. 

We have not, however, yet proved that a giant component actually does exist. In the regime 
where we have two solutions for u, one with u = 1 (no giant component) and one with u < 1 (there 
is a giant component) it is unclear which of these solutions we should believe. In Section 13.6, 
however, we showed that there is a giant component in the network when the degree sequence 

 

 

 

 

 

 



satisfies a specific condition, Eq. (13.76). In the next section, we show that in fact this condition 
is always satisfied whenever a non-trivial solution u < 1 exists, and hence that there is always a 
giant component when we have such a solution.



13.8.2 GRAPHICAL SOLUTIONS AND THE EXISTENCE OF THE GIANT COMPONENT 

The example given in the last section is unusual in that we can solve the fixed-point equation 
(13.91) exactly for the crucial parameter u. In most other cases exact solutions are not possible, but 
we can nonetheless get a good idea of the behavior of u by graphical means. The derivatives of g1

(z) are proportional to the probabilities ρs and hence are all non-negative. That means that for z ≥ 0, 
g1 (z) is in general positive, an increasing function of its argument, and upward concave. It also 
takes the value 1 when z = 1. Thus it must look qualitatively like one of the curves in Fig. 13.6. 
The solution of the fixed-point equation u = g1 (u) is then given by the intercept of the curve y = g1 
(u) with the line y = u (the dotted line in the figure). 

 

Figure 13.6: Graphical solution of Eq. (13.91). The solution of the equation u = g1 (u) is given 
by the point at which the curve y = g1 (u) intercepts the line y = u. 
  

As we already know, there is always a trivial solution at u = 1 (top right in the figure). But now 
we can see that there can be just one other solution with u < 1 and only if the curve takes the right 
form. In particular, we have a non-trivial solution at u < 1 if the slope  of the curve at u = 1 is 
greater than the slope of the dotted line. That is, if

 

(13.101) 
  

 

 

 

 

 



Using Eq. (13.49) for g1(z), we have

 

(13.102) 
  

Thus our condition for the solution at u < 1 is
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or equivalently,

 

(13.104) 
  

But this is none other than the condition for the existence of a giant component, Eq. (13.76). In 
other words, the conditions for the existence of a giant component and the existence of the non-
trivial solution to Eq. (13.91) are exactly the same and and hence, as promised, there is always a 
giant component whenever a solution u < 1 exists for Eq. (13.91). 

Writing  and , we can also write Eq. (13.104) as

 

(13.105) 
  

But note now that, as before, vertices of degree zero and degree two make no contribution to the 
sum, since terms in which ki = 0 or ki = 2 vanish. Thus we can add as many vertices of degree zero 
or two to the network as we like (or take them away) and it will make no difference to the 
existence or not of a giant component. We noted a special case of this phenomenon in Section 

 

 

 

 

 

 

 



13.8.1. 



13.9 SIZE DISTRIBUTION FOR SMALL COMPONENTS  

Having looked in some detail at the behavior of the giant component in the configuration model, 
let us return once more to the small components. In Eqs. (13.85) and (13.86) we have—in theory at 
least—the generating functions that give the entire distribution of sizes of the small components. 
Unfortunately, it is in most cases impossible to solve these equations exactly, but we can still 
extract plenty of useful information from them. For example, we can calculate the mean size of the 
component to which a randomly chosen vertex belongs, which is given by the equivalent of Eq. 
(12.29) thus:

 

(13.106) 
  

where we have used Eq. (13.90) in the final equality. Differentiating Eq. (13.85) we get

 

(13.107) 
  

where we have used Eq. (13.51) in the second equality and Eqs. (13.85) and (13.86) in the third. 
Setting z = 1 we then get

 

(13.108) 
  

where we have used Eqs. (13.87) and (13.89). To calculate  we differentiate Eq. (13.86) thus:

 

 

 

 

 

 



(13.109) 
  

or, rearranging,
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Setting z = 1 in this expression gives
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Combining Eqs. (13.106), (13.108), and (13.111), we then find that
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Using values of S and u from Eqs. (13.90) and (13.91) we can then calculate �s� from this 
equation. 

A simple case occurs when we are in the region where there is no giant component. In this 
region we have S = 0 and u = 1 by definition and hence

 

(13.113) 
  

Thus the average size of the component to which a vertex belongs diverges precisely at the point 
where , the point at which the curve in Fig. 13.6 is exactly tangent to the dotted line (the 

 

 

 

 

 

 

 

 



middle curve in the figure). This is, of course, also the point at which the giant component first 
appears. 

Thus the picture we have is similar to that shown in Fig. 12.4 for the Poisson random graph, in 
which the typical size of the component to which a vertex belongs grows larger and larger until we 
reach the point, or phase transition, where the giant component appears, at which it diverges. 
Beyond this point the small components shrink in size again, although the overall mean component 
size, including the giant component, is infinite. 

Equation (13.113) can also be expressed in a couple of other forms that may be useful in some 
circumstances. From Eq. (13.69) we know that  and, putting  also, 
we find that

 

(13.114) 
  

This expression can be evaluated easily given only a knowledge of the degree sequence and avoids 
the need to calculate any generating functions. Using the notation introduced earlier in which c1 
and c2 are the mean number of first and second neighbors of a vertex, with c2 given by Eq. (13.70), 
we can also write (13.114) in the form
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so that the average size of the component a vertex belongs to is dictated entirely by the mean 
numbers of first and second neighbors. 

 

 

 



13.9.1 AVERAGE SIZE OF A SMALL COMPONENT  

As with the Poisson random graph, we must be careful about our claims in the previous section. 
We have calculated the average size �s� of the component to which a randomly chosen vertex 
belongs but this is not the same thing as the average size of a component, since more vertices 
belong to larger components, which biases the value of �s�. If we want the true average size R of 
the small components, we must use Eq. (12.36), which we reproduce here for convenience:
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The sum can be calculated as before using the equivalent of Eq. (12.37):
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Taking h0 (z)/z from Eq. (13.107), we get
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Then

 

 

 

 

 

 

 

 



(13.119) 
  

Note that the value of this average at the transition point where S = 0 and u = 1 is just 2/ (2 − 
�k�), which is normally perfectly finite.198 Thus the average component size does not normally 

diverge at the transition (unlike �s�). 

 

 



13.9.2 COMPLETE DISTRIBUTION OF SMALL COMPONENT SIZES  

One of the most surprising results concerning the configuration model is that it is possible to 
derive an expression not just for the average size of the component to which a vertex belongs, but 
for the exact probability that it belongs to a component of any specific size—the probability that it 
belongs to a component of size ten, or a hundred, or a million. The derivation of this result is 
similar to the derivation given in Section 12.6.3 for the corresponding quantity for the Poisson 
random graph. 

Since a component cannot have size zero, the generating function for the probabilities πs has the 
form
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with the sum starting at 1. Dividing by z and differentiating s − 1 times, we then find that
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(which is just a minor variation on the standard formula, Eq. (13.2)). Using Eq. (13.85), this can 
also be written
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Now we make use of the Cauchy formula for the n derivative of a function, which says that

 

 

 

 

 

 



 

(13.123) 
  

where the integral is around a contour that encloses z0 in the complex plane but encloses no poles 
in ƒ(z). Applying this formula to Eq. (13.122) with z0 = 0 we get

 

(13.124) 
  

For our contour, we choose an infinitesimal circle around the origin. 
Changing the integration variable to h1, we can also write this as

 

(13.125) 
  

Here we are regarding z now as a function of h1, rather than the other way around. Furthermore, 
since h1(z) goes to zero as z → 0, the contour in h1 surrounds the origin too. (The proof is the same 
as for Eq. (12.46).) 

Now we make use of Eq. (13.86) to eliminate z and write

 

(13.126) 
  

where we have made use of Eq. (13.51) in the second line. Given that the contour surrounds the 
origin, this integral is now in the form of Eq. (13.123) again, and hence

 

 

 

 

 

 



 

(13.127) 
  

where we have written . 
The only exception to this formula is for the case s = 1, for which Eq. (13.124) gives 0/0 and is 

therefore clearly incorrect. However, since the only way to belong to a component of size 1 is to 
have no connections to any other vertices, the probability π1 is trivially equal to the probability of 
having degree zero:

 

(13.128) 
  

Equations (13.127) and (13.128) give the probability that a randomly chosen vertex belongs to a 
component of size s in terms of the degree distribution. In principle if we know pk we can calculate 
πs. It is not always easy to perform the derivatives in practice and in some cases we may not even 
know the generating function g1 (z) in closed form, but at least in some cases the calculations are 
possible. As an example, consider a network with the exponential degree distribution
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with exponential parameter λ > 0. From Eqs. (13.9) and (13.51) the generating functions g0 (z) 
and g1 (z) are given by
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Then it is not hard to show that

 

 

 

 

 

 

 

 



(13.131) 
  

and hence

 

(13.132) 
  

 

Figure 13.7: The distribution of component sizes in a configuration model. The probability πs 
that a vertex belongs to a component of size s for the configuration model with an exponential 
degree distribution of the form (13.129) for λ = 1.2. The solid lines represent the exact formula, 
Eq. (13.132), for the n → ∞ limit and the points are measurements of πs averaged over 100 
computer-generated networks with n = 107 vertices each. 
  

Figure 13.7 shows a comparison of this formula with the results of numerical simulations for λ = 
1.2 and, as we can see, the agreement between formula and simulations is good—our calculations 
seem to describe the simulated random graph well even though the graph is necessarily finite in 
size while the calculations are performed in the limit of large n.

 

 

 

 



13.10 POWER-LAW DEGREE DISTRIBUTIONS  

As we saw in Section 8.4, a number of networks have degree distributions that approximately obey 
a power law. As an example of the application of the machinery developed in this chapter, let us 
look at the properties of a random graph with a power-law degree distribution. 

Suppose we have a network with a “pure” power-law degree distribution of the form
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(See Eq. (13.13).) Here α > 0 is a constant exponent and ζ(α) is the Riemann zeta function:
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Using the results of the previous sections we can, for instance, say whether there is a giant 
component in this network or not. Equation (13.76) tells us that there will be a giant component if 
and only if
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In the present case
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and

 

(13.137) 
  

Thus there is a giant component if

 

(13.138) 
  

Figure 13.8 shows this inequality in graphical form. The two curves in the figure show the 
values of ζ(α − 2) and 2ζ(α − 1) as functions of α and, as we can see, the inequality (13.138) is 
satisfied only for sufficiently low values of α, below the dotted line in the figure. In fact a 
numerical solution of the equation ζ(α − 2) = 2ζ(α − 1) indicates that the network will have a giant 
component only for α < 3.4788 ..., a result first given by Aiello et al. [9] in 2000. 

In practice this result is of only limited utility because it applies only for the pure power law. In 
general, other distributions with power-law tails but different behavior for low k will have different 
thresholds at which the giant component appears. There is however a general result we can derive 
that applies to all distributions with power-law tails. In Section 8.4.2 we noted that the second 
moment �k2� diverges for any distribution with a power-law tail with exponent α ≤ 3, while the 

first moment �k� remains finite so long as α > 2. This means that Eq. (13.135) is always satisfied 
for any configuration model with a power-law tail to its degree distribution so long as α lies in the 
range 2 < α ≤ 3, and hence there will always be a giant component no matter what else the 
distribution does. For α > 3, on the other hand, there may or may not be a giant component, 
depending on the precise functional form of the degree distribution. (For α ≤ 2 it turns out that 
there is always a giant component, although more work is needed to demonstrate this.) Note that, 
as discussed in Section 8.4, most observed values of α for real-world networks lie in the range 2 < 
α ≤ 3 and hence we tentatively expect such networks to have a giant component, although we must 
also bear in mind that the configuration model is a simplified model of a network and is not 
necessarily a good representation of any specific real-world network.

 

 

 

 



 

Figure 13.8: Graphical solution of Eq. (13.138). The configuration model with a pure power-law 
degree distribution (Eq. (13.133)) has a giant component if ζ(α − 2) > 2ζ(α − 1). This happens for 
values of α below the crossing point of the two curves. 
  

Returning to the pure power law let us calculate the size S of the giant component, when there is 
one. The fundamental generating functions g0(z) and g1(z) for the power-law distribution are given 
by Eqs. (13.55) and (13.56), which we repeat here for convenience:
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Here ζ(α) is the Riemann zeta function again and Liα(z) is the polylogarithm
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(See Eq. (13.15).) Now the crucial equation (13.91) for the probability u = h1(1) reads

 

 

 

 

 

 

 



(13.141) 
  

where we have used the explicit definition of the polylogarithm for clarity. 
In general there is no closed-form solution for this equation, but we do notice some interesting 

points. In particular, note that the sum in the numerator is strictly positive for u ≥ 0, which means 
that if ζ(α − 1) diverges we will get a solution u = 0. And indeed ζ(α − 1) does diverge. It diverges 
at α = 2 and all values below, as one can readily verify from the definition, Eq. (13.134).199 Thus 
for α ≤ 2 we have u = 0 and Eq. (13.90) then tells us that the giant component has size S = 1 − g0

(0) = 1 − p0. However, for our particular choice of degree distribution, Eq. (13.133), there are no 
vertices with degree zero, and hence p0 = 0 and S = 1. That is, the giant component fills the entire 
network and there are no small components at all! 

Technically, this statement is not quite correct. There is always some chance that, for instance, a 
vertex of degree 1 will connect to another vertex of degree 1, forming a small component. What 
we have shown is that the probability that a randomly chosen vertex belongs to a small component 
is zero in the limit of large n, i.e., that what small components there are fill a fraction of the 
network that vanishes as n → ∞. In the language used by mathematicians, a randomly chosen 
vertex “almost surely” belongs to the giant component, meaning it is technically possible to 
observe another outcome, but the probability is vanishingly small. 

Thus our picture of the pure power-law configuration model is one in which there is a giant 
component for values of α < 3.4788 ... and that giant component fills essentially the entire network 
when α ≤ 2. In the region between α = 2 and α = 3.4788 there is a giant component but it does not 
fill the whole network and some portion of the network consists of small component. If α > 
3.4788... there are only small components. As a confirmation of this picture, Fig. 13.9 shows the 
size of the giant component extracted from a numerical solution of Eq. (13.141).200 As we can see 
it fits nicely with the picture described above. 

We could in principle take our calculations further, calculating, for instance, the mean size of 
the small components in the region α > 2 using Eq. (13.112), or the entire distribution of their sizes 
using Eq. (13.127). 



13.11 DIRECTED RANDOM GRAPHS  

In this chapter we have studied random graph models that go a step beyond the Poisson random 
graph of Chapter 12 by allowing us to choose the degree distribution of our model network. This 
introduces an additional level of realism to the model that makes it substantially more informative. 
It is, however, only a first step. There are many other features we can add to the model to make it 
more realistic still. We can for instance create random graph models of networks with assortative 
(or disassortative) mixing [237], bipartite structure [253], or clustering [247]. All of these models 
are still exactly solvable in the limit of large system size, although the solutions are more 
complicated than for the models we have seen in this chapter. For instance, in the case of the 
random graph with assortative mixing the fundamental generating function g1(z) becomes a vector, 
the corresponding equation (13.86) for the distribution of component sizes becomes a vector 
equation, and the condition for the existence of a giant component, Eq. (13.76), becomes a 
condition on the determinant of a matrix. 

 

Figure 13.9: Size of the giant component for the configuration model with a power-law 
degree distribution. This plot shows the fraction of the network filled by the giant component as a 
function of the exponent α of the power law, calculated by numerical solution of Eqs. (13.91) and 
(13.141). The dotted lines mark the value α = 2 below which the giant component has size 1 and 
the value α = 3.4788 above which there is no giant component. 
  

We will not go into detail on all of the many random graph models that have been proposed and 
studied, but in this section we take a look at one case, that of the directed random graph, as an 
example of the types of calculation that are possible.

 

 

 



13.11.1 GENERATING FUNCTIONS FOR DIRECTED GRAPHS  

As discussed in Section 6.4, many networks, including the World Wide Web, metabolic networks, 
food webs, and others, are directed. The configuration model can be generalized to directed 
networks in a straightforward fashion, although the generalization displays some new behaviors 
not seen in the undirected case. Our presentation follows that of Refs. [100] and [253]. 

To create a directed equivalent of the configuration model, we must specify a double degree 
sequence, consisting of an in-degree ji and an out-degree ki for each vertex i. We can think of these 
as specifying the numbers of ingoing and outgoing stubs of edges at each vertex. Then we create a 
network by repeatedly choosing pairs of stubs—one ingoing and one outgoing—uniformly at 
random and connecting them to make directed edges, until no unused stubs remain. The result is a 
matching of the stubs drawn uniformly at random from the set of all possible matchings, just as in 
the configuration model, and the model itself is defined to be the ensemble of such directed 
networks in which each matching appears with equal probability. (The only small catch is that we 
must make sure that the total number of ingoing and outgoing stubs is the same, so that none are 
left over at the end of the process. We will assume this to be the case in the following 
developments.) 

The probability that a particular outgoing stub at vertex w attaches to one of the jν ingoing stubs 
at vertex v is

 

(13.142) 
  

where m is the total number of edges and we have made use of Eq. (6.26). Since the total 
number of outgoing stubs at w is kω, the total expected number of directed edges from vertex w to 
vertex v is then jνkw/m, which is also the probability of an edge from w to v in the limit of large 
network size, provided the network is sparse. This is similar to the corresponding result, Eq. 
(13.32), for the undirected configuration model, but not identical—notice that there is no factor of 
two now in the denominator. 

As in the undirected case we can, if we prefer, work with the degree distribution, rather than the 
degree sequence. As discussed in Section 8.3, the most correct way to describe the degree 
distribution of a directed network is by a joint distribution: we define pjk to be the fraction of 
vertices in the network that have in-degree j and out-degree k. This allows for the possibility that 
the in–and out-degrees of vertices are correlated. For instance, it would allow us to represent a 
network in which the in–and out-degrees of each vertex were exactly equal to one another.201 (This 
is rather an extreme example, but it demonstrates the point.) 

The joint degree distribution can be captured in generating function form by defining a double 
generating function g00(x,y) thus:

 

 

 

 



(13.143) 
  

(The two subscript zeros are the equivalent for the double generating function of the subscript zero 
in our previous generating function g0(z) for the undirected network.) As in the undirected case, 
the generating function g00 (x, y) captures all the information contained in the degree distribution. 
Given the generating function we can reconstruct the degree distribution by differentiating:
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This is the equivalent for the directed case of Eq. (13.2) in the undirected case. 
Just as in the undirected case the generating function satisfies certain conditions. First, since the 

degree distribution must be normalized according to ∑jkpjk = 1, the generating function satisfies
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Second, the average in–and out-degrees are given by
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In a directed graph, however, the average in–and out-degrees are equal—see Eq. (6.27)—so �j� = 

 

 

 

 

 

 

 

 

 



�k�and
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For convenience we will denote the average in-degree and out-degree by c in the equations that 
follow. Thus �j� = �k� = c. 

We can also write down generating functions for the excess degree distribution of vertices 
reached by following an edge in the network. There are two different ways of following a directed 
edge—either forward or backward. Consider first the forward case. If we follow an edge forward 
to the vertex it points to, then the probability of reaching a particular vertex will be proportional to 
the number of edges pointing to that vertex, i.e., to its in-degree. Thus the joint degree distribution 
of such a vertex is proportional not to pjk but to jpjk. As before, we will be interested primarily in 
the number of edges entering and leaving a vertex other than the one we arrived along. If j and k 
denote these numbers then the total in-degree is j + 1 and the total out-degree is just k, so the 
distribution we want is proportional to (j + 1) pj+1,k or, correctly normalized, (j + 1)pj+1,k/c. The 
double generating function for this excess degree distribution is then
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The backward case is similar. The appropriate excess degree distribution for the vertex from 
which an edge originates is (k + 1)pj,k+1/c and has generating function
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13.11.2 GIANT COMPONENTS  

A directed graph has various different types of component, as discussed in Sections 6.11.1 and 
8.1.1, including strongly and weakly connected components, in-components, and out-components. 
(Take a look at the “bow tie” diagram, Fig. 8.2 on page 240, for a reminder of the definitions of the 
components.) In general there can be both small and giant components of each of these types. Let 
us look at the giant components. 

A strongly connected component is a set of vertices in which every vertex is reachable by a 
directed path from every other in the set. To put that a different way, for a vertex to belong to a 
strongly connected component at least one of its outgoing edges must lead to another vertex from 
which there is a path to the strongly connected component, and at least one of its ingoing edges 
must lead from a vertex to which there is path from the strongly connected component (see figure). 

 

A vertex belongs to a strongly connected component if it has a directed path to the component and 
another from the component. 
  

Let v be the probability that the vertex to which a randomly chosen edge in our graph leads has 
no directed path to the giant strongly connected component. For this to happen, it must be that 
none of the other outgoing edges from that vertex themselves have such a path. If the vertex has 
out-degree k, this happens with probability νk. But j and k are distributed according to the excess 
degree distribution (j + 1)pj+1,k/c and hence, averaging over both, we find that

 

(13.151) 
  

Similarly, consider the vertex from which a randomly chosen edge originates and let u be the 
probability that there is no path from the giant strongly connected component to that vertex. Then 
u is the solution to

 

 

 

 

 

 

 



(13.152) 
  

Now consider a vertex with in-degree j and out-degree k. The probability that there is no path to 
the vertex from the giant strongly connected component via any of the vertex’s j ingoing edges is 
uj and the probability that there is such a path is 1 − uj. Similarly the probability that there is a path 
from the vertex to the giant strongly connected component is 1 − νk. And the probability that there 
are both—and hence that the vertex itself belongs to the giant strongly connected component—is 
the product of these two, or (1 − uj)(1 − νk). Averaging this expression over the joint distribution of 
j and k we then find that the average probability Ss that a vertex lies in the giant strongly connected 
component, which is also the size of the giant strongly connected component measured as a 
fraction of the network size, is
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with u and v given by Eqs. (13.151) and (13.152). 
As discussed in Section 6.11, each strongly connected component in a network also has an in-

component and an out-component associated with it—the sets of vertices from which it can be 
reached, and which can be reached from it. The in–and out-components of the giant strongly 
connected component are usually called the giant in–and out-components. By their definition, both 
are supersets of the giant strongly connected component itself, and we can calculate the size of 
both for our directed random graph. In fact, we have performed most of the calculation already. 

A vertex with out-degree k fails to belong to the giant in-component only if none of its outgoing 
edges leads to a vertex that has a path to the strongly connected component. This happens with 
probability νk, where v is as above. Averaging over j and k, we find the probability Si that the 
vertex does belong to the giant in-component (which is also the size of the giant in-component) to 
be
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Similarly the size of the giant out-component is given by
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Using these results we can also write an expression for the combined size of the giant strongly 
connected component and its in–and out-components—the entire “bow tie” in Fig. 8.2. Since the 
giant in–and out-components both include the giant strongly connected component as a subset, 
their sum is equal to the size of the whole bow tie except that it counts the strongly connected part 
twice. Subtracting Ss to allow for this overcounting we then find the size of the bow tie to be and 
the fraction of the network not in the bow tie is just g00 (u, ν). (We could have derived this result 
by more direct means, just by noting that a vertex not in the bow tie has a path neither to nor from 
the giant strongly connected component.)
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And what about the giant weakly connected component? A weakly connected component in a 
directed graph is a normal graph component of connected vertices in which we ignore the 
directions of all the edges. At first glance one might imagine that the size of the giant weakly 
connected component was just equal to the combined size Si + So − Ss of the in-, out-, and strongly 
connected components calculated above. This, however, is not correct because the definition of the 
giant weakly connected component includes some vertices that are not in the in-, out-, or strongly 
connected components. An example would be any vertex that is reachable from the giant in-
component but that does not itself have a path to the strongly connected component and hence is 
not in the giant in-component. Thus the size of the giant weakly connected component is, in 
general, larger than Si + So − Ss. Nonetheless, we can still calculate the size of the giant weakly 
connected component by an argument quite similar to the ones we have already seen. 

A vertex belongs to the giant weakly connected component if any of its edges, ingoing or 
outgoing, are connected to a vertex in that component. Let u now be the probability that a vertex is 
not connected to the giant weakly connected component via the vertex at the other end of one of its 
ingoing edges and let v be the equivalent probability for an outgoing edge. Then the probability 
that a vertex with in-degree j and out-degree k is not in the giant weakly connected component is 
ujνk and the probability that it is in the giant weakly connected component is 1 − ujvk. Averaging 
over the joint distribution pjk of the two degrees we then find that the size Sω of the giant weakly 
connected component is
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We can derive the value of u by noting that the vertex at the end of an ingoing edge is not in the 
giant weakly connected component with probability ujνk again, but with j and k being the numbers 
of edges excluding the edge we followed to reach the vertex. These numbers are distributed 
according to the appropriate excess degree distribution and, performing the average, we find that
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Similarly we can show that

 

(13.159) 
  

and Eqs. (13.157) to (13.159) between them give us our solution for the size of the giant weakly 
connected component. 

 

 

 



13.11.3 THE APPEARANCE OF THE GIANT COMPONENTS  

As in the undirected random graph, there may or may not be giant components in the direct 
random graph, depending on the degree distribution. We can derive conditions for the existence of 
the giant components using the machinery developed above. The calculation is easiest for the giant 
in–and out-components. Their size is given by Eqs. (13.154) and (13.155). Given that g00(1, 1) = 1 
(Eq. (13.145)), these equations give a non-zero size only if u or v is less than 1. Looking at Eq. 
(13.151) for the value of v we see a similar situation to that depicted in Fig. 13.6: we can have a 
solution with v < 1, and hence a giant in-component, only if
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or equivalently if
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where we have made use of Eqs. (13.148) and (13.149). Similarly we can have a giant out-
component only if
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or equivalently,

 

(13.163) 

 

 

 

 

 



  

Interestingly, Eqs. (13.161) and (13.163) are identical, meaning that the conditions for the giant 
in–and out-components to appear are the same. If there is a phase transition at which one appears, 
the other also appears at the exact same moment.202 

We can express (13.161) directly in terms of the degree distribution if we want. Substituting 
from Eq. (13.143) we find that
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and hence the giant in–and out-components appear if
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If we prefer we can write  to give the alternative form
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This result is the equivalent for a directed network of Eq. (13.76) for the undirected case. 
The calculation for the giant strongly connected component is similar. From Eq. (13.153) we see 

that Ss = 0 unless at least one of u and v is non-zero, so the condition for the existence of a giant 
strongly connected component is the same as for the in–and out-components, Eq. (13.166). In 
other words, the giant in-, out-, and strongly connected components all appear or disappear 
simultaneously. 

The giant weakly connected component, however, is different. It is possible for there to be a 
giant weakly connected component in a network but no giant strongly connected component and 
hence the condition for the existence of a giant weakly connected component must be different 
from that for the other giant components. For instance, a network in which all vertices have either 
only ingoing edges or only outgoing edges can have a giant weakly connected component but 
trivially has no strongly connected component of size greater than one, since there are only paths 
to or from each vertex, but not both. Weakly connected components, however, are generally of less 
interest than strongly connected ones, and the calculation of the condition for the existence of the 

 

 

 

 

 

 



giant weakly connected component is non-trivial, so we leave it as an exercise for the motivated 
reader and move on to other things. 



13.11.4 SMALL COMPONENTS  

We can also calculate the distribution of small components in a directed random graph. In fact the 
distribution of small strongly connected components is trivial: there aren′t any. Or more properly 
the probability that a randomly chosen vertex belongs to a strongly connected component of size 
greater than one other than the giant strongly connected component is zero in the limit of large 
network size. To see this, recall that the small components in the undirected configuration model 
take the form of trees (see Section 13.7). If we consider a small strongly connected component in a 
directed network and ignore the directions of its edges, then the same argument we used before 
indicates that the resulting subgraph will also be a tree. But a tree has no loops in it, which leads to 
a contradiction because a strongly connected component must have loops—the paths in either 
direction between any pair of vertices form a loop. Thus, we conclude, there cannot be any small 
strongly connected components of size greater than one in the network. 

In fact, this is not precisely true. In a random network there is always some chance that, for 
example, two vertices will each have a directed edge to the other, forming a strongly connected 
component of two vertices. In the limit of large n, however, the probability that a randomly chosen 
vertex belongs to such a component tends to zero. A detailed calculation shows that on average 
there is only a constant number of short loops in the network and their density vanishes as 1/n in 
the limit of large network size. 

There can however be small in–and out-components. In a directed network, each strongly 
connected component has its own in–and out-components. In the present model, as we have said, 
we have no small strongly connected components, other than single vertices, so the component 
structure consists of the giant in–and out-components and then a large number of small in–and out-
components for single vertices. Let us ask what the probability is that a randomly chosen vertex 
has a small out-component of size s, i.e., that there are s vertices including itself that can be 
reached by directed paths starting from the vertex. We can calculate the distribution of sizes by the 
same method we used for the undirected case. We define a generating function h1(y) for the 
distribution of the size of the out-component of a vertex reached by following an edge in the 
forward direction, which then satisfies an equation of the form of Eq. (13.86), except that the 
generating function g1 for the excess degree distribution is replaced by the corresponding 
generating function for the directed network, Eq. (13.149), giving
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And the generating function h0(y) for the size of the out-component to which a randomly chosen 
vertex belongs is then

 

(13.168) 

 

 

 

 



  

We can write similar equations for in-components too and, armed with these equations, we can 
find the average size of the in–or out-component to which a vertex belongs, or even find the entire 
distribution of component sizes using the equivalent of Eq. (13.127). 

 

 

 



PROBLEMS  

13.1 Consider the binomial probability distribution .

a. Show that the distribution has probability generating function g(z) = (pz + 1 − p)n.
 

b. Find the first and second moments of the distribution from Eq. (13.25) and hence show that 
the variance of the distribution is σ2 = np(1 − p). 

c. Show that the sum of two numbers drawn independently from the same binomial 
distribution is distributed according to . 

13.2 Consider a configuration model in which every vertex has the same degree k.

a. What is the degree distribution pk? What are the generating functions g0 and g1 for the 
degree distribution and the excess degree distribution? 

b. Show that the giant component fills the whole network for all k ≥ 3. 
c. What happens when k = 1? 
d. When k = 2 show that in the limit of large n the probability πs that a vertex belongs to a 

component of size s is given by . 

13.3 Consider the configuration model with exponential degree distribution pk = (1− e−λ)e−λk with λ 
> 0, so that the generating functions g0(z) and g1(z) are given by Eq. (13.130).

a. Show that the probability u of Eq. (13.91) satisfies the cubic equation

 

b. Noting that u = 1 is always a trivial solution of this equation, show that the non-trivial 
solution corresponding to the existence of a giant component satisfies the quadratic 
equation u2 − (2eλ − 1)u + (eλ − 1)2 = 0, and hence that the size of the giant component, if 
there is one, is

 

c. Show that the giant component exists only if λ < ln 3. 

13.4 Equation (13.74) tells us on average how many vertices are a distance d away from a given 
vertex.

a. Assuming that this expression works for all values of d (which is only a rough 
approximation to the truth), at what value of d is this average number of vertices equal to 
the number n in the whole network?

 

 

 

 



b. Hence derive a rough expression for the diameter of the network in terms of c1 and c2, and 
so argue that configuration model networks display the small-world effect in the sense that 
typical geodesic distances between vertices are O(log n). 

13.5 Consider a network model in which edges are placed independently between each pair of 
vertices i, j with probability pij = Kƒiƒj, where K is a constant and ƒi is a number assigned to vertex 
i. Show that the expected degree ci of vertex i within the model is proportional to ƒi, and hence that 
the only possible choice of probability with this form is pij = cicj/2m, as in the model of Section 
13.2.2. 
  

13.6 As described in Section 13.2, the configuration model can be thought of as the ensemble of all 
possible matchings of edge stubs, where vertex i has ki stubs. Show that for a given degree 
sequence the number Ω of matchings is

 

which is independent of the degree sequence. 
  

13.7 Consider the example model discussed in Section 13.8.1, a configuration model with vertices 
of degree three and less only and generating functions given by Eqs. (13.94) and (13.95).

a. In the regime in which there is no giant component, show that the average size of the 
component to which a randomly chosen vertex belongs is

 

b. In the same regime find the probability that such a vertex belongs to components of size 1, 
2, and 3. 

13.8 Consider a directed random graph of the kind discussed in Section 13.11.

a. If the in–and out-degrees of vertices are uncorrelated, i.e., if the joint in/out-degree 
distribution pjk is a product of separate functions of j and k, show that a giant strongly 
connected component exists in the graph if and only if c(c − 1) > 0, where c is the mean 
degree, either in or out. 

b. In real directed graphs the degrees are usually correlated (or anti-correlated). The 
correlation can be quantified by the covariance ρ of in–and out-degrees. Show that in the 
presence of correlations, the condition above for the existence of a giant strongly connected 
component generalizes to c(c − 1) + ρ > 0. 

c. In the World Wide Web the in–and out-degrees of the vertices have a measured covariance 
of about ρ = 180. The mean degree is around c = 4.6. On the basis of these numbers, do we 
expect the Web to have a giant strongly connected component? 

 

 

 



CHAPTER 14 

MODELS OF NETWORK FORMATION 

A discussion of models of the formation of networks, particularly models of networks that 
grow by addition of vertices, such as the World Wide Web or citation networks 

THE MODELS described in Chapters 12 and 13 provide an excellent tool for studying the 
structural features of networks, such as giant and small components, degree distributions, the 
lengths of paths in networks, and so forth. Moreover, as we will see in later chapters, they can also 
serve as a convenient basis for further modeling work, such as the modeling of network resilience 
or of the spread of diseases over contact networks. 

But there is another important class of network model that has an entirely different purpose. In 
the models we have seen so far, the parameters of the network, such as the number of vertices and 
edges or the degree distribution, are fixed from the outset—chosen by the modeler to have some 
desired values. For instance, if we are interested in networks with power-law degree distributions, 
we make a random graph model with a power-law degree distribution as in Section 13.10 and then 
explore its structure analytically or computationally. But models of this kind offer no explanation 
of why the network should have a power-law degree distribution in the first place. In this chapter 
we describe models of a different kind that offer such an explanation. 

The models in this chapter are generative network models. That is, they model the mechanisms 
by which networks are created. The idea behind models such as these is to explore hypothesized 
generative mechanisms to see what structures they produce. If the structures are similar to those of 
networks we observe in the real world, it suggests—though does not prove—that similar 
generative mechanisms may be at work in the real networks. The best-known example of a 
generative network model, and the one that we study first in this chapter, is the “preferential 
attachment” model for the growth of networks with power-law degree distributions. Later in the 
chapter we examine a number of other models, including generalizations of preferential attachment 
models, vertex copying models, and models based on optimization.

 

 

 



14.1 PREFERENTIAL ATTACHMENT  

As discussed in Section 8.4, many networks are observed to have degree distributions that 
approximately follow power laws, at least in the tail of the distribution. Examples include the 
Internet, the World Wide Web, citation networks, and some social networks and biological 
networks. The power law is a somewhat unusual distribution and its occurrence in empirical data is 
often considered a potential indicator of interesting underlying processes.203 A natural question to 
ask therefore is how might a network come to have such a distribution? This question was first 
directly considered in the 1970s by Price [275], who proposed a simple and elegant model of 
network formation that gives rise to power-law degree distributions. 

See Section 4.2 for a discussion of citation networks. 

Price was interested in, among other things, the citation networks of scientific papers, having 
authored an important early paper on the topic in the 1960s in which he pointed out the power-law 
degree distribution seen in these networks [274]. In considering the possible origins of the power 
law, Price was inspired by the work of economist Herbert Simon [299], who noted the occurrence 
of power laws in a variety of (non-network) economic data, such as the distribution of people’s 
personal wealth. Simon proposed an explanation for the wealth distribution based on the idea that 
people who have money already gain more at a rate proportional to how much they already have. 
This seems a reasonable supposition. Wealthy individuals make money by investing the money 
they have, and the return on their investment is essentially proportional to the amount invested. 
Simon was able to show mathematically that this “rich-get-richer” effect can give rise to a power-
law distribution and Price adapted Simon’s methods, with relatively little change, to the network 
context. Price gave a name to Simon’s mechanism:204 he called it cumulative advantage, although 
it is more often known today by the name preferential attachment, which was coined in 1999 by 
Barabási and Albert [27]. In this book we use principally the latter term, which has become the 
accepted name in recent years. 

Price’s model of a citation network is as follows. We assume that papers are published 
continually (though they do not have to be published at a constant rate) and that newly appearing 
papers cite previously existing ones. As discussed in Section 4.2, the papers and citations form a 
directed citation network, the papers being the vertices and the citations being the directed edges 
between them. Since no paper ever disappears after it is published, vertices in this network are 
created but never destroyed. 

Let the average number of papers cited by a newly appearing paper be c. In the language of 
graph theory, c is the average out-degree of the network; in the language of publishing, c is the 
average size of the bibliography of a paper. The model allows for the actual sizes of the 
bibliographies to fluctuate about c. So long as the distribution of sizes satisfies a few basic sanity 
conditions,205 only the average value is important for the behavior of the model in the limit of large 
network size. In real citation networks the sizes of bibliographies also vary from one field to 
another and depend on when papers were published, the average bibliography having grown larger 
over the years in most fields, but these effects are neglected in the model. 

The crucial central assumption of Price’s model is that a newly appearing paper cites previous 
ones chosen at random with probability proportional to the number of citations those previous 
papers already have. In this most basic of models there is no question of which papers are most 
relevant topically or which papers are most original or best written or the difference between 
research articles and reviews, or any of the many other factors that certainly affect real citation 
patterns. The model is thus very much a simplified representation of the citation process. As we 

 

 



have seen with the random graphs of previous chapters, however, even simple models can lead 
to real insights. We certainly need to remember that the model only represents one aspect of the 
citation process—and a hypothetical one at that—but with this in mind let us press on and see what 
we can discover. 

As with personal wealth, it is not implausible that the number of citations a paper receives could 
increase with the number it already has. When one reads papers, one often looks up the other 
works that those papers cite and reads some of them too. If a work is cited often, then, all other 
things being equal, we are more likely to come across it than a less cited work. And if we read it 
and like it, then perhaps we will cite it ourselves if we write a paper on the same topic. This does 
not mean that the probability of a paper receiving a citation is precisely proportional to the number 
of citations the paper has already, but it does at least give some justification for why the rich 
should get richer in this paper citation context. 

In fact, upon further thought, it’s clear that the probability of receiving a new citation cannot be 
precisely proportional to the number of citations a paper already has. Except under unusual 
circumstances, papers start out life with zero citations, which, with a strict proportionality rule, 
would mean that their probability of getting new citations would also be zero and so they would 
have zero citations for ever afterwards. To get around this hitch, Price proposed that in fact the 
probability that a paper receives a new citation should be proportional to the number that it already 
has plus a positive constant a. (In fact, Price only considered one special case a = 1 in his original 
model, but there seems to be no particular reason to limit ourselves to this case, so we will treat the 
case of general a > 0.) 

The constant a in effect gives each paper a number of “free” citations to get it started in the 
race—each paper acts as though it started off with a citations instead of none. An alternative 
interpretation is that a certain fraction of citations go to papers chosen uniformly at random 
without regard for how many citations they current have, while the rest go to papers chosen in 
proportion to current citation count.206 This gives all papers a chance to accrue citations, even if 
they currently have none. (We discuss this interpretation in more detail in Section 14.1.1, where 
we use it to construct a fast algorithm for simulating Price’s model.) 

We also need to specify what the starting state of the network is, how we initialize the model to 
begin with. It turns out in fact that in the limit of large network size the predictions of the model 
don’t depend on the initial conditions, but we could, for instance, start the network out with a small 
set of initial papers having zero citations each. 

Thus, in summary, Price’s model consists of a growing network of papers and their citations in 
which vertices (papers) are continually added but none are ever taken away, each paper cites on 
average c others (so that the mean out-degree is c), and the cited papers are chosen at random207 
with probability proportional to their in-degree plus a constant a. 

See Section 6.4.2 for a discussion of acyclic networks. 

One important property of Price’s model is immediately apparent: it generates purely acyclic 
networks, since every edge points from a more recently added vertex to a less recently added one, 
i.e., backward in time. Thus all directed paths in the network point backward in time and hence 
there can be no closed loops, because to close a loop we would need edges pointing forward in 
time as well. This fits well with the original goal of the model as a model of citation, since citation 
networks are acyclic, or very nearly so (see Section 4.2). On the other hand it fits poorly with some 
other directed networks such as the World Wide Web, although the model is still sometimes used 
as a model for power-law distributions in the Web. 

Armed with our definition of Price’s model, we will now write down equations governing the 
distribution of the in-degrees of vertices, i.e., the numbers of citations received by papers in terms 
of the parameters c and a, and hence solve for the degree distribution and various other quantities, 
at least in the limit of large network size. We will discuss models of both directed and undirected 
graphs in this chapter, so we will need to be careful to distinguish in-degree in the directed case 
from ordinary undirected degree in the undirected case. Previously in this book we have done this 
by denoting the in-degree of a vertex i by  (see Section 6.9), but this notation can make our 
equations quite difficult to read, so in the interests of clarity we will in this chapter adopt instead 

 



the notation introduced by Dorogovtsev et al. [99] in which the in-degree of vertex i is denoted 
qi . Degrees in undirected graphs will still be denoted ki just as before. 

So consider Price’s model of a growing network and let pq(n) be the fraction of vertices in the 
network that have in-degree q when the network contains n vertices—this is the in-degree 
distribution of the network—and let us examine what happens when we add a single new vertex to 
the network. 

Consider one of the citations made by this new vertex. In the model, the probability that the 
citation is to a particular other vertex i is proportional to qi + a, where a is a positive constant. 
Since the citation in question has to be to some paper, this probability must be normalized such 
that its sum over all i is 1. In other words the correctly normalized probability must be

 

(14.1) 
  

where we have written the average in-degree as . In the second equality we have 
made use of the fact that the average out-degree of the network is c by definition, and that the 
average in- and out-degrees of a directed network are equal (see Eq. (6.27)) so that �q� = c. 

Each newly appearing paper cites c others on average, so the expected number of new citations 
to vertex i upon appearance of our new paper is c times Eq. (14.1). And there are npq(n) vertices 
with degree q in our network and hence the expected number of new citations to all vertices with 
degree q is

 

(14.2) 
  

Now we can write down a so-called master equation for the evolution of the in-degree 
distribution as follows. When we add a single new vertex to our network of n vertices, the number 
of vertices in the network with in-degree q increases by one for every vertex previously of in-
degree q − 1 that receives a new citation,208 thereby becoming a vertex of in-degree q. From Eq. 
(14.2) we know that the expected number of such vertices is

 

(14.3) 
  

Similarly, we lose one vertex of in-degree q every time such a vertex receives a new citation, 
thereby becoming a vertex of in-degree q + 1. The expected number of such vertices receiving 
citations is

 

 

 

 

 



 

(14.4) 
  

The number of vertices with in-degree q in the network after the addition of a single new vertex is 
(n + 1)pq(n + 1) which, putting together the results above, is given by

 

(14.5) 
  

The first term on the right-hand side here represents the number of vertices previously of in-degree 
q, the second term represents the vertices gained, and the third term the vertices lost. 

Equation (14.5) applies for all values of q except q = 0. When q = 0 there are no vertices of 
lower degree that can gain an edge to become vertices of degree zero, and hence the second term in 
Eq. (14.5) doesn’t appear. On the other hand, we gain a vertex of degree zero whenever a new 
vertex is added to the network, since by hypothesis papers have no citations when they are first 
published. Since exactly one vertex is added in going from a network of n vertices to a network of 
n + 1, the appropriate equation for q = 0 is:

 

(14.6) 
  

Now let us consider the limit of large network size n → ∞ and calculate the asymptotic form of 
the degree distribution in this limit.209 Taking the limit n → ∞ and using the shorthand pq = pq(∞), 
Eqs. (14.5) and (14.6) become

 

(14.7) 
  

 

 

 

 

 

 

 

 

 



(14.8) 
  

The second of these equations we can easily rearrange to give an explicit expression for the 
fraction p0 of degree-zero vertices:

 

(14.9) 
  

The solution for q ≥ 1 is a little more complicated, though only a little. Rearranging Eq. (14.7) for 
pq we find that

 

(14.10) 
  

We can use this equation to calculate pq iteratively for all values of q starting from our solution for 
p0, Eq. (14.9). First, we set q = 1 in Eq. (14.10) to get

 

(14.11) 
  

Now we can use this result to calculate p2:

 

(14.12) 
  

and

 

 

 

 

 

 

 

 

 



 

(14.13) 
  

and so forth. It’s easy to see that for general q the correct expression must be

 

(14.14) 
  

This is effectively a complete solution for the degree distribution of Price’s model, but there is a 
little more we can do to write it in a useful form. We make use of the gamma function,

 

(14.15) 
  

which has the useful property that

 

(14.16) 
  

for all x > 0. Iterating this formula, we see that

 

(14.17) 
  

Using this result in Eq. (14.14) we can write

 

 

 

 

 

 

 



 

(14.18) 
  

This expression can be simplified further by writing it in terms of Euler’s beta function, which is 
defined by

 

(14.19) 
  

If we multiply both the numerator and the denominator of Eq. (14.18) by Γ(2 + a/c) = (1 + a/c)Γ(1 
+ a/c), we find that

 

(14.20) 
  

or

 

(14.21) 
  

Note that this expression is not only correct for q ≥ 1 but also gives the correct value when q = 0. 
One of the nice things about Eq. (14.21) is that it depends on q only via the first argument of the 

upper beta function. Thus if we want to understand the shape of the degree distribution we need 
only to understand the behavior of this one function. 

In particular, let us examine the behavior for large q and fixed a and c. For large values of its 
first argument, we can rewrite the beta function using Stirling’s approximation for the gamma 
function [2]

 

 

 

 

 

 

 

 

 



(14.22) 
  

which means that

 

(14.23) 
  

But

 

(14.24) 
  

where the last equality becomes exact in the limit of large x. Then

 

(14.25) 
  

In other words, the beta function B(x, y) falls off as a power law for large values of x, with 
exponent y. 

Applying this finding to Eq. (14.21) we then discover that for large values of q the degree 
distribution of our network goes as pq ∼ (q + a)−α, or simply

 

(14.26) 
  

when q » a, where the exponent α is

 

 

 

 

 

 

 



(14.27) 
  

Thus Price’s model for a citation network gives rise to a degree distribution with a power-law tail. 
This is very much in keeping with the degree distributions of real citation networks, which, as we 
saw in Fig. 8.8, appear to have clear power-law tails. 

Note that the exponent α = 2 + a/c is strictly greater than two (since a and c are both strictly 
positive). Most measurements put the exponent of the power law for citation networks around α = 
3 (see Table 8.1), which is easily achieved in the model by setting the constants a and c equal. In a 
typical experimental situation the exponent α and the parameter c, the mean size of a paper’s 
bibliography, are easily measured, but the parameter a, which represents the number of “free” 
effective citations a paper receives upon publication, is not. Typically therefore the value of a is 
extracted by rearranging Eq. (14.27) to give a = c(α − 2). 

While it is delightful that Price’s simple model generates a power-law degree distribution 
similar to that seen in real networks, we should not take the details of the model too seriously, nor 
the exact relation between the parameters and the exponent of the power law. As we noted at the 
start of this section, the model is highly simplified and substantially incomplete as a model of the 
citation process, omitting many factors that are undoubtedly important for real citations, including 
the quality and relevance of papers, developments and fashions in the field of study, the reputation 
of the publishing journal and of the author, and many others besides. Still, Price’s model is striking 
in its ability to reproduce one of the most interesting features of citation networks using only a 
small number of reasonable assumptions, and many scholars believe that it may capture the 
fundamental mechanism behind the observed power-law degree distribution. 

 

 



14.1.1 COMPUTER SIMULATION OF PRICE’S MODEL  

When Price proposed his model in the 1970s, analytic treatments like the one above were 
essentially the only tool available for understanding the behavior of such models. Today, however, 
we can go further and study the operation of the model explicitly by performing computer 
simulations following the rules Price laid down. In addition to providing a useful check on our 
solution for the degree distribution, such simulations also allow us to generate real examples of 
networks on our computer. We can then measure these networks to determine the values, within 
the model, of any network quantities we like—path lengths, correlations, clustering coefficients, 
and so forth—including ones for which we do not at present have an analytic solution. Researchers 
have also made use of simulated networks as a convenient but still relatively realistic substrate for 
other kinds of calculation, including solutions of dynamical models, percolation processes, opinion 
formation models, and others. 

In principle, simulation of Price’s model appears straightforward. Typically one simulates the 
model with the out-degrees of vertices fixed to be exactly equal to c, where c is restricted to integer 
values. (In the original model and our analysis above, c was only the average out-degree—actually 
out-degree could fluctuate about the average.) Then the only complicated part of the simulation is 
the selection of the vertices that receive new edges, which has to be done in a random but non-
uniform way as a function of the vertices’ current in-degree. There are standard techniques for 
simulating such non-uniform random processes and one can without too much labor create a 
simple program that carry out the steps of the model. This, however, is not usually the best way to 
proceed. A naive direct simulation of this kind becomes slow when the network gets large, which 
limits the size of the network that can be generated. Luckily, there is a much faster way to perform 
the simulation that allows larger networks to be generated in shorter times, while still being simple 
to program on a computer. This method, first proposed by Krapivsky and Redner [187], works as 
follows. 

When we create a new edge in Price’s model we attach it to a vertex chosen in proportion to in-
degree plus a constant a. Let us denote by θi the probability that an edge attaches to vertex i, which 
from Eq. (14.1) is given by

 

(14.28) 
  

Now consider an alternative process in which upon creating a new edge we do one of two things. 
With some probability φ we attach the edge to a vertex chosen strictly in proportion to its current 
in-degree, i.e., with probability

 

(14.29) 

 

 

 

 



  

Alternatively, with probability 1 − φ, we attach to a vertex chosen uniformly at random from all n 
possibilities, i.e., with probability 1/n. Then the total probability  of attaching to vertex i in this 
process is

 

(14.30) 
  

Now let us make the choice φ = c/(c + a), so that

 

(14.31) 
  

This, however, is precisely equal to the probability θi, Eq. (14.28), of selecting a vertex in the Price 
model and the two processes thus choose vertices with the exact same probabilities. 

So an alternative way of performing a step of Price’s model is the following: 

With probability c/(c + a) choose a vertex in strict proportion to in-degree. Otherwise choose 
a vertex uniformly at random from the set of all vertices. 

 

Figure 14.1: The vertex label list used in the simulation of Price’s model. The list (bottom) 
contains one entry for the target of each edge in the network (top). In this example, there are three 
edges that point to vertex 1 and hence there are three elements containing the number 1 in the list. 
Similarly there are two containing the number 2, because vertex 2 is the target of two edges. And 
so forth. 
  

 

 

 

 

 

 

 

 



The choice between the two parts can be achieved, for example, by generating a random number r 
in the range 0 ≤ r < 1. If r < c/(c + a) then we choose a vertex in proportion to in-degree. 
Otherwise we choose uniformly. 

Choosing a vertex uniformly is easily accomplished. Choosing a vertex in proportion to in-
degree is only slightly harder. It can be done rapidly by noting that choosing in proportion to in-
degree is equivalent to picking an edge in the network uniformly at random and choosing the 
vertex which that edge points to. By definition this makes a vertex with in-degree q exactly q times 
as likely to be chosen as a vertex with in-degree 1, since it has q opportunities to be chosen, one 
for each of the edges that point to it. 

To turn this observation into a computer algorithm we make a list, stored for instance in an 
ordinary array, of the target of each directed edge in the network. That is, the list’s elements 
contain the vertex labels i of the vertices to which each edge points. Figure 14.1 shows an example 
for a small network. Note that the edges do not have to be in any particular order. Any order will 
do. Nor does the size of the array used to store the list have to match the length of the list exactly; 
it can contain empty elements at the end as shown in the figure. Indeed, since making already 
existing arrays larger is difficult in most computer languages, it makes sense to initially create an 
array that is large enough to hold the longest list we will need. (This means that it should have 
length nc if the out-degree of vertices is constant. If out-degree is allowed to fluctuate then the 
longest list might be a bit larger or smaller than nc, in which case one might create an array of size 
nc plus a few percent, to be on the safe side.) 

Once we have our list, choosing a vertex in proportion to its in-degree becomes a trivial 
operation: we simply choose an element uniformly at random from the list and our vertex is 
identified by the contents of that element. When a new edge is added to the network, we must also 
update the list by adding the target of that edge to the end of the list. 

Thus our algorithm for creating a new edge is the following:

1. Generate a random number r in the range 0 ≤ r < 1. 
2. If r < c/(c + a), choose an element uniformly at random from the list of targets. 
3. Otherwise choose a vertex uniformly at random from the set of all vertices. 
4. Create an edge linking to the vertex thus selected, and add that vertex to the end of the list 

of targets. Each step in this process can be accomplished in constant time and hence the 
growth of a network of n vertices can be accomplished in time O(n) (provided other parts 
of the program are implemented efficiently so that they also take constant time per step). 

Figure 14.2a shows the degree distribution of a 100-million-node network generated 
computationally in this fashion, and the power-law form in the tail of the distribution is clearly 
visible. A practical problem, however, is the noise in the tail of the histogram, which makes the 
exact form of the distribution hard to gauge. This is exactly the same problem as we encountered 
for real-world data in Section 8.4.1: the bins in the tail of the histogram have relatively few 
samples in them and so the statistical fluctuations are large as a fraction of the number of samples. 
Indeed, in many respects simulation data often behave in similar ways to experimental data and 
they can often be treated using the same techniques. In this case we can take a hint from Section 
8.4.1 and plot a cumulative distribution function instead of a histogram. To recap, the cumulative 
distribution function Pq is
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(see Eq. (8.4)) and is expected to have a power-law tail with an exponent α − 1 = 1 + a/c, one less 
than the exponent of the degree distribution itself. Figure 14.2b shows the cumulative distribution 
of degrees for our simulation and we now see a much cleaner power-law behavior over several 
decades in q. 

For comparison we can also calculate the cumulative distribution function analytically from our 
solution of the model. To do this, we make use of the standard integral form for the beta function:
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Using this expression we find that

 

(14.34) 
  

Given that B(x, y) goes as x−y for large x (Eq. (14.25)), this implies that indeed the cumulative 
distribution function has a power-law tail with exponent 1 + a/c. 

In Fig. 14.2b we show Eq. (14.34) along with the simulation data, and the simulation and 
analytic solution agree well, as we would hope.

 

 

 

 



 

Figure 14.2: Degree distribution in Price’s model of a growing network. (a) A histogram of the 
in-degree distribution for a computer-generated network with c = 3 and a = 1.5 which was grown 
until it had n = 108 vertices. The simulation took about 80 seconds on the author’s computer using 
the fast algorithm described in the text. (b) The cumulative distribution function for the same 
network. The points are the results from the simulation and the solid line is the analytic solution, 
Eq. (14.34). 
  

 

 



14.2 THE MODEL OF BARABÁSI AND ALBERT  

Price’s model of a growing network is an elegant one and the existence of an exact solution 
showing that its degree distribution has a power-law tail makes a persuasive case for preferential 
attachment as a possible origin for power-law behavior. At least until recently, however, Price’s 
work in this area was not well known outside of the information science community. Preferential 
attachment did not become widely accepted as a mechanism for generating power laws in 
networks until much later, in the 1990s, when it was independently discovered by Barabási and 
Albert [27], who proposed their own model of a growing network (along with the name 
“preferential attachment”). The Barabási-Albert model, which is certainly the best known 
generative network model in use today, is similar to Price’s, though not identical, being a model of 
an undirected rather than a directed network. 

In the model of Barabási and Albert, vertices are again added one by one to a growing network 
and each vertex connects to a suitably chosen set of previously existing vertices. The connections, 
however, are now undirected and the number of connections made by each vertex is exactly c 
(unlike Price’s model, where the number of connections was required only to take an average 
value of c but might vary from step to step). Note that this implies that c must be an integer, since 
a vertex cannot have non-integer degree. Connections are made to vertices with probability 
precisely proportional to the vertices’ current degree. Notice that there is no in- or out-degree now 
because the network is undirected. Connections are made simply in proportion to the (undirected) 
degree. We will denote the degree of vertex i by ki to distinguish it from the directed in-degree qi 
of the last section. As before, vertices and edges are only ever added to the network and never 
taken way, which means, among other things, that there are no vertices with degree k < c. The 
smallest degree in the network is always k = c. 

One can write down a solution for the model of Barabási and Albert using a master equation 
method similar to that of Section 14.1,212 but in fact there is no need, because it is straightforward 
to show that the model is equivalent to a special case of Price’s model. Imagine that, purely for the 
purposes of our discussion, we give each edge added to the network a direction, running from the 
vertex just added to the previously existing vertex that the edge connects to. That is each edge runs 
from the more recent of the two vertices it connects to the less recent. In this way we convert our 
network into a directed network in which each vertex has out-degree exactly c (since this is the 
number of outgoing edges a vertex starts with and it never gains any more). And the total degree ki 
of a vertex in the sense of the original undirected network is the sum of the vertex’s in-degree and 
out-degree, which is ki = qi + c where qi is the in-degree as before. 

But given that the probability of an edge attaching to a vertex is simply proportional to ki, it is 
thus also proportional to qi + c, which is the same as in Price’s model if we make the particular 
choice a = c. Thus the distribution of in-degrees in this directed network is the same as for Price’s 
model with a = c, which we find from Eq. (14.21) to be
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To get the distribution of the total degree we then simply replace q + c by k to get
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This expression can be simplified further by making use of Eq. (14.17) to write
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and similarly
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so that
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for k ≥ c, where we have used (14.17) again to get rid of the remaining gamma functions. In the 
limit where k becomes large, this gives
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and hence the Barabási-Albert model generates a degree distribution with a power-law tail that 

 

 

 

 

 

 



always has an exponent α = 3. 
Equation (14.39) was first derived by Krapivsky et al. [189] and independently by Dorogovtsev 

et al. [99]. A more detailed treatment was later given by Bollobás et al. [48], which clarifies 
precisely the domain of validity of the solution and the possible deviations from the expected value 
of pk. 

The model of Barabási and Albert can be simulated efficiently on a computer by exploiting the 
same mapping to Price’s model and the simulation method described in Section 14.1.1. Again we 
regard the network as a directed one and maintain a list of targets of every directed edge, i.e., the 
vertices that the edges point to. Then, setting a = c, the algorithm of Section 14.1.1 becomes 
particularly simple: with probability  we choose an element from our list uniformly at random and 
take the contents of that element as our target vertex. Otherwise we choose a target uniformly at 
random from the set of all vertices currently in existence. Then we create a new edge from the 
vertex just added to the target we have selected and also add that target to the end of our list. 

The Barabási-Albert model is attractive for its simplicity—it doesn’t require the offset 
parameter a of Price’s model and hence has one less parameter to worry about. It is also satisfying 
that one can write the degree distribution without using special functions such as the beta and 
gamma functions that appear in the solution of Price’s model. The price one pays for this 
simplicity is that the model can no longer match the exponents observed in real networks, being 
restricted to just a single exponent value α = 3.



14.3 FURTHER PROPERTIES OF PREFERENTIAL ATTACHMENT MODELS 

The models of Price and of Barabási and Albert were proposed as explanations for the observed 
power-law degree distributions in networks such as the Web, citation networks, and others, and for 
this reason the degree distribution is the property of these models that has attracted most interest. 
However, it is not the only property that can be calculated. The master equation method can be 
extended to the calculation of a number of other properties, many of which are interesting in their 
own right. We describe a few of these calculations in this section.

 



14.3.1 DEGREE DISTRIBUTION AS A FUNCTION OF TIME OF CREATION  

Consider a network grown according to Price’s model of Section 14.1. Older vertices in the 
network—those added earlier in the growth process—have more time to acquire links from other 
vertices and hence we might expect that they would on average have higher in-degree. This indeed 
turns out to be the case, as we can show by calculating the degree distribution as a function of the 
time at which vertices are created. 

Let pq (t, n) be the average fraction of vertices in our directed network that were created at time t 
and have in-degree q when the network has n vertices total. The time of creation is measured in 
terms of the number of vertices, the first vertex having t = 1 and the last having t = n. 
Alternatively, you can just think of t as counting the vertices from 1 to n, recording the order in 
which they were added. Strictly t need not reflect actual time, because the vertices need not have 
been added at a constant rate, but if we know the real times at which vertices were added we can 
easily convert between our timescale and real time. 

We can write down a master equation for the evolution of pq(t,n) as follows. Upon the addition 
of a new vertex to the network, the expected number of new edges acquired by previously existing 
vertices with in-degree q is independent of time of those vertices creation and, following Eq. 
(14.2), is given by

 

(14.41) 
  

with the parameters c and a defined as in Section 14.1. Then the master equation takes the form

 

(14.42) 
  

The only exception to this equation is, as before, for the case of q = 0, where we get

 

(14.43) 
  

 

 

 

 

 

 



Notice the Kronecker delta, which adds a single vertex of in-degree zero if t = n, but none 
otherwise. 

These equations, though correct, don’t make much sense in the limit of large n, since the 
fraction of vertices created at time t goes to zero in this limit because only one vertex is created at 
any particular t. So instead we change variables to a rescaled time

 

(14.44) 
  

which takes values between zero (oldest vertices) and one (youngest vertices). At the same time 
we also change from pq(t, n) to a density function πq(τ, n) such that πq(τ, n) dτ is the fraction of 
vertices that have in-degree q and fall in the interval from τ to τ + dτ. The number of vertices in the 
interval dτ is n dτ, which implies that πq dτ = pq × n dτ and hence

 

(14.45) 
  

Being a density function, πq does not vanish as n → ∞.
 

The downside of this variable change is that τ is no longer constant for a given vertex. A vertex 
created at time t has rescaled time t/n when there are n vertices in the network but t/(n + 1) when 
there are n + 1. Thus, in terms of τ and πq, Eq. (14.42) becomes

 

(14.46) 
  

Now we consider the limit where n → ∞. If we define the shorthand notation πq(t) = πq(t, ∞) and 
the small quantity ∈ = 1/n, Eq. (14.42) becomes

 

 

 

 

 

 

 



(14.47) 
  

where we have dropped terms of order ∈2.
 

As n → ∞, we have ∈ → 0 and the first two terms become a derivative thus:

 

(14.48) 
  

and so our master equation becomes a differential equation in this case:

 

(14.49) 
  

The corresponding equation for q = 0 is

 

(14.50) 
  

so long as τ < 1. For the special case τ = 1 the δtn in Eq. (14.43) presents a problem, but on the 
other hand for τ = 1 we know what the answer is anyway: there is always exactly one vertex 
created at time t = n, which has in-degree zero, so π0(1) = 1 in the language of our rescaled 
variables.213 In effect, this just provides a boundary condition on π0(τ). The corresponding 
boundary condition for q ≥ 1 is πq(1) = 0, since there are no vertices with t = n and q ≥ 1. 

We can solve Eqs. (14.49) and (14.50) by starting with a solution for q = 0 and working up 
through increasing values of q. This is similar to our solution for the degree distribution, Eq. 
(14.21), except that the equations we are solving are now differential equations. 

The solution for the q = 0 case is straightforward—Eq. (14.50) is homogeneous in π0 and can be 
solved by standard methods. You can easily verify that the solution is π0(τ) = Aτca/(c+a) where A is an 
integration constant. The constant is fixed by the boundary condition π0(1) = 1, which implies that 
A = 1 and hence

 

 

 

 

 

 



(14.51) 
  

As a check, we can integrate over τ to get the total fraction of vertices with in-degree zero:

 

(14.52) 
  

which agrees nicely with our previous result for the same quantity, Eq. (14.9). 
Now we can use this solution to find π1(τ). Equation (14.49) tells us that

 

(14.53) 
  

This is again just an ordinary first-order differential equation, although an inhomogeneous one this 
time (i.e., it has a driving term on the right-hand side). 

We tackle it in standard fashion. First we find the general solution for the homogeneous equation 
in which the right-hand side is set to zero, which is Bτc(a+1)/(c+a) where B is an integration constant. 
Then we find any (nongeneral) solution to the full equation with the driving term included—the 
obvious one is aτca/(c+a)—and sum the two. The constant is fixed by the boundary condition π1(1) = 
0, which implies that B = −a, and we get

 

(14.54) 
  

Now, by a similar method, we can use this solution to solve for π2(τ), and so forth to higher and 
higher values of q. The algebra is tedious, but with persistence you can show that the next two 
results are

 

 

 

 

 

 

 

 

 



(14.55) 
  

 

(14.56) 
  

These results suggest the general solution (first given by Dorogovtsev et al. [99])

 

(14.57) 
  

where we have made use again of the convenient property of the gamma function derived in Eq. 
(14.17) as well as the result that Γ(n + 1) = n! when n is a positive integer.214 With a little work you 
can verify that this is indeed a complete solution of Eq. (14.49) for all q. As a check we can also 
integrate over τ to find the total fraction of vertices with in-degree q and confirm that the result 
agrees with Eq. (14.21). We leave this calculation as an exercise for the reader.215 

Let us take a moment to examine the structure of our solution for πq(τ) and see what it tells us 
about the network. The general shape of the solution is shown in Fig. 14.3. Panel (a) shows the 
distribution of creation times τ for vertices of given in-degree q for various values of q and for each 
value there is a clear peak in the distribution, indicating that vertices of a given degree are 
concentrated around a particular era in the growth of the graph. As degree increases, that era gets 
earlier, so that the times of creation of vertices that ultimately achieve high in-degree are strongly 
concentrated around the beginning of the growth process. 

 

 

 

 

 

 



Figure 14.3: Distribution of vertices in Price’s model as a function of in-degree and time of 
creation. The two panels show the distribution πq(τ), Eq. (14.57), for c = 3 and a = 1.5 as (a) a 
function of τ for (top to bottom) q = 1, 2, 5, 10, and 20, and (b) a function of q for τ = 0.01 (flattest 
curve), 0.05, 0.1, 0.5, and 0.9 (steepest curve). 
  

Panel (b) of Fig. 14.3 shows the distribution of in-degrees for vertices created at a selection of 
different times τ. This distribution also has a peak, then falls off sharply as q becomes large.216 
Indeed the distribution falls off roughly exponentially as q becomes large, as we can see from Eq. 
(14.57) by writing

 

(14.58) 
  

where we have used Euler’s beta function again, Eq. (14.19). As shown in Section 14.1, the beta 
function has a power-law tail B(x,y) ∼ x−y for large x (Eq. (14.25)) so πq goes with q as

 

(14.59) 
  

In other words it decays exponentially except for a leading algebraic factor. Thus the degree 
distribution for vertices with specific values of τ does not follow a power law. The power-law 
behavior seen in the full degree distribution of the model, Eq. (14.21), only appears when we 
integrate over all times τ. However, the decay of the exponential in Eq. (14.59) is slower for 
smaller τ, so older vertices are more likely to have high in-degree than younger ones, as we saw in 
Fig. 14.3. 

To investigate this point further, we can calculate the mean in-degree γ(τ) for a vertex created at 
time τ thus:

 

(14.60) 
  

Figure 14.4 shows the shape of γ(τ) for a variety of choices of the parameters and, as we expect, 
the mean value of the in-degree increases with decreasing τ and eventually diverges as τ 
approaches zero. Notice, though, that no vertex ever actually has τ = 0. The first vertex added to 
the network has t = 1, so the smallest value of τ is 1/n. Nonetheless, we see that vertices added to 
the network early have an enormous advantage in terms of in-degree over those added even a little 

 

 

 

 

 

 



later. For a citation network, for instance, this suggests that the early papers in a field will 
receive substantially more citations than later ones, purely because they were published first. 

 

Figure 14.4: Average in-degree of vertices as a function of their time of creation. The average 
in-degree of vertices in Price’s network model as a function of the rescaled time τ = t/n at which 
they were added to the network, in the limit of large n for various values of the parameter a. The 
out-degree parameter c was in each case c = 2a, so that the exponent of the power-law degree 
distribution α = 2 + a/c (Eq. (14.27)) is 2.5 for all curves, which is a typical value for real-world 
networks. 
  

Indeed, this is a pattern seen in many different areas, not just in networks. In any situation where 
success begets more success, first movers are expected to have a large advantage over others. Any 
small lead gained early in the process is quickly amplified by the preferential attachment process 
into a bigger lead and soon the lucky first movers find themselves racing ahead of the pack. Those 
who enter the game later may experience chance fluctuations that give them a small boost, but 
since there are probably many others already ahead of them, that boost is not amplified 
significantly because most of the wealth is already going to the leaders under the preferential 
attachment rule. 

A nice demonstration of this process, although not in the field of networks, has been given by 
Salganik et al. [288], who examined the behavior of a group of people downloading popular music 
online. Salganik et al. created a website on which participants could download and listen to songs 
by little-known artists for free. Participants were told how many times each song had previously 
been downloaded and Salganik and coworkers found that there was a clear preferential attachment 
effect: songs with many previous downloads were downloaded far more than those with few. As a 
result there was a strong first-mover advantage, with songs that took an early lead benefiting from 
the preferential attachment and turning that lead into a much larger one, resulting in a roughly 
power-law distribution in the numbers of downloads. 

To test the theory that they were seeing a preferential attachment process rather than actual 
differences in song quality leading to different download rates, Salganik et al. then changed the 
download numbers reported for each song, deliberately misrepresenting the number of times each 
had been downloaded. They discovered when they did this that the songs with the highest reported 
numbers of downloads were still downloaded most often, even though the reported numbers no 
longer corresponded to true popularity.217 These results strongly suggest that success is, at least in 
this context and at least in part, a result of previous success and that a good way to be successful is 

 

 



to get in at the beginning and get an early lead. Of course, that may be easier said than done. 
Many people would like to get in at the beginning of a new field of scientific research or a new 
business opportunity, but it’s not always clear how one should do it. 

Returning to our network growth model, it is also interesting to ask how the expected in-degree 
of a vertex varies with its age after it enters the network. This differs from the expected degree for 
a particular τ calculated above because a given vertex does not have a fixed value of τ. The value 
of τ = t/n for a vertex decreases as time passes because n is increasing. For this reason the behavior 
of individual vertices is more easily understood in terms of our original non-rescaled time t, which 
does remain constant. 

So let t again be the time at which a vertex is added to the network and let s be the subsequent 
elapsed time, i.e., the age of the vertex. Necessarily we have s + t = n and hence

 

(14.61) 
  

Substituting this expression into Eq. (14.60), we then find the expected indegree γt(s) of the vertex 
added at time t, as a function of its age s, to be

 

(14.62) 
  

When a vertex is first added to the network and s ≪ t, we can expand in the small quantity s/t to 
give

 

(14.63) 
  

In other words, the in-degree of a vertex initially grows linearly with the age of the vertex, on 
average, but with a constant of proportionality that is smaller the later the vertex entered the 
network—again we see that there is a substantial advantage for vertices that enter early. 

As the vertex ages, there is a crossover to another regime around the point s = t, i.e., at the point 
where the vertex switches from being in the younger half of the population to being in the older. 
For s » t,

 

 

 

 

 

 



 

(14.64) 
  

which has a similar form to Eq. (14.63) but with a different exponent, c/(c + a), which is always 
less than 1, so the growth is slower than linear but still favors vertices that appear early. Figure 
14.5 shows the behavior of γt(s) with time for vertices created at a selection of different times t. 

All of these results can be applied to the Barabási-Albert model as well by setting a = c with c 
an integer and writing the formulas in terms of total degree k = q + c rather than in-degree. For 
instance, the joint degree/time distribution, Eq. (14.57), becomes

 

(14.65) 
  

for k ≥ c and πk(τ) = 0 for k < c. This result was first given by Krapivsky and Redner [187] for 
the case c = 1. 

 

 



14.3.2 SIZES OF IN-COMPONENTS  

The in-components of vertices in our growing networks have some interesting properties. Recall 
that the in-component of vertex i is the set of vertices from which i can be reached by following a 
directed path through the network (see Section 6.11). In a citation network, for instance, the in-
component of paper A is the set of all papers from which A can be reached by following some trail 
of successive citations. The reader reading any paper in the in-component can look up other papers 
in its bibliography, find those papers and look up further ones in their bibliographies and so forth, 
and ultimately reach paper A. One can think of the in-component as representing the set of all 
papers that “indirectly cite” paper A and the size of the in-component can be considered a measure 
of the total impact of paper A. 

 

Figure 14.5: Average in-degree of vertices created at different times. The curves show the 
average in-degrees in Price’s model of vertices created at times (top to bottom) t = 100, 200, 400, 
1000, 2000, and 4000 as a function of time since the creation of the network. The model 
parameters were c = 3 and a = 1.5. 
  

We can study the distribution of in-component sizes by a method similar to the one we used for 
the degree distribution. Consider Fig. 14.6, which shows a sketch of the in-component of a single 
vertex A. We have drawn the in-component as a tree, which is accurate so long as the size s of the 
component is small, s ≪ n. Just as in the random graph models of Chapters 12 and 13, the 
probability of a small component having an extra edge that destroys its tree structure vanishes in 
the limit of large n (see Section 12.6.1). We must be careful however. As we will shortly see, it is 
possible for the sizes of in-components to become comparable with n in preferential attachment 
models, in which case the arguments below break down. For the moment, however, let us proceed 
under the assumption that our component is a tree. 

Our in-component will grow in size as vertices and edges are added to the network. Specifically, 
it will grow larger every time a newly added edge links to any of its members. The probability of a 
new edge linking to vertex i is given by Eq. (14.1) and summing this probability over all vertices 
in the in-component C gives a total probability of

 

 

 



 

(14.66) 
  

where s is the number of vertices in the in-component. 
Considering Fig. 14.6, we see that every incoming edge in the in-component is necessarily also 

an outgoing edge from another vertex in the in-component, and moreover that there is exactly one 
such outgoing edge from each vertex in the in-component, except for A itself. (There are also other 
outgoing edges from vertices in the in-component, as shown in gray in the figure, but these 
connect to vertices outside the component itself and play no part in our calculation.) Thus the total 
number ∑i∈Cqi of incoming edges is equal to the number of vertices in the in-component minus 
one, which means our probability of connection, Eq. (14.66), can also be written as

 

(14.67) 
  

 

Figure 14.6: The in-component of a vertex A. The total number of incoming links attached to 
vertices in an in-component is equal to the number of vertices in the component minus 1. Note that 
there are, in general, many edges outgoing from vertices in the in-component (shown in gray) 
which connect to vertices not in the in-component and which can thus be ignored for the purposes 
of our calculation. 

  

Let us define ps(n) to be the probability that a randomly chosen vertex has an in-component of 
size s when the network has n vertices (still assuming s ≪ n). Then nps (n) is the number of in-

 

 

 

 

 



components of size s and, given that each new vertex arrives with c outgoing links, the total 
number of in-components of size s receiving a new link upon the addition of a new vertex to the 
network is

 

(14.68) 
  

Now, by an argument similar to the one used to derive Eq. (14.5), we can show that ps(n) satisfies 
the master equation

 

(14.69) 
  

The only exception is for in-components of size 1, the smallest size possible, for which

 

(14.70) 
  

The +1 here represents the fact that there is one new in-component of size 1 created for each vertex 
added. 

We now take the limit n → ∞ and write ps = ps(∞) to get

 

(14.71) 
  

for s ≥ 2 and

 

 

 

 

 

 

 

 



(14.72) 
  

The solution of these equations follows exactly the same lines as the solution for degree 
distribution. The final result is

 

(14.73) 
  

where B(x,y) is the Euler beta function, Eq. (14.19), and

 

(14.74) 
  

As we have seen previously, the beta function has a power-law tail B(x,y) ∼ x−y (see Eq. (14.25)), 
so the in-component size distribution also has a power-law tail:

 

(14.75) 
  

although with an exponent β that is in general different from that of the degree distribution (see Eq. 
(14.27)). Indeed, note that for the normal situation where c ≥ 1 we have 1 < β ≤ 2, which is 
puzzling: power laws with β ≤ 2 have no finite mean, but for any finite value of n our network 
must certainly have a finite average component size. The solution to this conundrum is relatively 
simple, however. As we pointed out above, our calculations are only valid for component sizes s 
≪ n. For larger sizes the method will break down and the power-law behavior will be lost. In 
physical terms, in-components clearly cannot be larger than the size of the whole network, and so 
we must expect finite-size effects that cut off the size distribution as s approaches n. In 
mathematical terms, the components stop being trees as their size becomes comparable with n and 
hence Eq. (14.67) ceases to be correct. 

See Section 8.4.2 for a discussion of the mean and other moments of power-law distributions. 

It’s also possible to derive solutions for the component size distribution as a function of the time 
of creation of a vertex or the age of a vertex, just as we did for the degree distribution in the first 

 

 

 

 

 

 

 

 



part of this section. Indeed there are many more properties of these models that can be 
calculated using the master equation approach, which is an immensely useful technique for 
problems such as these. Life, however, is short, and there are many other interesting matters to 
look into, so we will move on to other things.



14.4 EXTENSIONS OF PREFERENTIAL ATTACHMENT MODELS  

Many extensions and generalizations of preferential attachment models have been suggested, 
typically addressing questions about what happens when we vary the details of the model 
definition or attempt to make the model more faithful to the way real networks grow. For instance:

1. By contrast with citations, links in the Web are not permanent. They can and frequently do 
disappear as well as appear, and links can be added between vertices not just at the moment 
a vertex is created but at any later time too. 

2. Entire web pages also disappear as well as appear. 
3. There is no obvious reason why the preferential attachment process has to be linear in the 

degree. What happens if it is non-linear? 
4. Not all vertices are created equal. Some papers or websites might be intrinsically more 

interesting or important by virtue of their content and hence attract more links. Can this 
process be incorporated into the model? 

In this section we describe modifications of the preferential attachment process that address each 
of these questions. In the interests of simplicity, we describe the developments in the context of the 
Barabási-Albert model, rather than the more general Price model. Generalizations of Price’s model 
are certainly possible but the algebra is in many cases unwieldy, and the main conclusions are 
easier to understand in the context of the simpler model.

 

 



14.4.1 ADDITION OF EXTRA EDGES  

Price proposed his model of a growing network with citation networks in mind. Since the 
bibliography of a paper cannot be changed after the paper is published, the edges in a citation 
network are effectively frozen in place from the moment they are first created, and Price’s model 
mimics this behavior with edges being added only at the moment a vertex is created and never 
moved or removed thereafter. 

This is not true of all networks, however. The World Wide Web, for example, is constantly 
changing. Links between web pages can, and often are, added or removed after the pages are 
created. This state of flux is not captured by Priceʹs model or by the Barabási-Albert model of 
Section 14.2. Yet the Web still has a power-law degree distribution. This leads us to wonder 
whether it is possible to create a generalized model that includes the addition and removal of edges 
after vertices are created but still generates power-law distributions. It turns out that we can indeed, 
as we now describe. 

We first consider the relatively simple case in which edges are added to our network but never 
taken away, which has been studied by a number of authors [11, 96, 190]. The case of edge 
removal is more complex and is considered in the following section. The model we consider is a 
generalization of the Barabási-Albert model in which vertices are added to the network one by one 
as before and each starts out with c undirected edges which attach to other vertices with probability 
proportional to degree k. But we now include a second process in the model as well: at each step 
some number w of extra edges are added to the network with both ends attaching to vertices 
chosen in proportional to degree. Thus when the network has n vertices it will have a total of n(c + 
w) edges. (In fact, it is only necessary that an average number w of extra edges be added at each 
step. The actual number can fluctuate around this figure, provided the fluctuations satisfy some 
modest constraints on their size, and the net result, in the limit of large network size, will be the 
same. This allows us to give w a non-integer value if we wish.) 

This model turns out to be quite easy to solve given the results of previous sections. The only 
difference between it and the standard Barabási-Albert model is that, instead of c new ends of 
edges attaching to old vertices for every new vertex added, we now have c + 2ωnew ends of 
edges—two extra for each of the w extra edges. The probability of attachment of any one of those 
edges to a particular vertex i is  as before. The sum in the denominator is equal to twice the 
number of edges in the network (see Eq. (6.20)), or . 

Then, if pk(n) denotes the fraction of vertices with degree k when the network has n vertices in 
total, the number of vertices of degree k receiving a new edge, per vertex added, is

 

(14.76) 
  

We can use this result to write a master equation for pk(n) thus:

 

 

 

 



(14.77) 
  

for k > c and

 

(14.78) 
  

for k = c. (There are, as before, no vertices of degree less than c.) Taking the limit of large n and 
writing pk = pk(∞), these equations simplify to
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Rearranging these equations along the lines of Eqs. (14.9) to (14.21), we then find that

 

(14.81) 
  

where B(x,y) is the Euler beta function again, Eq. (14.19), and

 

 

 

 

 

 

 

 

 

 



(14.82) 
  

Since B(x,y) goes as x−y for large x (Eq. (14.25)), our degree distribution has a power-law tail 
with exponent α. For the special case of w = 0, in which no additional edges are added to the 
network, we recover the standard result α = 3 for the Barabási-Albert model; for ω > 0 we get 
exponents in the range 2 < α < 3, which agrees nicely with the values typically observed for degree 
distributions on the Web (see Table 8.1). Bear in mind though that the Web is a directed network 
while the model described here is undirected. If we want to build a model of a directed network we 
would need to start with something like the Price model of Section 14.1. Generalizations of Price’s 
model that include addition of extra edges as above are certainly possible—see for example 
Krapivsky et al. [190]. 

 



14.4.2 REMOVAL OF EDGES  

Now consider the case of a network in which edges can be removed. To keep things simple let us 
first consider the case where edges can be removed at any time but are only added at the initial 
creation of a vertex, as in the standard Barabási-Albert model. (In a moment we will consider the 
general case of addition and removal at any time.) 

There are many ways in which edges could be removed from a network, but let us consider the 
most basic case in which they are simply deleted uniformly at random. What then is the probability 
that a particular vertex i loses an edge when a single edge is removed from the network? When an 
edge is deleted both of its two ends vanish. Given that the deletion is uniformly random, the 
probability that one of those two ends is attached to vertex i is simply proportional to the total 
number of ends attached to i, which is equal to the degree ki. Properly normalized, the probability 
that vertex i loses an edge is thus , the factor of two coming from the two ends of the edge. 
In other words, the random deletion of edges is like a type of preferential attachment in reverse: 
the higher the degree of the vertex, the more likely it is to lose an edge. 

So consider the undirected network model in which vertices with degree c are added to the 
network following the normal preferential attachment scheme and an average of v edges are 
deleted at random for each vertex added. (As with the model of Section 14.4.1 the actual number 
of edges deleted can fluctuate about the mean and v can take a non-integer value if we wish.) In 
order that the number of edges in the network grow, rather than shrinking to zero and vanishing, 
we require that the net number of edges added per vertex c − v be positive, i.e., v < c. Then when 
the network has n vertices the number of edges will be n(c − ν). 

In writing down a master equation for this model there are several processes we need to 
consider. As before, the number of vertices with degree k increases whenever a vertex of degree k 
− 1 gains a new edge and decreases when a vertex of degree k gains a new edge. By an argument 
analogous to the one leading to Eq. (14.76), the number of vertices of degree k gaining an edge per 
vertex added to the network is

 

(14.83) 
  

But we also now have a new process in which a vertex can lose an edge, which means that the 
number of vertices of degree k also increases when a vertex of degree k + 1 loses an edge and 
decreases when a vertex of degree k loses an edge. The number of vertices of degree k losing an 
edge per vertex added is given by

 

(14.84) 

 

 

 

 



  

with the factor of 2ν reflecting the fact that each of the v edges removed has two ends. 
Another important thing to notice is that, by contrast with the original Barabási-Albert model, 

vertices can now have any degree k ≥ 0—vertices can lose any or all of their edges, right down to 
the last one, so there is no restriction k ≥ c on the degree as before. 

Our master equation now takes the form
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for k ≠ c and
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for k = c. These two equations can conveniently be combined by writing

 

(14.87) 
  

where δkc is the Kronecker delta, which is 1 if k = c and 0 otherwise.
 

The only exception to this master equation is for the case k = 0, where the term proportional to k 
− 1 vanishes because there are no vertices of degree −1. A simple way of enforcing this exception 
is ≥ to define p−1(n) = 0 for all n, in which case Eq. (14.87) then applies for all k ≥ 0. We will adopt 
this convention henceforth. 

The model as we have described it so far incorporates the processes of vertex addition and edge 
removal, but, given Eq. (14.87), it is only a small extra step to incorporate the edge addition 
process of Section 14.4.1 as well. If as before we add ω extra edges per vertex added, then c + ω − 
ν edges are added net per vertex, and our master equation becomes

 

 

 

 



 

(14.88) 
  

The equation for edge removal only, Eq. (14.87), can then be considered a special case of this 
equation with w = 0. As before, we require that the net number of edges added per vertex be 
positive, or v < c + w. 

Now taking the limit as n → ∞ and writing pk = pk(∞) we find that

 

(14.89) 
  

This equation differs in a crucial way from the master equations we have encountered 
previously, such as Eq. (14.7), because the right-hand side contains terms for vertices of three 
different degrees (k − 1, k, and k + 1) rather than just two. This makes the equation substantially 
more difficult to solve. We can no longer simply rearrange to derive an expression for pk in terms 
of pk−1 and then apply that expression repeatedly to itself. A solution is still possible, but it’s not 
simple. Here we give just an outline of the method. The gory details, for those interested in them, 
are spelled out by Moore et al. [226].218 

The basic strategy for solving Eq. (14.89) is to use a generating function of the kind we 
introduced in Section 13.1. We define
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Substituting for pk from Eq. (14.89) we get

 

 

 

 

 

 

 



(14.91) 
  

The first term on the right is simple—it is equal to zc . The others require a little more care. 
Consider the second term, for example. Note that the first term in the sum, the term for k = 0, is 
necessarily zero because, as we have said, p−1 = 0. Hence we can write

 

(14.92) 
  

where in the first line we have made the substitution k − 1 → k and in the second line we have 
made use of the fact that the k = 0 term is again zero (because of the factor of k). 

For the third and fourth terms in (14.91) we can similarly write
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and

 

(14.94) 
  

Combining Eqs. (14.91) to (14.94) and rearranging, we then get

 

 

 

 

 

 

 

 

 



(14.95) 
  

This is a first-order linear differential equation and is solvable by standard—if tedious—methods. 
To cut a long story short, one can find an integrating factor for the left-hand side and hence express 
the solution in terms of an integral that, provided , can be reduced by repeated 
integration by parts to give

 

(14.96) 
  

for k ≥ c, where A is a k-independent constant and
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(14.98) 
  

The remaining integral can be written in terms of hypergeometric functions, but we can find the 
asymptotic behavior of the degree distribution for large k more directly by noticing that as k 
becomes large
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so that

 

 

 

 

 

 

 



 

(14.100) 
  

Thus we once again find that our degree distribution has a power-law tail, with an exponent 
given this time by Eq. (14.97). Note that this exponent can take values both greater than and less 

than two. What’s more for the case where  it actually becomes infinite. Moore et al. 
[226] show that at this point we lose the power-law behavior and the distribution becomes instead 
a stretched exponential. Up until this point, however, the distribution still follows a power law, 
albeit with a very large exponent as v grows larger. For values of , the solution becomes 
nonsensical, with a negative value of α, and one must return to the original differential equation 
(14.95) to find the solution for this case. We leave the developments, however, as an exercise for 
the especially avid reader. 

Before we leave this topic, however, let us point out that the methods used to solve Eq. (14.89) 
can also be used to calculate what happens when we remove not edges but vertices from our 
network. Loss of vertices does occur in some networks, such as the World Wide Web, so it is 
potentially of interest to ask what effect it has on the degree distribution. In fact, the solution for 
this case is very similar to the solution for loss of edges, with a power-law distribution and an 
exponent that depends on the vertex loss rate, diverging as the rate of loss approaches the rate at 
which vertices are added. The details can be found in [226].

 

 



14.4.3 NON-LINEAR PREFERENTIAL ATTACHMENT  

In the models we have considered so far, the probability that a new edge attaches to a vertex is 
linear in the degree of the vertex. Although this is a reasonable first guess about the way things 
might be, it’s certainly also possible that attachment processes might not be linear. Indeed, there is 
some empirical evidence that this is the case. For instance, Jeong et al. [165] looked at the growth 
of several real-world networks, measuring the rate at which nodes acquired new edges. To avoid 
problems associated with the fact that the rate can depend not only on degree but also on the total 
size n of the network (see Eq. (14.1)), they restricted their observations to relatively short intervals 
of time. The measured rates, plotted as a function of vertex degree, showed that for some networks 
there was a roughly linear preferential attachment effect, but for others attachment appeared to be 
non-linear, going as some power γ of the degree with γ being significantly different from 1. (The 
values they observed were around γ = 0.8.) 

What effect would non-linear preferential attachment have on the degree distribution of our 
network? Should we still expect to see power-law behavior in the non-linear case? The answers to 
these questions depend on the particular functional form of the attachment probability and there 
are an infinite variety of functional forms. We will look at some specific examples shortly, but for 
the moment let us keep the discussion completely general. Following an approach introduced by 
Krapivsky et al. [189], we define an attachment kernel, denoted ak, which specifies the functional 
form of the attachment probability. For the model of Barabási and Albert, where attachment is 
simply proportional to degree, the attachment kernel would be ak = k. For the non-linear 
attachment observed by Jeong et al. and discussed above, it would be ak = kγ. Note that the 
attachment kernel is not a probability, merely a functional form. The correctly normalized 
probability that a newly added edge attaches to a specific vertex i having degree ki is . 

So consider again a growing undirected network of the type discussed in previous sections and 
let pk (n) be the fraction of vertices with degree k when the network has n vertices. As before, an 
average of c new edges are added to the network with each new vertex, but preferential attachment 
is now non-linear, governed by the attachment kernel ak, which means that, by analogy with Eq. 
(14.2), the expected number of vertices of degree k receiving a new connection when a single new 
vertex is added to the network is

 

(14.101) 
  

where

 

(14.102) 
  

 

 

 



Now the master equation for pk (n) is

 

(14.103) 
  

As before the term in pk−1(n) represents new vertices of degree k created when vertices of degree k 
− 1 receive new edges and the last term in pk (n) represents vertices of degree k lost when they gain 
new edges to become vertices of degree k + 1. 

The only exception to this equation is for vertices of degree c, for which

 

(14.104) 
  

(And there are no vertices of degree less than c, since all vertices are created with degree c initially 
and edges are never removed.) 

Taking the limit as n → ∞ and writing pk = pk(∞) and μ = μ(∞), these equations become

 

(14.105) 
  

for k > c and

 

(14.106) 
  

Note that μ depends via Eq. (14.102) on the degree distribution, which we don’t yet know. For 
now, however, it will be enough that μ is independent of k; we will derive an expression for its 
exact value in a moment. 

Equations (14.105) and (14.106) can be rearranged to give

 

 

 

 

 

 

 

 



 

(14.107) 
  

and

 

(14.108) 
  

Applying the latter repeatedly we get

 

(14.109) 
  

All we need to complete our solution is the value of μ. Taking Eq. (14.102) and letting n → ∞, we 
get

 

(14.110) 
  

Canceling μ from both sides we arrive at the equation

 

 

 

 

 

 

 

 

 



(14.111) 
  

In principle we should be able to solve this equation for μ and substitute the result into Eq. 
(14.109) to get the complete degree distribution. In practice, unfortunately, the equation is not 
solvable in closed form for most choices of the attachment kernel ak, although an approximate 
value for μ can usually be calculated numerically on a computer. Even without knowing μ, 
however, we can still find the overall functional form of pk, which is enough to answer many of the 
questions we are interested in. 

As an example, consider a network of the type observed by Jeong et al. [165] and discussed 
above in which attachment goes as kγ for some positive constant γ, and let us assume that (as found 
by Jeong et al.) we have γ < 1. The solution for this particular choice was given by Krapivsky et al. 
[189] and shows a number of interesting features. 

Putting ak = kγ in Eq. (14.109) gives

 

(14.112) 
  

This degree distribution turns out not have a power-law tail, by contrast with the case of linear 
preferential attachment. In other words the power-law form is sensitive to the precise shape of the 
attachment kernel. We can see this by writing

 

(14.113) 
  

and then expanding the logarithm as a Taylor series in μ/crγ:

 

(14.114) 
  

The sum over r cannot be expressed in closed form, but we can approximate it using the 

 

 

 

 

 

 



trapezoidal rule, 219 which says that for any function ƒ(r):

 

(14.115) 
  

(For those not familiar with it, the derivation of the trapezoidal rule is illustrated in Fig. 14.7.220)
 

In our case ƒ(r) = r−sγ and Eq. (14.115) gives

 

(14.116) 
  

where As is a constant depending on s (and on c) but not on k.
 

Consider now what happens when k becomes large. Since γ > 0, the term in k−sγ and all 
subsequent terms vanish as k → ∞ and Eq. (14.114) becomes

 

(14.117) 
  

where A is a k-independent constant equal to . 
This expression can be simplified still further by noting that, in the limit k → ∞, all terms in k1−sγ 

where 1 − sγ < 0 also vanish. Thus for any given value of γ we need keep terms in k up to only a 

certain value of s. The simplest case is when . In this case only the term for s = 1 grows 
as k increases, all others vanishing, and

 

(14.118) 
  

as k → ∞. 

 

 

 

 

 



 

Figure 14.7: The trapezoidal rule. The trapezoidal rule approximates a sum by an integral (or 
vice versa). The sum of the function ƒ(r) from r = a to r = b (dotted lines) is equal to the sum of 
the areas of the rectangular bars, which is also equal to the area shaded in gray. This shaded area 
can be approximated by the integral of ƒ (r) between a and b (smooth curve) plus the two extra 
rectangular sections at either end (hatched), which have area  ) and  respectively. Add 
everything up and we get Eq. (14.115). The error in the approximation is equal to the sum of the 
relatively small regions between the curve and the shaded area. 
  

Now, combining Eqs. (14.112), (14.113), and (14.118), we find that the asymptotic form of pk is

 

(14.119) 
  

for . 
Distributions of this general form, in which the dominant contribution to the probability falls off 

as the exponential of a power of k, are called stretched exponentials. Since the exponent 1 − γ is 
less than one, the distribution falls off more slowly than an ordinary exponential in k, which is why 
we called it ʺstretched.ʺ221 On the other hand, the distribution still falls off a good deal faster than 

the power law that we found in the case of linear preferential attachment, and this is really the 
important point here. This calculation reveals that the power-law distribution in the Barabási-
Albert model is a special feature of the linear attachment process assumed by that model. (Note 
that this observation is valid even though we haven’t calculated the value of the constant μ. The 
general functional form of the degree distribution doesn’t depend on the value of the constant.) 

For other values of γ the calculation is similar but involves more terms in Eq. (14.117). For 
instance, if  then the terms in k1−sγ for s = 1 and 2 both grow as k becomes large while all 
others vanish, and we find that

 

 

 



 

(14.120) 
  

which gives

 

(14.121) 
  

In between the solutions (14.119) and (14.121) there is a special case solution when γ is exactly 
equal to  .For  and s = 2 the integral in Eq. (14.115) gives rise not to a power of k but to a log 
and Eq. (14.114) becomes

 

(14.122) 
  

all other terms vanishing in the limit of large k. Substituting this expression into Eq. (14.113), 
we then arrive at

 

(14.123) 
  

for  
We can continue in this vein ad infinitum. There are distinct solution forms for  and 

 and so forth, as well as special case solutions for γ = , and so forth. Figure 
14.8 shows the degree distribution for the case γ = 0.8, along with the asymptotic form (14.119). 
Note the convex form of the curve on the semilogarithmic scales, which indicates a function 
decaying slower than an exponential. 

One can also calculate the degree distribution for superlinear preferential attachment, i.e., for 
values of γ greater than one. This case also shows some nent interesting behaviors: it turns out that 
for γ > 1 the typical behavior is for one vertex to emerge as a “leader” in the network, gaining a 
non-zero fraction of all edges, with the rest of the vertices having small degree (almost all having 

 

 

 

 

 



degree less than some fixed constant). Readers interested in these developments can find them 
described in detail in Ref. [189]. 

 

Figure 14.8: Degree distribution for sublinear preferential attachment. This plot shows the 
fraction pk of vertices with degree k in a growing network with attachment kernel kγ as described in 
the text. In this case γ = 0.8 and c = 3. The points are results from computer simulations, averaged 
over 100 networks of (final) size 107 vertices each. The solid line is the exact solution, Eq. 
(14.112), evaluated numerically. The dashed line is the asymptotic form, Eq. (14.119), with the 
overall constant of proportionality chosen to coincide with the exact solution for large values of k. 
  

 

 



14.4.4 VERTICES OF VARYING QUALITY OR ATTRACTIVENESS  

The models of growing networks we have examined so far assume that all vertices of a given 
degree are equally likely to gain a new edge. In these models, for example, all papers that have 
never been cited before are equally likely to get new citations. All websites that no one has linked 
to yet are equally likely to receive links. 

See Sections 7.4 and 19.1 for a discussion of the operation of search engines. 

In the real world, of course, nothing could be farther from the truth. There are huge differences 
in the perceived importance and quality of scientific papers or websites that mean some are far 
more likely to gain edges than others. A website, for instance, that provides a useful service, such 
as a directory or an encyclopedia, will almost certainly receive new links at a higher rate than most 
people’s personal home pages. Indeed, search engines use the numbers of links web pages receive 
precisely as a measure of which pages people find most useful. Similarly, people look at the 
numbers of citations a paper receives to try to gauge how influential that paper has been. These 
approaches would not work unless there were some correlation between the degree and the 
perceived quality of a vertex. 

If one allows for variations in the intrinsic quality or attractiveness of vertices, then, presumably 
it will have an effect on the degree distribution. It seems entirely possible that, with such effects at 
work, the power laws generated by preferential attachment models might completely disappear, 
leaving us at a loss to explain how power laws might arise in real-world networks. In this section 
we study a model of the growth of a network proposed by Bianconi and Barabási [42,43] that 
includes effects of varying node quality—or fitness as they call it. As we will see, the power-law 
behavior of traditional models disappears once vertex fitness enters the picture, although the 
distribution for vertices of a given fitness still follows a power law. 

The model of Bianconi and Barabási is defined as follows. Vertices are added one by one with 
each attaching by undirected edges to c prior vertices, just as before. Now, however, each vertex i 
has a fitness ηi that is assigned at the moment of the vertex’s creation and never changed thereafter. 
The fitnesses are real numbers with values drawn from some distribution ρ(η), so that the 
probability of a value falling between η and η + dη is ρ(η) dη. Each of the c new edges added with 
each new vertex attaches to a previously existing vertex with probability proportional to an 
attachment kernel ak (η) that depends now on both the degree k of the target vertex and its fitness 
η. (In fact, Bianconi and Barabási examined only the special case ak (η) = ηk. The general model 
considered here was proposed and solved subsequently by Krapivsky and Redner [188].) 

This model can be solved by the same method as the model of Section 14.4.3. We define pk (η, 
n) dη to be the fraction of vertices with degree k and fitness in the interval η to η + dη when the 
network has n vertices. Writing down a master equation as before and taking the limit n → ∞ we 
arrive at equations that read
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for k > c and

 

 

 



 

(14.125) 
  

where pk (η) = pk (η, ∞) and μ is again the appropriate normalizing factor

 

(14.126) 
  

(See Eq. (14.110).) Note that the +1 of Eq. (14.106) has been replaced by ρ(η) in Eq. (14.125), 
because the average number of new vertices of degree c added to the network with fitness in the 
interval η to η + dη is not 1 but ρ(η ). 

Following the same steps that led to Eq. (14.109), we can solve the master equation to show that

 

(14.127) 
  

and the value of μ can be determined by substituting this result back into Eq. (14.126) (although 
usually an analytic solution is not possible and the equations must be solved numerically). 

As an example consider the case where the attachment kernel is linear in the degree, ak (η) = ηk, 
which was studied by Bianconi and Barabási.222 Since ak (η ) is (proportional to) a probability it 
cannot be negative, so we must restrict η to non-negative values. Then the product in Eq. (14.127) 
becomes
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where we have made use of Eq. (14.17) and B(x, y) is Euler’s beta function, Eq. (14.19), again. 
Substituting into Eq. (14.127), we then find that

 

(14.129) 
  

We showed previously that the beta function goes as a power law B(x, y) ∼ x−y for large values 
of its first argument (Eq. (14.25)) so Eq. (14.129) implies that the distribution of the degrees of 
vertices with a particular value of the fitness η has a power-law tail with exponent
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However, the overall degree distribution for the entire network may or may not have a power-law 
tail, depending on the distribution ρ(η). It is clear that it is a power law for some choices of ρ(η)—
for example the trivial choice where all vertices have the same η, which just reduces to the original 
Barabási-Albert model. If η is broadly distributed, however, the degree distribution will be a sum 
over power laws with a wide range of different exponents, which will not in general yield another 
power law. 

The solution above does not tell the whole story. There are some interesting features of this 
model that are missing from Eq. (14.129). To see this, let us calculate the average degree of a 
vertex in our network. This might seem like a pointless exercise—the average degree must take the 
value 2c since exactly c edges are added for every vertex—but in fact the calculation is quite 
revealing. The average degree is given by
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The sum can be performed by making use of the integral form of the beta function, Eq. (14.33), 
and gives 

 

 

 

 

 

 

 



(14.132) 
  

An important point to notice, however, is that this result only works if η < μ/c. If η ≥ μ/c the sum 
diverges making the average degree in the network infinite, which cannot be the case since, as we 
have said, the average degree is always 2c. To avoid the divergence we will impose the restriction 
that ρ(η) = 0 for all η ≥ η0, where η0 is a constant in the range 0 ≤ η0 < μ/c. (The interesting 
question of what happens to the network if we choose a ρ(η) that violates this condition is dealt 
with below.) 

Combining Eqs. (14.131) and (14.132), we then find that
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And since �k� = 2c this immediately implies that

 

(14.134) 
  

We haven’t yet calculated a value for the constant μ, but even without it this equation tells us 
something interesting. The integral is a monotonically decreasing function of μ: it takes its smallest 
value of 1 when μ → ∞, and its largest value when μ → cη0. (Recall that η0 < μ/c so μ can get no 
smaller than cη0.) But if this largest value is still less than two then there is no way to satisfy Eq. 

(14.134) and no value of μ such that Eq. (14.133) gives the correct answer for �k�. In the limit μ 
→ cη0 the denominator of the integrand equals 1 − η/η0, which tends to zero at the upper limit of 
the integral, but provided ρ(η) also tends to zero in this limit the integral can take a finite value 
and, as we will see in a moment, this value can certainly be less than two for some choices of ρ(η). 

How can it be that our solution does not give the correct value for the average degree? Have we 
made a mistake somewhere? More importantly, what does the network actually do in this regime? 

The answer to this conundrum turns out to be a subtle and interesting one. The important point 
is that there are some behaviors of the vertex degrees in a growing network that cannot be captured 
by a simple probability distribution pk. In particular, if there are a fixed, finite number of vertices 
in the network with degrees that scale in proportion to the size n of the entire network, those 
vertices do not appear in the degree distribution: because there are only a fixed number of them 
they constitute a fraction 1/n of the network and hence contribute zero to the degree distribution as 
n → ∞. Nonetheless, they make a non-zero contribution to the average degree of the network in the 
limit of large n and hence must be taken into account in the calculation of �k�. 

Bianconi and Barabási referred to the appearance of such vertices in the network as 

 

 

 

 

 

 



“condensation” by analogy with similar behaviors seen in lowtemperature physics,224 and to 
the vertices themselves as a condensate. For some choices of ρ(η) this kind of condensation does 
indeed occur and a condensate of “superhubs” with very high degree forms in the network. 

Suppose we are in such a regime and let us write the sum of the degrees of the vertices in the 
condensate as K. Then the full expression for the average degree, including the condensate, 
becomes

 

(14.135) 
  

Clearly, no matter what the value of the integral, it is now always possible to achieve �k� = 2c by 

making K sufficiently large. The appropriate value of K is given by setting �k� = 2c and 
rearranging thus:
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Again, the largest value of the integral is achieved when μ → cη0, which means that

 

(14.137) 
  

So if the value of this integral is less than two, then in order to get the correct value for the average 
degree we require that K scales with the size n of the network just as we hypothesized. 

As an example, suppose the distribution of fitnesses takes the form ρ(η) = A(η0 − η)τ, where τ is a 
positive exponent and A is a normalization constant τ+1 whose value is easily shown to be 

. Then the integral in Eq. (14.137) is
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and

 

(14.139) 
  

If τ < 1 then this result tells us only that K ≥ 0, which is trivially true. But if τ > 1 then the sum of 
the degrees in the condensate must vary in proportion to the network size n. 

Thus, depending on our choice for the distribution of fitnesses, the network can show two 
different behaviors. In one case, the distributions of the degrees of vertices with any given fitness 
follow a power law with a fitness-dependent exponent, but no vertices in the network are special or 
distinguished by any particular behavior. In the other case, a condensate forms consisting of one or 
more “superhubs,” which connect to a non-zero fraction of all other vertices. None of the 
remaining non-condensate vertices show any special behavior, however; they still have power-law 
degree distributions for each value of fitness, with the same exponents as before. Some authors 
have likened the condensation phase of the model to the monopolistic dominance of a market by a 
single vendor or a small number of vendors—once one vertex (vendor) gets a non-zero fraction of 
all edges (business), preferential attachment guarantees that it will go on doing so thereafter. 

We still do not have a complete solution of the model, because we are missing the value of μ 
which is required to evaluate Eq. (14.136). Unfortunately, to calculate μ we need to know the exact 
form of the condensate. In most discussions of the model in the literature it is assumed that the 
condensate consists of just a single vertex of degree K at or close to the maximum fitness η0, in 
which case we can evaluate μ using Eq. (14.126). Including the contribution from the condensate 
vertex, this equation becomes
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and, setting ak (η) = ηk again and making use of Eqs. (14.129) and (14.132), we then find

 

(14.141) 
  

Equations (14.136) and (14.141) together now give us two equations in the two unknowns K and μ, 
which we can, at least in theory, solve for both given ρ(η), although in practice closed-form 
solutions are rare because the integrals are non-trivial.

 

 

 

 

 



There is, however, no reason why the condensate must consist of just a single vertex. It could in 
principle consist of more than one. It could even consist not of a fixed number of vertices but of a 
growing number provided the number grows slower than linearly with the size of the network, so 
that again the condensate makes no contribution to the degree distribution pk in the limit of large n. 
In the latter case, the superhubs that make up the condensate would have degrees that themselves 
scaled sublinearly with system size, but would still become arbitrarily large as n → ∞. To the best 
of the author’s knowledge, it is not known how to predict which of these behaviors will happen for 
a given choice of ρ(η). Indeed, an exact prediction may not even be possible: computer simulations 
of the model appear to indicate that the exact nature of the condensate—how many vertices it 
contains and how their degrees grow with system size—is not deterministic but depends on the 
details of fluctuations taking place in the early growth of the network. If one performs repeated 
computer simulations with the same choice of ρ(η), the macroscopic behavior of the condensate 
varies from one run of the program to another.225 

We have also assumed in our discussion that the distribution of the fitness is bounded, that there 
is a maximum value η0 that the fitness can take. What happens if this assumption is violated? In 
this case there will of course still be a fittest vertex in the network and the network cannot “tell” 
whether the fitness distribution is bounded above that point or extends to η = ∞, and hence the 
behavior of the model will be the essentially the same as in the bounded case. The main difference 
from the bounded case is that the value of the highest fitness may change from time to time, which 
also changes the value of μ via Eq. (14.126). However, the changes in the highest fitness become 
rarer and rarer as time goes by226 so that asymptotically the behavior of the system is the same in 
the bounded and unbounded cases for arbitrarily long periods of time. 
  
  

Many other extensions and variations of preferential attachment models have been studied in 
addition to the ones described in this chapter. If you’re interested in learning more, there are a 
number of review articles that go into the subject in some detail—see Refs. [12], [46], and [98]. 
The rest of this chapter is devoted to the discussion of other models of network formation and 
growth that don’t rely on preferential attachment.



14.5 VERTEX COPYING MODELS  

Preferential attachment models offer a plausible, if simplified, explanation for power-law degree 
distributions in networks such as citation networks and the World Wide Web. Preferential 
attachment, however, is by no means the only mechanism by which a network can grow, nor even 
the only mechanism known to generate power laws. In the remainder of this chapter we look at a 
number of other models and mechanisms for the formation of networks, starting in this section 
with models based on vertex copying. 

In Section 14.1 we introduced the preferential attachment mechanism and suggested a possible 
explanation of its origin in citation networks, that a reader perusing the literature in a given 
academic field would encounter citations to frequently cited papers more often than citations to 
less cited ones, and hence would be more likely to cite those frequently cited papers themselves. 
Another way of saying this is that, in effect, researchers are copying citations from the 
bibliographies of papers they read.227 

Kleinberg et al. [180] have proposed an alternative mechanism for network formation that takes 
this idea one step further. What if people simply copied the entire bibliography of a single paper to 
create the new bibliography of their own paper? This would then create a new vertex in the 
network with the same pattern of outgoing edges as the vertex they copied from. 

As we will see, this process, with slight modifications, can give rise to a power-law degree 
distribution. First, however, we note that the process as stated has some problems. To begin with, 
it’s clearly rather far-fetched. Authors of papers do take note of who other authors have cited, but it 
seems unlikely that an author would copy the entire bibliography from someone else’s paper. 
Moreover, if they did just copy the entire bibliography then previously cited papers would get new 
citations as a result, but there would be no way for papers to receive citations if they had never 
been cited before. 

Both of these problems can be solved by changing the model a little. Instead of assuming that 
the bibliography of the new paper is copied wholesale from the bibliography of an older one, let us 
assume that only some fraction of the entries in the old bibliography are copied. Then the 
remainder of the new bibliography is filled out with references to other papers. These other papers 
could be selected in a variety of way, but a simple choice would be to select them uniformly at 
random from the entire network. 

These modifications insure that bibliographies are now no longer copied in their entirety and 
papers with no previous citations have a chance of being cited. The model is, however, still not a 
very plausible model of a real citation network. But, like Price’s preferential attachment model 
(which is also not very realistic), it can be regarded as a simplified and tractable version of the 
vertex copying mechanism that allows us to investigate quantitatively the consequences of that 
mechanism.228 The precise definition of the model is as follows. 

Let us suppose for simplicity that each new vertex added to our network has the same out-
degree c. In the language of citations, the bibliographies are all the same size. For each vertex 
added we choose uniformly at random a previous vertex and go one by one through the c entries in 
the bibliography of that previous vertex. For each entry we either (a) with probability γ < 1 copy 
that entry to the bibliography of the new vertex or (b) with probability 1 − γ add to the 
bibliography of the new vertex a citation to another vertex chosen uniformly at random from the 
entire network. The end result is a bibliography for the new vertex in which, on average, γc of the 
entries are copied from the old vertex and the remainder are chosen at random. In effect, we have 
made an imperfect copy of the old vertex in which the destinations of some fraction of the 
outgoing edges have been randomly reassigned. 

We also need to specify the starting state of the network, but, as with our preferential attachment 

 



models, it turns out that the asymptotic properties of the network do not depend on the state we 
choose. Thus the choice is not particularly important, but we could, for instance, specify a starting 
network consisting of some number n0 > c vertices in which each points randomly to c of the 
others. 

We can solve for the degree distribution of the network generated by this model as follows. Let 
us ask what the probability is that vertex i receives a new incoming edge upon the addition of a 
new vertex to our network. For i to receive a new edge, one of two things has to happen. Either the 
newly added vertex happens to copy connections from a vertex that already points to vertex i, in 
which case with probability γ the connection to i will itself get copied, or i could be one of the 
vertices chosen at random to receive a new edge. Let us treat these two processes separately. 

Suppose that a particular existing vertex happens to have a link to our vertex i. The probability 
that a newly added vertex will choose to copy its own links from this existing vertex is simply 1/n, 
since the source for the copies is chosen uniformly at random from the whole network. Thus if i 
has in-degree qi, the chance that any one of the qi vertices that point to it gets chosen is qi /n. And 
the chance that the link from that vertex to i gets copied is γ, for a total probability of γqi /n. 

The average number of random links that a newly added vertex makes—ones not copied from a 
previous vertex—is 1 − γ for each of its c outgoing edges, or (1 − γ)c overall. And the probability 
that our vertex i happens to be the target of one of these random links is 1/n, for an overall 
probability of (1—γ)c/n. 

Putting everything together, the total probability that vertex i gets a new link is 

 

(14.142) 
  

Defining pq(n) as before to be the fraction of vertices with in-degree q when the network has n 
vertices, the total expected number of vertices of in-degree q receiving a new edge is 
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But now we notice a remarkable fact. If we define a new constant a by
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and Eq. (14.143) becomes

 

(14.146) 
  

which is exactly the same as the probability (14.2) for the equivalent quantity in Price’s model. 
We can now use this probability to write down a master equation for the evolution of the degree 

distribution pq, which will be precisely the same as the master equation (14.5) for Price’s model 
and all subsequent developments follow through just as in Section 14.1. The end result is that our 
vertex copying model behaves precisely as the Price model does, but with a value of a specified 
now in terms of the parameter γ by Eq. (14.144). Thus, for example, the degree distribution in the 
limit of large n will obey Eq. (14.21) and hence will asymptotically follow a power law with 
exponent α given by Eq. (14.27) to be

 

(14.147) 
  

This gives exponents in the range from 2 to ∞, with the value depending on how faithfully 
vertices are copied. Faithful copies (γ close to one) give exponents close to two, while sloppy 
copies give exponents that can be arbitrarily large. Other properties of Price’s model carry over as 
well, such as the distribution of in-degree as a function of age given in Eq. (14.57). 

This is not to say, however, that vertex copying generates networks identical in every respect to 
preferential attachment. With vertex copying, for instance, many of the links that a newly 
appearing vertex makes are typically copied from the same other vertex and hence most vertices in 
the network will have connections that are similar to those of at least one other vertex. In 
preferential attachment models, on the other hand, there is no such correlation between the 
connections of different vertices—each link is chosen independently from the available 
possibilities at the time it is created and not copied from anywhere else. The two networks 
therefore, while they may have the same degree distribution, are different in the details of their 
structure. 

In addition to being interesting in its own right, the vertex copying model serves as a useful 
cautionary tale concerning the mechanisms of network formation. We have seen that many real 
networks have degree distributions that follow a power law, at least approximately, and that 
preferential attachment models can generate such degree distributions. A natural conclusion is that 
real networks are the product of preferential attachment processes, and this may indeed be correct. 

 

 

 



We should be careful, however, not to jump immediately to conclusions because, as we have 
now seen, there exists at least one other mechanism—vertex copying—that produces precisely the 
same degree distribution. Without further information we have no way of telling which of these 
mechanisms is the correct one, or whether some other third mechanism that we have not yet 
thought of is at work. 

One could in principle examine details of the structure of specific real-world networks in an 
attempt to tell which, if either, of our two mechanisms is the better model for their creation. For 
instance, one might examine a network to see if there appear to be pairs of vertices whose outgoing 
connections are approximate copies of one another. In fact, in real citation networks it turns out 
that there are many such pairs, an observation that appears to lend weight to the vertex copying 
scenario. However, we must remember that both of our models are much simplified and it’s likely 
that neither of them is an accurate representation of the way real networks are created. A simple 
explanation for vertices in citation networks with similar patterns of links is that they correspond 
to papers on similar topics and so tend to cite the same literature; there is no need to assume that 
one of them copied from the other. As a result, it may not be possible to distinguish firmly between 
preferential attachment and vertex copying in many cases. 

 

Figure 14.9: Distribution of in-degrees in the metabolic networks of various organisms. Jeong 
et al. [166] examined the degree distributions of the known portions of the metabolic networks of 
43 organisms, finding some of them to follow power laws, at least approximately. Show here are 
the in-degree distributions for (a) the archaeon A. fulgidus, (b) the bacterium E. coli, (c) the worm 
C. elegans (a eukaryote), and (d) the aggregated in-degree distribution for all 43 organisms. After 
Jeong et al. [166]. 
  

There are, however, some cases where preferential attachment appears to be an implausible 
candidate to explain the structure of a network, and in some of these cases vertex copying is the 
most promising remaining option. A good example comes from the realm of biology, where vertex 
copying is considered a strong candidate for explaining the structure of metabolic networks and 
protein-protein interaction networks. As discussed in Chapter 5, these are networks of chemical 
and physical interactions between molecules in the cell and, although our knowledge of their 
structure is currently quite incomplete, there is at least tentative evidence to suggest that they have 
power-law degree distributions—see Fig. 14.9 and Refs. [164] and [166]. It seems unlikely, 
however, that preferential attachment is the cause of these power laws: there is no obvious 
mechanism by which preferential attachment could take place in this context. Vertex copying, on 
the other hand, may be a reasonable candidate. 

Consider for example a protein interaction network. As described in Section 5.1.3, proteins in 
the cell are created by the processes of molecular transcription and translation from codes stored in 
the cell’s DNA. The section of code that defines a single protein is called a gene and it turns out 

 

 



that genes are sometimes inadvertently copied when cells reproduce.
When a cell splits in two to reproduce, its DNA is copied so that each half of the split cell will 

have a complete copy. The cellular machinery responsible for the copying is highly reliable, but 
not perfect. Very occasionally, a section of DNA will be copied twice, giving rise to a repeated 
section, which can mean that the new cell has two copies of a certain gene or genes where the old 
cell had only one. Many examples of such repeated sections are known in the human genome and 
the genomes of other animals and plants. 

Another common type of copying error is the point mutation, whereby individual nucleotides—
letters in the DNA code—are copied incorrectly. Over the course of many cell divisions, point 
mutations can accumulate, and as a result two initially identical versions of the same gene can 
become no longer identical, with some fraction of their bases changed to new and (roughly 
speaking) random values. These processes typically happen slowly over the course of evolutionary 
time, taking thousands or even millions of years. The end result, however, is that a gene is copied 
and then mutated to be slightly different from the original. 

And these processes are reflected in the network of protein interactions. Typically both copies of 
a duplicated gene in a genome can generate the corresponding protein; the subsequent mutation of 
one or both copies can result in the two producing similar but slightly different versions of the 
protein, different enough in some cases to also have slightly different sets of interactions in the 
network. Some interactions may be common to both proteins but, just as in our vertex copying 
model, some may also be different. 

This picture is made more plausible by the fact that changes in genes are not purely random but 
are subject to Darwinian selection under which some gene mutations are more advantageous than 
others. A cell with two copies of a particular protein may gain a selective advantage if those copies 
do slightly different things, rather than needlessly duplicating functionality that a single copy alone 
could achieve. Thus it seems possible that nature may actually favor duplicated proteins that have 
slightly different functions and hence different sets of network connections. Moreover an 
examination of the data for real-world protein-protein interaction networks turns up many 
examples of pairs of proteins that are similar but not identical in their patterns of interactions, and 
gene duplication is widely, if not universally, believed to be the cause. 

Several models of vertex copying and mutation in biological networks have been proposed and 
studied. The model proposed by Solé et al. [302], for example, is very similar to the model 
described above, the main difference being that it is a model of an undirected network rather than a 
directed one. Another model, put forward by Vázquez et al. [317], is also similar but includes a 
mechanism whereby the connections of the copied vertex can be changed as well as those of the 
copying vertex. Although the latter mechanism would make little sense in a model of a citation 
network (the bibliography of a paper never changes after publication), it is appropriate in the 
biological context, where all genes are potentially mutating all the time.



14.6 NETWORK OPTIMIZATION MODELS  

In the models we’ve looked at so far in this chapter, network structure is determined by the way in 
which the network grows—how newly added vertices connect to others, where newly added edges 
get placed, and so forth. Furthermore, the structure of these networks is for the most part a result of 
a succession of random processes, often decentralized and quite blind to the large-scale structure 
they are creating. 

An alternative network formation mechanism, important in certain types of network, is 
structural optimization. In some cases, such as transportation networks (Section 2.4) or distribution 
networks (Section 2.5), a network has been specifically designed to achieve a particular goal or 
goals, such as the delivery of mail or packages around the country or the transportation of airline 
passengers to their destinations, and the structure of the network can heavily influence the 
efficiency with which that goal is accomplished. Networks of airline routes, for example, are 
typically based on a hub-and-spoke arrangement with a small number of busy airport hubs and a 
large number of minor destinations. 230 (Package delivery companies also use a similar scheme.) 
The reason is that it makes little sense to fly airplanes directly between minor destinations—there 
will typically be very few passengers interested in the service and the planes will be half empty. 
By ensuring that the only flights in and out of minor destinations are to and from major hubs, one 
concentrates the passengers on those routes, ensuring fuller planes while still giving the passengers 
a reasonably short journey. 

In other words, the hub-and-spoke design of the airline networks optimizes the network, making 
it more efficient, and hence more profitable, for the airline. In such cases, the structure of the 
network is explained not by a growth mechanism but by the fact that the network has been 
designed to optimize certain characteristics. In this section we look briefly at some models of 
network optimization. 

 



14.6.1 TRADE-OFFS BETWEEN TRAVEL TIME AND COST  

The example given above of an airline network is a good place for us to start. Airline networks are, 
in fact, highly optimized: the airline industry operates on very small (sometimes even negative) 
profit margins, and optimization of operations to trim even a tiny percentage off their enormous 
costs can make a substantial difference to the bottom line. Airlines employ large staffs of 
researchers whose sole task is to find new ways to optimize aspects of their business, including 
particularly their network of routes. At the same time, airlines need to keep their customers happy 
if they are to avoid losing market share to their competitors. This means, for instance, that they 
need to provide short, quick routes between as many pairs of destinations as possible—travelers 
are strongly averse to long journeys that wear them out or waste their time. The twin goals of cost-
efficient operation and short routes are to some extent at odds with one another. The quickest way 
to get passengers from any place to any other, for example, would be to fly separate planes 
between every pair of airports in the country, but this would be immensely costly. The observed 
structure of real airline networks is a compromise response to the conflicting needs of the company 
and its passengers. 

The optimization problems faced by real airlines are, inevitably, hugely complex, involving as 
they do organizations with thousands of employees, billions of dollars worth of material resources, 
and rapidly changing parameters such as fuel costs, consumer demand, and the nature of the 
competition. Nonetheless, there is insight to be gained by creating and studying simplified models 
of the optimization process in the same way that simple models of, for example, citation networks 
can grant us insight despite the many features of real citation processes that they omit. 

One of the simplest models of network optimization is that proposed by Ferrer i Cancho and 
Solé [117], which balances two elements of exactly the types discussed above. In this model the 
cost of maintaining and operating the network is represented by the number of edges m in the 
network. This would be equivalent to saying that the cost of running an airline is proportional to 
the number of routes it operates. Obviously this is a vast simplification of the real situation, but let 
us accept it for the moment and see where it leads. The customer satisfaction half of the equation is 
represented by the mean geodesic distance ℓ between vertex pairs. In our airline example ℓ would 
be the average number of legs required to journey from one point to another, which is certainly one 
element of customer satisfaction, though not the only one. Technically, ℓ is a dissatisfaction 
measure, since large values correspond to disgruntled customers. 

We would like to design a network that minimizes both m and ℓ but this is in general not 
possible: the minimum value of ℓ is achieved by placing an edge between every pair of vertices, 
but this maximizes the value of m. Thus our two goals are, as discussed above, at odds with one 
another and the best we can hope for is a reasonable compromise between them. In search of such 
a compromise, Ferrer i Cancho and Solé studied the quality function

 

(14.148) 
  

where λ is a parameter in the range 0 ≤ λ ≤ 1. For any given network and a given value of λ we 
can calculate E(m, ℓ); the value of ℓ for instance can be computed using the breadth-first search 
algorithm of Section 10.3. Ferrer i Cancho and Solé considered networks of a given number of 
vertices n and then asked what happens when we try to minimize E(m, ℓ) by varying the position 

 

 



of the edges in that network to find the smallest value possible. If λ = 1, then E = m and this 
process is equivalent to just minimizing the number of edges without regard for path lengths. If λ = 
0 then E = ℓ and we are minimizing only average path length without regard for m. For values in 
between, we are striking a balance between number of edges and path length, with the precise 
weight of each term controlled by our choice of λ. 

At some level, this model is a trivial one. Observe that the value of ℓ becomes formally infinite 
if there is any pair of vertices in the network that is not connected by a path—i.e., if the network 
has more than one component—since the distance between such pairs is by convention considered 
infinite (see Section 6.10.1). Thus the minimum value of E must be for a connected network, a 
network with just one component. Observe also that the minimum value of m for a connected 
network is m = n − 1, where n is the number of edges. This is the value for a tree, which is the 
connected network with the smallest number of edges (see Section 6.7). 

 

A star graph of 25 vertices. 
  

Provided λ is reasonably large, so that we place a moderate amount of weight on minimizing m, 
the network with the best value of E(m, ℓ) is then found by giving m its minimum value of n − 1, 
which constrains the network to be a tree, and searching through the set of possible trees to find 
the one that minimizes ℓ. In fact, the latter task has a simple, known solution: the minimum value 
of ℓ among trees with n vertices is obtained by the star graph, the network in which there is a 
single central hub connected by a single edge to each of the n − 1 remaining vertices. By definition 
there are always exactly m pairs of vertices with geodesic distance one in any network—the pairs 
that are directly connected by an edge—which means that in a tree there are n − 1 such pairs. 
Among the set of all trees, therefore, the value of the mean distance ℓ is governed by the numbers 
of pairs with distances of two or more, since the number with distance one is fixed. But in the star 
graph all other pairs have distance exactly two—the shortest (indeed only) path from any (non-
hub) vertex to any other is the path of length two via the hub. Thus there can be no other tree with 
a smaller value of ℓ. 

Thus, for sufficiently large λ, the optimum network under the quality function (14.148) is always 
the star graph. This is satisfying to some extent: it offers a simple explanation of why the hub-and-
spoke system is so efficient. It offers short journeys while still being economic in terms of the 
number of different routes the airline has to operate. But it is also, as we have said, somewhat 
trivial. The model shows essentially only the one behavior. For smaller values of λ other behaviors 
are possible, but it turns out that the value of λ has to be really small: non-star-graph solutions only 
appear when
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Since the expression on the right-hand side dwindles rapidly as n becomes large, the optimal 
network is the star graph for almost all values of λ, even for networks of quite modest size. 

In their paper, however, Ferrer i Cancho and Solé did not perform precisely the calculation we 
have done here. Instead, they took a different and interesting approach, in which they looked for 
local minima of E(m, ℓ), rather than the global minimum. They did this numerically, starting with 
a random network, repeatedly choosing a pair of vertices at random, and either connecting them by 
an edge if they were not already connected or deleting the edge between them if they were. Then 
they compared the value of E before and after the change. If E decreased or stayed the same, they 
kept the change. If not, they reverted back to the state of the network before the change. The whole 
procedure was then repeated until the value of E stopped improving, meaning in practice that a 
long string of attempted changes were rejected because they increased E. 

An algorithm of this kind is called a random hill climber or greedy algorithm. The networks it 
finds are networks for which the value of E cannot be reduced any further by the addition or 
removal of any single edge. This does not mean, however, that no lower values of E exist: there 
may be states of the network that differ by more than one edge—the addition and deletion of 
whole regions of the network—that have better values of E. But if so, the algorithm will not find 
them. It comes to a halt at a local minimum where no single-edge change will improve the value of 
E. 

When studied in this way, the model shows an interesting behavior. For large values of λ, where 
the addition of an edge costs a great deal in terms of the value of E, the algorithm rapidly runs into 
trouble and cannot find a way to improve the network, long before it gets anywhere close to the 
optimum hub-and-spoke arrangement. When λ is small, on the other hand, the algorithm typically 
manages to find the star graph solution. The result is a spectrum of networks that range from a 
random-looking tree to a star-graph, as shown in Fig. 14.10. 

What’s more, Ferrer i Cancho and Solé found that the degree distributions of their networks 
show interesting behavior, passing from an exponential distribution for large λ, though a transition 
point with a power-law degree distribution, to approximately star-like graphs for small λ in which 
one vertex gets a finite fraction of all the edges and the remaining vertices have low degree. This 
spectrum is reminiscent of the behavior of continuous phase transitions such as the transition at 
which a giant component appears in a random graph (see Section 12.5), in which an initially 
exponential distribution of component sizes passes through a transition to a regime in which one 
component gets a finite fraction of all vertices and the rest are small. 

 

Figure 14.10: Networks generated by the optimization model of Ferrer i Cancho and Solé. 
The optimization model described in the text generates a range of networks, all trees or 

 

 

 



approximate trees, running from (a) distributed networks with exponential degree distributions, 
through (b) power-law degree distributions, to (c) star graphs in which there is just one major hub. 
Figure adapted from [117]. Original figure Copyright 2003 Springer-Verlag Berlin Heidelberg. 
Reproduced with kind permission of Springer Science and Business Media. 
  

Sadly, this observation does not go any further than an intriguing hint. The work of Ferrer i 
Cancho and Solé is entirely numerical and they do not give any analytic treatment of the model. In 
addition there are some other problems with the model. In particular, it is not clear why one should 
look at local minima of E rather than global ones: the researchers who work for real airlines are 
certainly capable of realizing when they are stuck in a local optimum and better profits are 
available by changing the network in some substantial way that moves them to a different and 
better optimum. It seems likely therefore that, to the extent that real networks show interesting 
structural behavior of the type observed here, it is not a result of getting stuck in local minima and 
hence that a model with a different approach is needed. 

One such model, proposed by Gastner and Newman [137], generalizes that of Ferrer i Cancho 
and Solé by considering not only number of legs in a journey but also the geographic distance 
traveled. Suppose that airline travelers are principally concerned not with the number of legs in 
their journey but with the total time it takes them to travel from origin to destination. Number of 
legs can be regarded as a simple proxy for travel time, but a better proxy would be to take the 
length of those legs into account as well as their number. The travel time contributed to a journey 
by one leg is composed of the time spent in the airport (checking in, waiting, embarking, taxiing, 
disembarking, etc.) plus the time spent in the air. A simple formula would be to assume that the 
former is roughly constant, regardless of the distance being traveled, while the latter is roughly 
proportional to the distance traveled. Thus, the time taken by a leg from vertex i to vertex j in our 
network would be
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where μ and ν are constants and rij is the distance flown from i to j. By varying the values of μ 
and ν, we can place more or less emphasis on the fixed “airport” time cost versus the time spent in 
the air. 

Gastner and Newman used this expression for travel time in place of the simple hop-count of the 
model of Ferrer i Cancho and Solé, redefining ℓ to be the average shortest-path distance between 
pairs of vertices when distances are measured in terms of travel time. The quality function E is 
defined just as before, Eq. (14.148), but using this new definition of ℓ. 

Despite the superficial similarity between this model and that of Ferrer i Cancho and Solé there 
is a crucial difference between the two: the model of Gastner and Newman depends on actual 
spatial distances between airports and hence requires that the vertices of the network be placed at 
some set of positions on a map. The model of Ferrer i Cancho and Solé by contrast depends only 
on the network topology and has no spatial element. There are various ways in which the vertices 
can be positioned on the map. Gastner and Newman, for instance, specifically considered the map 
of the United States and took the real US population distribution into account, placing vertices 
with greater density in areas with greater populations. While this adds a level of realism to the 
calculations, the interesting behavior of their model can be seen without going so far. In the 
examples given here we consider a fictional map in which vertices are just placed uniformly at 
random in a square with periodic boundary conditions. 

Another important difference between the two models is that Gastner and Newman considered 
the global optimum of the quality function rather than local optima as Ferrer i Cancho and Solé 

 

 



did. In practice, unfortunately, the global optimum is hard to find, so one often has to make do 
with approximate optima. Gastner and Newman used the numerical optimization technique called 
simulated annealing to find good approximations to the global optimum, but we should bear in 
mind that they are only approximations. 

Figure 14.11 shows optimal or approximately optimal networks for various values of the 
parameters μ and ν. The leftmost frames of the figure correspond to small μ and large ν, meaning 
that the cost to the traveler of a trip is roughly proportional to the total mileage traveled and the 
number of legs has little effect. In this case, the best networks are ones that allow travelers to travel 
in roughly straight lines from any origin to any destination. As the figure shows, the networks are 
roughly planar in appearance. They look reminiscent of road networks, rather than airline routes, 
and this is no coincidence. Travel times for road travelers are indeed dominated by total mileage: 
there is almost no ʺper legʺ cost associated with road travel, since it takes only a few seconds to 
turn from one road onto another. It is satisfying to see therefore that the simple model of Gastner 
and Newman generates networks that look rather like real road maps in this limit. 

Figure 14.11: Networks generated by the spatial network model of Gastner and Newman. 
The four frames show networks that optimize or nearly optimize the quality function, Eq. (14.148), 
with ℓ defined according to the prescription of Gastner and Newman [137] in which the lengths of 
edges in the network are chosen to represent the approximate travel time to traverse the edge. 
Travel time has two components, a fixed cost per edge and a cost that increases with the Euclidean 
length of an edge. The frames show the resulting networks as the relative weight of these two 
components is varied between the extremes represented by the network on the left, for which all of 
the weight is on the Euclidean length, and by the network on the right, for which cost is the same 
for all edges. The resulting structures range from road-like in the former case, to airline-like in the 
latter. Adapted from Gastner [135]. 
  

The rightmost frames in the figure show optimal networks for large μ and small ν—the case 
where it is mostly the number of legs that matters and the length of those legs is relatively 
unimportant. As we saw for the model of Ferrer i Cancho and Solé, the best networks in this case 
are star-like hub-and-spoke networks, and this is what we see in the present model too. 

Thus this model interpolates between road-like and airline-like networks as the parameters are 
varied from one extreme to the other. Note that the parameter λ governing the cost of building or 
maintaining the network is held constant in Fig. 14.11. In principle, we could vary this parameter 
too, which would affect the total number of edges in the network. For higher λ sparser networks 
with fewer edges would be favored, while for lower λ we would see denser networks. 

The work of Gastner and Newman still suffers from the drawback that the results are numerical 
only. More recently, however, some results for the model have been derived analytically by 
Aldous [15]. The interested reader is encouraged to consult his paper.

 

 



PROBLEMS  

14.1 Consider the growing network model of Price, as described in Section 14.1.

a. From the results given in this chapter write down an expression in terms of the parameters 
a and c for the expected in-degree of the ith vertex added to the network just before the jth 
vertex is added, where i < j. 

b. Hence show that the average probability of a directed edge from j to i in a network with n 
vertices, where n ≥ j, is

 

14.2 Consider Price’s model as a model of a citation network, applied to publications in a single 
field, a field that is currently, say, ten years old.

a. Suppose that you are the author of the tenth paper published in the field. How long will it 
be from now before the expected number of citations your paper has within the field is 
equal to the expected number that the first paper published currently has? 

b. Derive an expression for the average number of citations per paper to papers published 
between times τ1 and τ2, where time is defined as in Eq. (14.44). 

c. Reasonable values of the model parameters for real citation networks are c = 20 and a = 5. 
For these parameter choices, what is the average number of citations to a paper in the first 
10% of those published? And what is the average number for a paper in the last 10%? 

These perhaps surprising numbers are examples of the first-mover advantage discussed in Section 
14.3.1—the substantial bias of citation numbers in favor of the first papers published in a field. 
  

14.3 Consider a model of a growing directed network similar to Price’s model described in Section 
14.1, but without preferential attachment. That is, vertices are added one by one to the growing 
network and each has c outgoing edges, but those edges now attach to existing vertices uniformly 
at random, without regard for degrees or any other vertex properties.

a. Derive master equations, the equivalent of Eqs. (14.7) and (14.8), that govern the 
distribution of in-degrees q in the limit of large network size. 

b. Hence show that in the limit of large size the in-degrees have an exponential distribution pq 
= Ce−λq, where C is a normalization constant and λ = ln(1 + 1/c). 

14.4 Consider a model network similar to the model of Barabási and Albert described in Section 
14.2, in which undirected edges are added between vertices according to a preferential attachment 
rule, but suppose now that the network does not grow—it starts off with a given number n of 
vertices and neither gains nor loses any vertices thereafter. In this model, starting with an initial 

 

 

 

 



network of n vertices and some specified arrangement of edges, we add at each step one undirected 
edge between two vertices, both of which are chosen at random in direct proportion to degree k. 
Let pk (m) be the fraction of vertices with degree k when the network has m edges in total. 

a. Show that when the network has m edges, the probability that vertex i will get a new edge 
upon the addition of the next edge is ki/m. 

b. Write down a master equation giving pk (m + 1) in terms of pk-1(m) and pk(m). Be sure to 
give the equation for the special case of k = 0 also. 

c. Eliminate m from the master equation in favor of the mean degree c = 2m/n and take the 
limit n → ∞ with c held constant to show that pk(c) satisfies the differential equation

 

d. Define a generating function  and show that it satisfies the partial 
differential equation

 

e. Show that g(c, z) = ƒ(c - c/z) is a solution of this differential equation, where ƒ(x) is any 
differentiable function of x. 

f. The particular choice of ƒ depends on the initial conditions on the network. Suppose the 
network starts off in a state where every vertex has degree one, which means c = 1 and g(1, 
z) = z. Find the function ƒ that corresponds to this initial condition and hence find g(c, z) 
for all values of c and z. 

g. Show that, for this solution, the degree distribution as a function of c takes the form

 

except for k = 0, for which p0(c) = 0 for all c.

 

Note that this distribution decays exponentially in k, implying that preferential attachment does 
not, in general, generate a power-law degree distribution if the network is not also growing. 
  

14.5 Consider a model of a growing network similar to Price’s model described in Section 14.1, 
but in which the parameter a, which governs the rate at which vertices receive new incoming links 
when their current in-degree is zero, varies from vertex to vertex. That is the probability of a new 
edge attaching to vertex i is proportional to qi + ai, where qi is the current in-degree and ai is a 
specified parameter. In the context of citation networks, for example, ai could be considered a 
measure of the intrinsic merit of a paper, controlling as it does the rate at which the paper gets 
citations immediately after first publication, when qi = 0. (This differs from the model discussed in 
Section 14.4.4, where the preferential attachment term was multiplied by a varying factor to 
represent variations in the merit or fitness of vertices.)

a. Suppose that ai is drawn at random from some stationary distribution with a welldefined 
mean. Show that, in the limit of large n, the probability that the (n + 1)th vertex added to 

 



the network attaches to a previous vertex i with in-degree qi is c(qi + ai)/n(c + ā), where ā is 
the average value of ai.  

b. Hence show that the in-degree distribution of the network satisfies the same master 
equations, (14.7) and (14.8), as Price’s model, but with a replaced by ā. 

(It immediately follows that the degree distribution of the network is also the same as for Price’s 
model with the same substitution.) 
  

14.6 Consider the following simple model of a growing network. Vertices are added to a network 
at a rate of one per unit time. Edges are added at a mean rate of β per unit time, where β can be 
anywhere between zero and ∞. (That is, in any small interval δt of time, the probability of an edge 
being added is β δt.) Edges are placed uniformly at random between any pair of vertices that exist 
at that time. They are never moved after they are first placed. 

We are interested in the component structure of this model, which we will tackle using a master 
equation method. Let ak(n) be the fraction of vertices that belong to components of size k when 
there are n vertices in the network. Equivalently, if we choose a vertex at random from the n 
vertices currently in the network, ak(n) is the probability the vertex will belong to a component of 
size k. 

a. What is the probability that a newly appearing edge will fall between a component of size r 
and another of size s? (You can assume that n is large and the probability of both ends of 
an edge falling in the same component is small.) Hence, what is the probability that a 
newly appearing edge will join together two pre-existing components to form a new one of 
size k? 

b. What is the probability that a newly appearing edge joins a component of size k to a 
component of any other size, thereby creating a new component of size larger than k? 

c. Thus write down a master equation that gives the fraction of vertices ak(n + 1) in 
components of size k when there are n + 1 vertices in total. 

d. The only exception to the previous result is that components of size 1 appear at a rate of 
one per unit time. Write a separate master equation for a1(n + 1). 

e. If a steady-state solution exists for the component size distribution, show that it satisfies the 
equations

 

f. Multiply by zk and sum over k from 1 to ∞ and hence show that the generating function 
 satisfies the ordinary differential equation

 

Unfortunately, the solution to this equation is not known, so for the moment at least we do 
not have a complete solution for the component sizes in the model. 

 

 



CHAPTER 15 

OTHER NETWORK MODELS 

A brief introduction to two specialized network models, the small-world model and the 
exponential random graph 

THE RANDOM graph and preferential attachment models of previous chapters are the most 
widely studied of network models, but they are not the only ones. Many other models have been 
proposed, either as a way of shedding light on specific observed features of networks or as tools to 
help in the analysis of network data. In this chapter we describe briefly two of the best-known 
additional types of network models, the small-world model and exponential random graphs.

 

 

 



15.1 THE SMALL-WORLD MODEL  

One of the least well-understood features of real-world networks is transitivity, the propensity for 
two neighbors of a vertex also to be neighbors of one another. (See Section 7.9 for an introduction 
to the phenomenon of transitivity.) Neither the random graph models of Chapters 12 and 13 nor 
the models of network growth discussed in Chapter 14 generate networks with any significant 
level of transitivity, as quantified by the clustering coefficient, Eq. (7.41). The Poisson random 
graph of Chapter 12, for instance, has a clustering coefficient c / (n − 1), where c is the mean 
degree of a vertex (see Eq. (12.11)). Thus the clustering coefficient vanishes as n becomes large 
for constant c. In practice, as discussed in Section 7.9, this often results in values of the clustering 
coefficient that are orders of magnitude smaller than those observed in real networks. 

It is not that difficult to come up with a network model that does have a high clustering 
coefficient. For example, a simple triangular lattice, as shown in Fig. 15.1, has significant 
transitivity. 

There are twice as many triangles in such a lattice as there are vertices, for a total of 2n triangles 

in a network of n vertices. At the same time there are  connected triples for each vertex, 
so, following Eq. (7.41), the clustering coefficient is

 

(15.1) 
  

A value of 0.4 is comparable with the clustering coefficients measured for many social networks 
(see Section 7.9 again). Moreover, this value does not depend on the size of the network, as the 
value for the random graph (and many other models) does, so it remains large even as the network 
size diverges. 

Another simple model network with high transitivity is depicted in Fig. 15.2a. Unlike the 
triangular lattice, this model allows the value of the clustering coefficient to be varied. In this 
model the vertices are arranged on a one-dimensional line, and each vertex is connected by an edge 
to the c vertices nearest to it, where for consistency c should be an even number. To make analytic 
treatment easier, we can apply periodic boundary conditions to the line, effectively bending it 
around into a circle, as in Fig. 15.2b. 

 

 



 

Figure 15.1: A triangular lattice. Any vertex in a triangular lattice, such as the one highlighted 
here, has six neighbors and hence  pairs of neighbors, of which six are connected by edges, 
giving a clustering coefficient of  = 0.4 for the whole network, regardless of size. 
  

To calculate the number of triangles in such a network, we observe that a trip around any 
triangle must consist of two steps in the same direction around the circle—say clockwise—
followed by one step back to close the triangle. The number of triangles per vertex in the whole 
network is then equal to the number of such triangles that start from any given point. 

 

Figure 15.2: A simple one-dimensional network model. (a) Vertices are arranged on a line and 
each is connected to its c nearest neighbors, where c = 6 in this example. (b) The same network 
with periodic boundary conditions applied, making the line into a circle. 
  

 

Traversing a “triangle” in our circle model means taking two steps forward around the circle and 

 

 

 

 

 



one step back. 
Note, however, that the third and final step in the triangle can go at most  units or lattice 

spacings around the circle, since this is the length of the longest link in the network. And the 
number of ways to choose the two steps forward is simply the number of distinct ways of choosing 

the target vertices for those steps from the  possibilities, which is  .Thus the 
total number of triangles is  

The number of connected triples centered on each vertex is just =  1) and hence the 

total number of connected triples is . 
Putting these results together, the clustering coefficient for the complete network is

 

(15.2) 
  

As c is varied, this clustering coefficient ranges from zero for c = 2 up to a maximum of  when c 
→ ∞. And, as with the triangular lattice, the value does not fall off with increasing network size, 
since Eq. (15.2) is independent of n. 

While this simple “circle model” and the triangular lattice both give large values of the 
clustering coefficient, they are clearly unsatisfactory in other respects as models of networks. One 
obvious problem is the degree distribution. The circle model, for instance, gives all vertices the 
same degree c. In the language of graph theory the model generates a regular graph, which is 
entirely unlike most real-world networks with their broad distributions of vertex degree. This 
problem however could quite easily be solved by making a circle of vertices with varying degrees 
instead of constant ones. 

A more serious problem with models of this type is that they are “large worlds”—they don’t 
display the small-world effect characteristic of essentially every observed network in the real 
world and discussed previously in Sections 3.6 and 8.2. The small-world effect is the observation 
that the geodesic or shortest-path distance between most pairs of vertices in a network is small—
typically just a few steps even in networks with billions of vertices such as the acquaintance 
network of the entire world population. 

The shortest distance between two vertices in the circle model above is straightforward to 
calculate: the farthest one can move around the ring in a single step is  lattice spacings, so two 
vertices m lattice spacings apart are connected by a shortest path of 2m/c steps.232 Averaging over 
the complete range of m from 0 to  then gives a mean shortest path of n/2c. In a network such as 
the acquaintance network of the world, with n = O(109) people each acquainted with, say, c = O
(103) others, this expression yields an average shortest path length on the order of a million steps, 
which is wildly off the mark—a more realistic figure would be six or maybe ten, but not a million. 

By contrast, the random graph studied in Chapter 12 does capture the small-world effect rather 
well (as indeed do most of the other network models discussed in previous chapters). As shown in 
Section 12.7, the typical shortest path between connected vertices in a random graph has length 

about ln n/ ln c which has a value on the order of  for the acquaintance network above. On the 
other hand, as we have said, the random graph has an unrealistically low clustering coefficient. 

Thus we have two models, our simple circle model and the random graph, that between them 
each capture one property of real networks—high transitivity and short path lengths—but neither 
captures both. This leads us to ask whether it is possible to create a hybrid of the two that, like 
real-world networks, displays both high transitivity and short path lengths simultaneously. The 
small-world model, proposed in 1998 by Watts and Strogatz [323], does exactly this. 

 

 



The small-world model, in its original form, interpolates between our circle model and the 
random graph by moving or rewiring edges from the circle to random positions. The detailed 
structure of the model is shown in Fig. 15.3a. Starting with a circle model of n vertices in which 
every vertex has degree c, we go through each of the edges in turn and with some probability p we 
remove that edge and replace it with one that joins two vertices chosen uniformly at random.233 
The randomly placed edges are commonly referred to as shortcuts because, as shown in Fig. 15.3a, 
they create shortcuts from one part of the circle to another. 

 

Figure 15.3: Two versions of the small-world model. (a) In the original version of the small-
world model, edges are with independent probability p removed from the circle and placed 
between two vertices chosen uniformly at random, creating shortcuts across the circle as shown. In 
this example n = 24, c = 6, and p = 0.07, so that 5 out of 72 edges are “rewired” in this fashion. (b) 
In the second version of the model only the shortcuts are added and no edges are removed from the 
circle. 
  

The parameter p in the small-world model controls the interpolation between the circle model 
and the random graph. When p = 0 no edges are rewired and we retain the original circle. When p 
= 1 all edges are rewired to random positions and we have a random graph. For intermediate 
values of p we generate networks that lie somewhere in between. Thus for p = 0 the small-world 
model shows clustering (so long as c > 2—see Eq. (15.2)) but no small-world effect. For p = 1 it 
does the reverse. The crucial point about the model is that as p is increased from zero the clustering 
is maintained up to quite large values of p while the small-world behavior, meaning short average 
path lengths, already appears for quite modest values of p. As a result there is a substantial range 
of intermediate values for which the model shows both effects simultaneously, thereby 
demonstrating that the two are in fact entirely compatible and not exclusive at all. 

Unfortunately, it is hard to demonstrate this result rigorously because the small-world model as 
defined above is difficult to treat by analytic means. For this reason we will in this chapter study a 
slight variant of the model, which is easier to treat [254]. In this variant, shown in Fig. 15.3b, 
edges are added between randomly chosen vertex pairs just as before, but no edges are removed 
from the original circle. This leaves the circle intact, which makes our calculations much simpler. 
For ease of comparison with the original small-world model, the definition of the parameter p is 
kept the same: for every edge in the circle we add with independent probability p an additional 
shortcut between two vertices chosen uniformly at random.234 

A downside of this version of the model is that it no longer becomes a random graph in the limit 
p = 1. Instead it becomes a random graph plus the original circle. This, however, turns out not to 
be a significant problem, since most of the interest in the model lies in the regime where p is small 
and in this regime the two models differ hardly at all; the only difference is the presence in the 
second variant of a small number of edges around the circle that would be absent in the first, 
having been rewired. Henceforth, we will study the variant model in which no edges are removed 
and we will refer to it, as others have, as the small-world model, although the reader should bear in 
mind that there are two slightly different models that carry this name.

 

 



15.1.1 DEGREE DISTRIBUTION  

In the circle model described in the last section every vertex has the same degree c—the network is 
a regular graph. Once we add shortcuts to the circle to make the small-world model, the degree of 
a vertex is c plus the number of shortcut edges attached to it. The definition of the small-world 

model says that for each of the non-shortcut edges around the circle, of which there are , we 
add a shortcut with probability p at a random location, so that there are  shortcuts on average 
and ncp ends of shortcuts. This means that cp shortcuts on average end at any particular vertex. 
And the specific number s of shortcuts attached to any one vertex is Poisson distributed with mean 
cp thus:

 

(15.3) 
  

The total degree of a vertex is k = s + c. Putting s = k − c into Eq. (15.3) then gives us the degree 
distribution of the small-world model:

 

(15.4) 
  

for k ≥ c and pk = 0 if k < c.
 

Figure 15.4 shows the form of this distribution for . As we can see, the distribution 
has an unusual peaked shape with a lower cut-off, quite unlike the degree distributions we saw for 
real networks in Section 8.3. In this respect, therefore, the small-world model does not mimic well 
the structure of networks in the real world. On the other hand, the model was never intended to 
mimic real-world degree distributions. What it does do well is mimic the clustering and short path 
lengths seen in real networks. 

 

 

 

 



 

Figure 15.4: The degree distribution of the small-world model. The frequency distribution of 
vertex degrees in a small-world model with parameters c = 6 and . 
  

 

 



15.1.2 CLUSTERING COEFFICIENT  

The clustering coefficient C is defined by Eq. (7.41), which we reproduce here:

 

(15.5) 
  

To evaluate C for the small-world model we need to calculate the numbers of triangles and 
connected triples in the network. Let us start with the former. 

Since the underlying circle in the model is unchanged by the addition of shortcuts, every triangle 
in that circle, of which there are, as before,  1), is still present. Some new triangles are also 
introduced by the shortcuts. For example, vertex pairs  to c steps apart on the circle are 
connected by one or more paths of length two, and if the same vertices are also connected by a 
shortcut those paths are turned into triangles. 

The number of such paths of length two is clearly proportional to n—if we double the length of 
the circle we double the number of paths. The average number of shortcuts in the small-world 
model is, as we have said,  and there are  places they can fall, meaning that any particular 
pair of vertices is connected with probability

 

(15.6) 
  

or just cp / n in the limit of large n. The number of paths of length two that are completed by 
shortcuts to form triangles is thus proportional to n × cp / n = cp, which is a constant. This means 
that in the limit of large network size we can safely ignore these triangles, because they will be 
negligible compared to the O(n) triangles in the main circle. 

Triangles can also be formed from two or three shortcuts, but these also turn out to be negligible 
in number. Thus, to leading order in n, the number of triangles in the small-world model is simply 
equal to the number in the circle, which is  

And what about the number of connected triples? Once again, all connected triples in the circle 
model are still present in the small-world model. As shown in Section 15.1, there are  
such triples. There are, however, also triples created by a shortcut combining with an edge in the 

circle. There are  shortcuts and c edges that they can form a triple with at each of their two 

ends, for a total of  connected triples. 
There are also triples created by pairs of shortcuts. If a vertex is connected to m shortcuts then 

there are  triples made of two shortcuts centered on that vertex and, averaging over the Poisson 
distribution of m, with mean cp, the expected number of connected triples centered at a vertex is 

 

 

 



, for a total of  triples over all vertices. 
Thus the expected total number of connected triples of all types in the whole network is 

. Substituting the numbers of triangles and triples into Eq. (15.5), we 
then find that

 

(15.7) 
  

Note that this becomes the same as Eq. (15.2), as it should, when p = 0. And as p grows it 

becomes smaller, with a minimum value of C =  when p = 1. For instance 

when c = 6, the minimum value of the clustering coefficient is  (This behavior 
contrasts with that of the original Watts-Strogatz version of the small-world model in which edges 
are removed from the circle. In that version the clustering coefficient tends to zero as n → ∞ when 
p = 1, since the network becomes a random graph at p = 1.) 

 

Figure 15.5: Clustering coefficient and average path length in the small-world model. The 
solid line shows the clustering coefficient, Eq. (15.7), for a small-world model with c = 6 and n = 

600, as a fraction of its maximum value , plotted as a function of the 
parameter p. The dashed line shows the average geodesic distance between vertices for the same 
model as a fraction of its maximum value ℓmax = n/2c = 50, calculated from the mean-field 
solution, Eq. (15.14). Note that the horizontal axis is logarithmic. 
  

Figure 15.5 shows a plot of the clustering coefficient as a function of p for a small-world 
network with c = 6. 

 

 

 



15.1.3 AVERAGE PATH LENGTHS  

Calculating the average path length in the small-world model, i.e., the mean geodesic or shortest-
path distance between pairs of vertices, is harder than calculating the degree distribution or 
clustering coefficient. Indeed, no exact expression for mean distance has yet been found, though 
some approximate expressions are known and have been found in simulations of the model to be 
reasonably accurate. 

See Section 6.10.1 for a discussion of geodesic distances in networks. 

One thing that is known about path lengths in the model is how they scale with the model 
parameters. Consider the simple case of a small-world model with c = 2, so that around the circle 
each vertex is connected only to its immediate neighbors, and consider the following dimensional 
argument. We define a length measure in our network by saying that the distance covered by an 
edge in the network is one length unit—a meter say, or a foot.235 Then we can ask what other 
quantities in the model have the dimensions of length. One candidate is the distance around the 
whole circle, which is just n. 

But there is another length in the model also, which is the mean distance between the ends of 
shortcuts around the circle. Suppose there are s shortcuts in our network, which means there 2s 
ends of shortcuts. (We know in fact that , but the point of this argument will be clearer if 
we stick with the simple notation s for the moment.) Then the average distance ξ between ends 
around the circle is

 

(15.8) 
  

Once we specify the two distances n and ξ, we have specified the entire model, because once we 
have n the value of ξ fixes s, which fixes p, which is the only free parameter in the model given 
that c = 2. 

Now consider the ratio of the length of the average shortest path in the network, which we will 
denote ℓ, to the length of the path around the entire circle, which is n. This ratio can, by definition, 
be written as a function of n and ξ, since n and ξ specify the entire model. However, it is also the 
ratio of two distances, meaning that it is dimensionless, and hence can be a function of only of 
dimensionless combinations of n and ξ. But there is only one such dimensionless combination, the 
ratio n / ξ. Thus it must be the case that

 

(15.9) 
  

 

 

 

 



where ƒ(x) is some function that doesn’t depend on any of the parameters, a universal function 
in the language of scaling theory. 

In other words, the mean geodesic distance ℓ between vertices in the small-world model with c 
= 2 is simply equal to the number of vertices n times some function of the number of shortcuts:

 

(15.10) 
  

And what happens for larger values of c? When we increase c the lengths of the shortest paths 
between vertices decrease. If we keep everything the same in our model—number of vertices, 
number of shortcuts—but increase c from two to four, then we will roughly halve the shortest path 
between any pair of vertices. This is because we now have edges connecting next-nearest neighbor 
vertices around the circle as well as nearest neighbors, which means that we can traverse a given 
distance around the circle in half as many hops as we could previously. If the path incorporates any 
shortcuts then that part of the distance doesn’t change—the shortcuts are as long as they ever were. 
However, if the density of shortcuts is low then most of the hops in most paths will be around the 
circle rather than along shortcuts and to a good approximation we can say that the length of the 
paths has simply halved. Similarly, for general values of c the length of the paths is decreased by a 
factor of  over its value for the c = 2 case. 

Thus, provided the density of shortcuts is low, the equation corresponding to Eq. (15.10) for 
general values of c is:

 

(15.11) 
  

We can derive an alternative form by making use of the fact that the number of shortcuts is 
, which gives us ℓ = 2(n/c)ƒ(ncp). In fact, conventionally we absorb the leading factor of 

two into the definition of ƒ, defining a new universal function ƒ(x) = 2ƒ(x), so that

 

(15.12) 
  

This scaling form, first proposed by Barthélémy and Amaral [31], tells us how the average path 
length in the small-world model depends on the model parameters n, c, and p when the density of 
shortcuts is low. 

The catch is that we don’t know the form of the function ƒ (x). We can, however, get an idea of 
its shape by numerical simulation of the model. We can generate random small-world networks 

 

 

 

 

 

 



and measure the mean distance ℓ between their vertices using breadth-first search (Section 
10.3). Equation (15.12) tells us that if we perform such measurements for many different networks 
with many different values of the parameters we should find that the combination cℓ/n is equal to 
the same function of ncp in all of them:

 

(15.13) 
  

Figure 15.6 shows the results of such simulations for many different networks, and indeed we see 
that all of the points in the figure follow, roughly speaking, a single curve. This is the curve of ƒ 
(x). 

 

Figure 15.6: Scaling function for the small-world model. The points show numerical results for 
cℓ/n as a function of ncp for the small-world model with a range of parameter values n = 128 to 32 
768 and p = 1 × 10−6 to 3 × 10−2, and two different values of c as marked. Each point is averaged 
over 1000 networks with the same parameter values. The points collapse, to a reasonable 
approximation, onto a single scaling function ƒ(ncp) in agreement with Eq. (15.13). The dashed 
curve is the mean-field approximation to the scaling function given in Eq. (15.14). 
  

Another approach is to try to calculate ƒ (x) approximately in some fashion. Various approaches 
have been tried, including series approximations, distributional approximations, and mean-field 
methods. A mean-field approximation, for example, gives the result [251]

 

 

 

 

 

 



(15.14) 
  

The methods used to derive this form become exact in the limit of either very small or very large 
numbers of shortcuts in the network,236 but in between around x = 1 they are only approximate. 
The form of Eq. (15.14) is shown as the dashed line in Fig. 15.6 and indeed we see that it agrees 
well with the numerical results at the ends of the range but less well in the middle. 

This, however, is enough for us to prove that the small-world model is indeed a “small world.” 
Consider Eq. (15.14) for large values of x. Making use of the standard identity

 

(15.15) 
  

we can write ƒ (x) as

 

(15.16) 
  

and then taking the limit of large x we find

 

(15.17) 
  

for x ≫ 1. Substituting this into Eq. (15.12), we then have

 

(15.18) 
  

for ncp ≫ 1. Recalling that ncp is simply twice the number of shortcuts in the network, this 
implies that, provided the number of shortcuts in the network is significantly greater than 1, the 
average distance between vertices will increase logarithmically with n, i.e., very slowly, for fixed c 
and p. Thus the number of vertices in the network can become very large and the value of ℓ will 

 

 

 

 

 



remain small, which is precisely the phenomenon we call the small-world effect. 
Moreover, since only the number of shortcuts, and not the number per vertex, has to be large, 

the model tells us that the addition of only a small density of random shortcuts to a large network 
can produce small-world behavior. This helps explain why most real-world networks show the 
small-world effect. Most networks contain long-range connections and have at least some 
randomness in them—very few are perfectly regular or have only short-range connections—so we 
should not be surprised to see small-world behavior in almost all cases. 

It is important to notice that the small-world model not only shows the small-world effect, but 
that it does so at the same time as displaying clustering. Since the number of shortcuts in the 
network is , we can always make it much larger than one simply by increasing the size n of the 
network, while keeping c and p constant. At the same time, the clustering coefficient, Eq. (15.7), is 
independent of n and hence retains its (non-zero) value as n → ∞. In this limit, therefore, we 
simultaneously have non-zero clustering and the small-world effect, demonstrating conclusively 
that the two are not at odds with one another—it is perfectly possible to have both in the same 
network at the same time. 

Figure 15.5 shows a plot of the approximate value of ℓ as a function of p from Eqs. (15.12) and 
(15.14) for a small-world model with n = 600 vertices and c = 6, along with the curve for the 
clustering coefficient of the same model that we plotted earlier and, as we can see, there is a 
substantial range of values of p in which the value of ℓ is low while the value of C is high. 

Many other properties and quantities can be calculated for the small-world model, either 
analytically or numerically. For a short review of results concerning the model see Ref. [232].



15.2 EXPONENTIAL RANDOM GRAPHS  

Many of the networks we observe in the real world exist in only one instantiation, one example 
that we can study. There’s only one Internet, for instance, and only one World Wide Web. But is 
the precise structure of such a network—the precise pattern of connections in the Internet, say—
the only possible structure the network could have? Common sense suggests that it is not. For a 
start, the Internet evolves in time, so we see different structures if we look at different times and all 
of them are by definition plausible structures for the network. More importantly, it’s clear that, had 
circumstances been slightly different, the Internet could easily have evolved to have a different 
topology, but one that in practical terms would probably have worked about as well as the present 
one. 

On the other hand, we can say that the structure of such an alternate Internet would probably 
have been “similar” to the real Internet, in some sense. That is, all reasonable choices for the 
structure of the Internet have some basic features in common, even if they differ in smaller details. 
Similar considerations also apply to other types of network, including social networks, biological 
networks, and information networks. 

In some cases the questions we want to answer about a networked system can be tackled by 
studying the structure of only a single observed example—the real Internet for instance. But there 
are other cases where we would like to know about the entire set of possible networks that could 
represent a system. If we are studying some social process in a social network, for instance, such 
as opinion formation or the spread of a disease, we can measure a social network and then 
calculate or simulate the effects of the process of interest on that network. More often, however, 
we would like to know how the process behaves on social networks generally, rather than on the 
one particular network we have measured. 

Considerations of this kind lead us to consider ensemble models of networks, an ensemble, in 
this context, meaning a set of possible networks plus a probability distribution over them. We have 
seen some examples of ensemble models in previous chapters, such as the random graphs of 
Chapters 12 and 13. In this section we introduce a beautiful and general formalism for ensemble 
network models called the exponential random graph, which includes random graphs as special 
cases but also extends to many other network ensembles that describe all sorts of network 
phenomena.237 

Elegant though this formalism is, however, it also has some serious drawbacks. For reasons that 
are still not entirely understood, exponential random graphs fail as models of some common 
network phenomena such as transitivity (see Section 7.9). We will examine the nature of some of 
these failures towards the end of the chapter.

 



15.2.1 DEFINITION OF THE EXPONENTIAL RANDOM GRAPH  

Suppose we want to create an ensemble of networks with a given set of properties, such as a given 
number of edges or a given value of the clustering coefficient. We can do that, as ordinary random 
graph models do, by fixing absolutely the values of the quantity or quantities of interest and then 
drawing uniformly from the set of all networks with the desired values. For instance, if we draw 
uniformly from the set of all graphs with a given number of edges we have the G(n, m) random 
graph model of Section 12.1. 

In many cases, however, this approach is not exactly what we want. If we observe that a social 
network, for example, has a given number of edges, it does not necessarily mean that every 
possible social network for the given community would have exactly that many edges. Had the 
world evolved slightly differently, the number of edges might well have turned out differently as 
well. 

Often, therefore, a better approach is to fix the average value of the property or properties of 
interest. We might fix the average number of edges, for instance, so that some networks in our 
ensemble have more than the average and some have less, but over the whole ensemble we get the 
right average value. Moreover, we can arrange that networks with numbers of edges close to the 
desired value have higher probabilities in the ensemble than networks further away, so that the 
ensemble is dominated by networks with properties close to the desired ones. The exponential 
random graph provides an elegant way of achieving these goals. 

Suppose, therefore, that we have some set of network measures whose numerical values we 
want to fix. Examples might include number of edges or mean degree of a vertex, degrees of 
individual vertices, number of triangles or clustering coefficient, and so forth. Let us denote these 
measures by x1, x2, . . . 

Recall that a simple graph is a graph with no multiedges and no self-edges—see Section 6.1. 

Now consider the set  of all simple graphs238 with n vertices and let us define an ensemble by 
giving each graph G in the set a probability P(G), normalized so that

 

(15.19) 
  

The mean or expectation value �xi� of a network measure xi within this ensemble is given by

 

(15.20) 
  

 

 

 

 

 



where xi(G) is the value of xi measured on the graph G (e.g., number of edges in graph G, number 
of triangles, etc.). 

Now, following the prescription outlined above, let us fix the mean value of each of our 
measures within our ensemble. If we do this, then Eq. (15.20) is turned around and becomes a 
constraint on the probability distribution over graphs:

 

(15.21) 
  

where �xi� is now a specified number. We have one such constraint for each network measure.
 

The number of measures, however, is typically quite small—maybe only one or two, maybe 
hundreds or even thousands, but usually nowhere near the number of graphs in our ensemble. The 
number of simple graphs of n vertices is 2n(n−1)/2, which becomes very large even for relatively 
modest values of n. This means that the constraints in Eqs. (15.19) and (15.21) do not specify the 
probability distribution P(G) completely. Indeed, they leave an enormous amount of flexibility 
about the values of P(G). There are many more unknowns P(G) than there are constraints in our 
equations and hence a wide range of choices of P(G) that will satisfy the constraints. How do we 
choose between them? 

This question, of making the best choice of a probability distribution given only a relatively 
small number of constraints on that distribution, is one that is familiar to physicists and 
statisticians, having been studied for over a hundred years since the pioneering work of Willard 
Gibbs in the latter part of the nineteenth century. The solution is remarkably simple, although 
deriving it is not. It can be shown that the best choice of probability distribution is the one that 
maximizes the Gibbs entropy 

 

(15.22) 
  

subject to the known constraints. 
One may well ask what we mean by “best choice” in this context. The maximum entropy choice 

is best in the sense that it makes the minimum assumptions about the distribution other than those 
imposed upon us by the constraints. There are choices of distribution we could make that would 
satisfy the constraints but would effectively make additional assumptions. For instance, some 
choices might make a particular graph or graphs highly probable while other graphs, only slightly 
different, are given far lower probabilities. These would be considered “bad” choices in the sense 
that they assume things about the ensemble for which we have no supporting evidence. The Gibbs 
entropy is precisely a measure of the amount of “assumption” that goes into a particular choice of 
distribution P(G), or more precisely it is the amount of “antiassumption” or ignorance, and by 
maximizing it we minimize unjustified assumptions as much as possible. The derivation of the 
formula, Eq. (15.22), would take us some way away from our central topic of networks, so we will 
not go through it here, but the interested reader is encouraged to look for example at the books by 
Grandy [142] and Cover and Thomas [82]. 

The maximization of the entropy, subject to the constraints of Eqs. (15.19) and (15.21), can be 

 

 



achieved by the method of Lagrange multipliers. The optimum is the set of values of the P(G) 
that maximizes the quantity

 

(15.23) 
  

where α and βi are Lagrange multipliers whose values will be determined shortly. 
Differentiating with respect to the probability P(G) of a particular graph G and setting the result to 
zero, we then find that

 

(15.24) 
  

which implies

 

(15.25) 
  

or

 

(15.26) 
  

where Z = e1−α is called the partition function and

 

(15.27) 
  

is the graph Hamiltonian.239
 

 

 

 

 

 



It remains to fix the values of Z and βi (for all i). Z is fixed by the normalization condition, Eq. 
(15.19), which requires that

 

(15.28) 
  

and hence

 

(15.29) 
  

There is no equivalent general formula for the values of the βi. They are calculated by substituting 
Eq. (15.26) into Eq. (15.21) and solving the resulting set of non-linear simultaneous equations, but 
the particular solution depends on the form of the Hamiltonian. We will see some examples of the 
process shortly. 

There are some cases in which we are interested in an exponential random graph only as a class 
of models. That is, we are concerned not as much with the model’s properties for a particular set of 
values {βi} as with the behavior of the model in general. In such cases we can regard the βi as free 
parameters controlling the structure of the network, much as the edge probability p controls the 
structure of the network in a Poisson random graph.

 

 

 



15.2.2 EXPECTATION VALUES  

Once we have determined the probability distribution P(G) over graphs, we can use it to calculate 
estimates of quantities of interest within the ensemble. The most common objects of interest are 
expectation values (i.e., averages) of quantities, the expectation value of a quantity y in the 
ensemble being given by

 

(15.30) 
  

In effect, this calculation gives us a “best estimate” of the value of y. That is, given a certain set of 
observations or constraints on our network, embodied in Eq. (15.21), but no other information 
about the network structure, we can calculate a best-guess ensemble of networks subject to those 
constraints and then use that ensemble to calculate the expectation value of the quantity y, giving 
us a best guess at the value of that quantity given only the constraints. Thus the exponential 
random graph model enables us to answer questions of the type, “If I know certain things, A, B, 
and C, about a network, what is my best estimate of some other thing D?” For instance, if I know 
the average degree of a vertex in a network, what is my best estimate of the degree distribution? Or 
the clustering coefficient? The exponential random graph gives a rigorous and principled answer to 
questions of this kind. 

An interesting special case arises when the quantity y that we want to estimate is itself one of the 
set of network measures xi that we used to specify our ensemble in the first place. You might ask 
why we would want to do this, given that, by hypothesis, we already know the expectation values 
of these quantities—they are precisely the quantities that we used as inputs to our model in the first 
place. The answer is that we still need to fix the parameters βi and we do this by calculating the 
expectation values �xi� for given βi and then varying the βi until the �xi� take the desired values. 

The value of �xi� within the ensemble is given by

 

(15.31) 
  

where we have made use of Eq. (15.29). The quantity

 

 

 

 

 



(15.32) 
  

is called the free energy of the ensemble and Eq. (15.31) can be written simply as

 

(15.33) 
  

To calculate �xi�, therefore, all we need to do is calculate the partition function Z, from it 
evaluate the free energy, and then differentiate. 

Calculating expectation values for other quantities is harder, and indeed this is one of the main 
practical problems with exponential random graphs: the actual calculations of quantities of interest 
can be very difficult and in many cases can only be performed using numerical methods. If we are 
clever, however, we can still use the machinery embodied in Eq. (15.33) in some cases. The trick 
is to introduce an extra term involving y into our Hamiltonian thus:

 

(15.34) 
  

If we set the parameter μ to zero, then the answers we get out of our calculations will be 
unchanged from before and hence will still be correct. However, we can now differentiate with 
respect to μ (at the point μ = 0) to calculate the expectation value of y:

 

(15.35) 
  

This allows us again to calculate just the one sum, the partition function Z, and from it calculate 
the free energy and thus the average �y�. The catch is that we have to calculate Z for general 
(non-zero) values of μ so that we can perform the derivative—we only set μ to zero at the end of 
the calculation. In many cases it can be quite difficult to calculate Z in this way, which makes the 
exponential random graph, though elegant, technically tricky.

 

 

 

 

 

 

 



15.2.3 SIMPLE EXAMPLES  

Probably the simplest example of an exponential random graph model is the model in which we fix 
the expected number of edges in an undirected network and nothing else. Following the formalism 
above, this gives us a graph Hamiltonian, Eq. (15.27), of H = βm, where m is the number of edges. 
Then individual graphs appear in the ensemble with probability

 

(15.36) 
  

where

 

(15.37) 
  

Thus higher values of β in this model correspond to denser networks, those with more edges. 
To make further progress with this model we need a way to perform the sum over graphs G in 

Eq. (15.37). The standard way to achieve this is to sum over possible values of the elements Aij of 
the adjacency matrix. In this case we are considering undirected graphs, so we need to specify only 
the matrix elements above the diagonal or those below it, but not both, since the matrix is 
symmetric. And since we are restricting ourselves to simple graphs the only allowed values of Aij 
are 0 and 1 if i ≠ j and Aii = 0. 

We can write the number of edges m in terms of the adjacency matrix thus:

 

(15.38) 
  

and hence the partition function is

 

 

 

 

 



 

(15.39) 
  

where the notation {Aij} indicates summation over all allowed values of the adjacency matrix.
 

From this expression we can calculate the free energy:

 

(15.40) 
  

and thus, using Eq. (15.33), the average number of edges in the model is

 

(15.41) 
  

If we have a particular desired value that �m� should take, we can now achieve it by rearranging 
this expression to find the appropriate value for the Lagrange multiplier β thus:

 

(15.42) 
  

We can also calculate, for example, the probability pvw that there will be an edge between a 
particular pair of vertices v, w, which is given by the average of the corresponding element Avw of 
the adjacency matrix. From Eq. (15.30) we have

 

 

 

 

 

 



 

(15.43) 
  

Thus the probability of an edge between a given pair of vertices is the same in this model for every 
pair. In other words, this model is just the ordinary Poisson random graph of Chapter 12 with 

. The random graph can thus be regarded as a special case of the more general 
exponential random graph model. 

The random graph, as we saw in Chapter 12, is in many respects a poor model of real-world 
networks. In particular, its degree distribution is Poissonian and hence very different from the 
highly right-skewed degree distributions in most observed networks. It is natural to ask, therefore, 
whether we can make an exponential random graph model that has a more realistic degree 
distribution. There are a number of ways of doing this, but one of the simplest is to create a model 
in which we specify the expected degree of each vertex within the ensemble. That is, we create an 
exponential random graph model with the graph Hamiltonian

 

(15.44) 
  

where ki is the degree of vertex i. Note that we do not also need a term that fixes the average 
number of edges in this model, since fixing the average degree of each vertex already fixes the 
average number of edges (see Eq. (6.20)). 

We can write the degrees in terms of the adjacency matrix as

 

(15.45) 
  

and hence write the Hamiltonian as

 

 

 

 

 



(15.46) 
  

where in the second line we have interchanged the dummy variables i and j and in the third line 
we have made use of Aji = Aij. We have also again assumed that there are no self-edges, so that Aii 
= 0 for all i. 

Now we can write the partition function as

 

(15.47) 
  

and the probability of an edge between vertices u and v is

 

(15.48) 
  

Thus edges in this model now have different probabilities. Of particular interest is the case of a 
sparse network, one in which the probability of any individual edge is small, pvw ≪ 1. (As we have 
seen throughout this book, most real-world networks are very sparse.) To achieve this, we need e−
(βv+βw) ≫ 1 in Eq. (15.48), which means that

 

(15.49) 
  

In other words, in a sparse network the probability of an edge is simply a product of two terms, 
one for each of the vertices at either end of the edge. Moreover, it turns out that these terms are 
simply related to the expected degrees of the vertices. The expected degree of vertex v, for 
instance, is just the sum of the expected number pvw of edges between it and every other vertex:

 

 

 

 

 

 



 

(15.50) 
  

so that

 

(15.51) 
  

where C = 1/ ∑w eβw .
 

Thus pvw = C2�kv��kw� in this model, and since we require that ∑vwpvw = ∑v �kv � = 2�m� 

(see Eqs. (6.19) and (6.20)), itʹs then straightforward to show that

 

(15.52) 
  

Once again, this is a model we have seen before. It is the random graph model that we studied in 
Section 13.2.2 in which we specify the expected degrees of vertices (rather than their exact 
degrees, as in the more common configuration model). 

We can also create exponential random graph models of directed networks. For instance, we can 
make a model in which the constrained quantities are the expected values of the in- and out-
degrees of a directed network by using a Hamiltonian of the form

 

(15.53) 
  

Writing  and , we have

 

 

 

 

 

 

 

 



(15.54) 
  

The ensemble is now a distribution over (simple) directed graphs, which means that the 
adjacency matrix is in general asymmetric and each element Aij can take its own value. Thus the 
partition function is

 

(15.55) 
  

and the probability of an edge from w to v is

 

(15.56) 
  

In the case of a sparse network this becomes

 

(15.57) 
  

by an argument similar to the one leading to Eq. (15.52). This expression is similar to that for the 
corresponding quantity in the directed version of the configuration model (see page 475), and 
indeed the model above is the equivalent for the directed case of the random graph in which we 
specify the expected degrees of the vertices rather than the exact degrees.

 

 

 

 

 



15.2.4 RECIPROCITY MODEL  

We now turn to some more complex examples of exponential random graphs, ones that are not 
equivalent to models we have already seen. The first example we look at is the “reciprocity model” 
proposed by Holland and Leinhardt [157]. 

As discussed in Section 7.10, many directed networks exhibit the phenomenon of reciprocity, 
whereby edges between vertices tend to be reciprocated. If I say that you are my friend, for 
example, then it is likely that you will also say that I am your friend. We can create an exponential 
random graph model of reciprocity by fixing the expected number of reciprocated edges in the 
network. The number of reciprocated edges, mr is given by mr = ∑i≠jAijAji, so we need to introduce 
a term proportional to this into our graph Hamiltonian. We can also introduce other terms, such as 
terms to fix the expected degrees of vertices as in the previous section. Here let us look the simple 
case where we fix only the number of edges as we did with the Poisson random graph. The number 
of edges in a simple directed network is given by m = ∑i≠jAij and hence our Hamiltonian takes the 
form

 

(15.58) 
  

where β and γ are free parameters that can be varied to create the desired numbers of edges and 
reciprocated edges. This is actually a simplified version of the model proposed by Holland and 
Leinhardt, but it will serve our purpose nicely, and it is easy to solve. 

The partition function for this model is
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The free energy for the network is then

 

 

 

 

 



(15.60) 
  

and, applying Eq. (15.33), we find that the expected numbers of edges and reciprocated edges 
are

 

(15.61) 
  

In Section 7.10 we defined the reciprocity r of a directed network to be the fraction of edges that 
are reciprocated, which in our model is given by the ratio

 

(15.62) 
  

Thus we can control both the number of edges and the level of reciprocity in the network by 
suitable choices of β and γ. 

 

 

 

 

 



15.2.5 TWO-STAR MODEL  

After ordinary random graphs, probably the simplest undirected exponential random graph is the 
so-called two-star model. In this model one specifies the expected number �m�of edges in the 
network and the expected number �m2� of two-stars, meaning a vertex connected by edges to two 

others (which we called a “connected triple” in other circumstances—see Eq. (7.41) on page 200). 
Varying the number of two-stars allows us to control the extent to which edges in the network 
“stick together,” meaning they share common vertices. If we fix only the number of edges in a 
network, then those edges may stick together or they may not, but if we also give the network a lot 
of two-stars, then the edges have to stick together to make the required number of two-stars. Thus 
the two-star model allows us to control the “clumpiness” of the network, the extent to which the 
edges gather together in clumps or are distributed more randomly. 

 

A two-star is a vertex connected by edges to two other vertices. 
The number of two-stars in a network is

 

(15.63) 
  

and the number of edges is, as before, . Thus the Hamiltonian is

 

(15.64) 
  

where β and γ are our two parameters. 

We encountered mean-field theory briefly earlier in the chapter, in our study of the small-
world model, though we did not elaborate on it there. See Eq. (15.14) and the associated 
discussion. 

 

 

 

 



We can solve this model using mean-field theory, a technique borrowed from statistical physics. 
We note that the term ∑k(≠i,j)Aik is simply the number of edges attached to vertex i, excluding any 
edge between i and j. All vertex pairs are equivalent in this model—vertices have no individual 
properties to distinguish them—so the mean probability �Aij� of an edge between any pair is the 

same. If we denote this probability by p then the expected value of the term above is just

 

(15.65) 
  

But, assuming that the network is large, this is, to a good approximation, just np, which is the 
mean degree of a vertex. 

The mean-field approach consists of replacing the actual term in the Hamiltonian with the 
expected value np. We also make the same replacement for the term ∑k(≠i,j)Ajk. These replacements 
are a good approximation so long as np ≫ 1 since for large values of np the statistical variation 
from vertex to vertex around the expected value becomes negligible. If the value of p is kept fixed 
as we make our network larger then np will always be large in the limit n → ∞. Thus, in the limit 
of large network size, this mean-field approximation is a good one. 

In this large-n regime, making the replacement described above, we have

 

(15.66) 
  

where m is the number of edges as before. 
Now, however, this is the same as the Hamiltonian for the ordinary Poisson random graph in 

Section 15.2.3, except for the replacement β → β + 2γnp, so we can immediately write down the 
partition function and other quantities using the results of that section. In particular, Eq. (15.41) 
tells us that the average number of edges in the network will be
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But the average number of edges is related to the mean probability of an edge by  and 
hence

 

 

 

 

 

 



 

(15.68) 
  

This gives us a self-consistent equation that we can solve to find p as a function of the parameters 
β and γ, and once we have p we can solve for other properties of the network by treating it as a 
normal Poisson random graph. 

For convenience in solving for p, let us define  and  so that Eq. (15.68) becomes

 

(15.69) 
  

There is no known closed-form solution for this equation in general, but we can visualize the 
solution easily enough using a graphical method. If we make plots of the lines y = p and 

 as functions of p on the same axes, they will intersect at the solution (or 
solutions) of Eq. (15.69). Three such plots are shown in Fig. 15.7 for different choices of the 
parameters. 

Consider first panel (a), which shows the curve of  for  and three 
different values of B (solid lines). Varying B merely shifts the entire curve horizontally without 
changing its overall shape. For each curve there is a single point of intersection with the line y = p, 
indicated by a small circle. As B is varied this intersection point moves smoothly between high and 
low values of p. Thus in this regime we can tune the density of the network to any desired value by 
varying the parameter B (or equivalently the parameter β = 2B). 

Now take a look at the last panel in Fig. 15.7, panel (c), which shows curves for  and again 
three difference values of B. Again varying B shifts the curve horizontally, but now there is an 
important difference. Because of the higher value of C, the shape of the curve has changed. It is 
steeper in the middle than it was previously and as a result it is now possible at suitable values of B 
for the curve to intersect with the line y = p not just in one place but in three different places. In 
this regime there are three different possible solutions for p for the same values of the parameters. 
In fact it turns out that the middle solution is unphysical and only the two outer solutions are 
realized in practice. These two, however, correspond to very different networks. One has very high 
density with many edges while the other is very sparse with few edges. Yet both solutions are real. 
If one were to simulate the two-star model on a computer, generating networks at random 
according to the model prescription, one would in this regime sometimes find a high-density 
network and sometimes a low-density one for the same parameter values, and one would not be 
able to predict in advance which would occur. 

This peculiar behavior is called spontaneous symmetry breaking. It is a behavior well known to 
physicists, who study it in condensed matter physics, where it gives rise to the phenomenon of 
ferromagnetism, and in particle physics, where it gives rise to the phenomenon of particle mass. In 
network models, however, it is primarily an annoyance, and sometimes a grave weakness. A model 
that can produce two radically different classes of network for the same values of the model 
parameters is, at the least, troubling. But worse, for values of C as in Fig. 15.7c there some values 

 

 

 

 



of p that are simply impossible to reach.

 

Figure 15.7: Graphical solutions of the properties of the two-star model. Curves for 

 for varying values of B and (a) , (b) C = 1, and (c) . The points 
where the curves intersect the line y = p (dotted line in each panel) are solutions of Eq. (15.69). 
  

 

 



 

Figure 15.8: Edge probability in the two-star model. Plot of solutions of Eq. (15.69) for the 
edge probability p as a function of B for the same three values of C as were used in the three 
panels of Fig. 15.7. Note that there are two possible solutions within the coexistence region for the 
case , and more importantly that for this case there is no value of B that gives any 
intermediate value of p. For  the only possible values of p lie either above about 0.8 or below 
about 0.2. 
  

Figure 15.8 shows the values of the solutions for p for the cases depicted in Fig. 15.7 as a 
function of B and, as we have said, p is a smooth function of B for the  case, so that any value 

of p is reachable. For the case of , however, there are only very high and very low values of 
p. There is no value of B that produces intermediate values of p and hence no way in this model to 

generate graphs with such intermediate values if . If we wanted to generate a graph with 
, for instance, there is simply no way to do it in the two-star model when . 

This is a fundamental problem with the two-star model and with many other exponential random 
graphs. We will see in the following section an example of an exponential random graph where 
this kind of behavior renders the model essentially useless as a model of a network. 

Panel (b) of Fig. 15.7 shows the borderline case that falls between panels (a) and (c). When the 

parameter C is such that the curve of  has gradient exactly one at its 
steepest point then we are right on the boundary between the two different types of behavior. In the 
present case, this happens at C = 1. If C is increased any further beyond this point, spontaneous 
symmetry breaking occurs. Below it, there is no symmetry breaking. In the physics jargon this 
transition is called a continuous phase transition and the point at which it occurs is called a critical 
point.241 

Note that, even when the value of C is greater than 1 and we are above the critical point, 
spontaneous symmetry breaking still only occurs within a certain range of values of B, as Fig. 
15.7c shows. If B is either too small or too large then there is only one solution to Eq. (15.69) (the 
two outer curves in Fig. 15.7c). The portion of parameter space where there are two solutions is 
called the coexistence region. The boundaries of the coexistence region correspond to the values of 
B such that the curve is tangent to the line y = p, as shown in Fig. 15.9. Put another way, we are on 
the boundary when the point at which the curve has gradient one falls on the line y = p. The 

 

 



gradient of  is given by

 

(15.70) 
  

and setting this equal to one and making use of sech2x = 1 − tanh2x, we have

 

(15.71) 
  

But p is also a solution of Eq. (15.69), so tanh(B + 2Cp) = 2p − 1 and Eq. (15.71) becomes 1 − (2p 
− 1)2 = 1/C, or
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which has solutions

 

(15.73) 
  

Rearranging Eq. (15.69) for B and substituting for p we then find that

 

(15.74) 
  

where we either take both the plus signs or both the minus signs.

 

 

 

 

 

 

 



 

Figure 15.9: The boundaries of the coexistence region in the two-star model. The ends of the 
coexistence region for a given value of C correspond to those values of B that place the curve 

 precisely tangent to the line y = p. 
  

Figure 15.10 shows a plot of this result in the form of a phase diagram of the two-star model 
showing the different regimes or “phases” of the model as a function of its two parameters. The 
two lines corresponding to the solutions in Eq. (15.74) form the boundaries of the coexistence 
region. Inside this region there are values of p than cannot be reached for any choice of parameters. 
Outside it, we can generate networks with any value of p.

 

 



15.2.6 STRAUSSʹ S MODEL OF TRANSITIVE NETWORKS  

As our last example in this chapter, we look at another exponential random graph model that 
shows spontaneous symmetry breaking, the transitive network model of Strauss [306]. Where the 
two-star model is something of a toy model—useful for demonstrating the mathematics, but not 
especially important in practice—the model of this section is one of some importance, and the fact 
that it shows pathological behavior with the variation of its parameters is a puzzle and a significant 
hindrance to progress, one that has not, at least at the time of writing, been fully resolved. 

 

Figure 15.10: Phase diagram of the two-star model. The phases of the two-star model as a 
function of the parameters B and C. Density generally increases as B becomes more negative and 
for C > 1 there is a coexistence region at intermediate values of B in which spontaneous symmetry 
breaking occurs. Notice that the scales are logarithmic and that B < 0. (There are no other phases 
for positive B or negative C, so these values are not shown.) Adapted from Park and Newman 
[260]. Original figure Copyright 2009 American Physical Society. Reproduced with permission. 
  

Strauss’s model is a model of a simple undirected network that shows clustering or transitivity, 
the propensity for triangles to form in the network, which, as discussed in Section 7.9, is a 
common phenomenon, particularly in social networks. In this model one specifies the expected 
number of edges �m� in the network and also the expected number of triangles �m3�. The 

number of triangles can be expressed in terms of the elements of the adjacency matrix as

 

 

 

 

 



(15.75) 
  

where the factor of  accounts for the fact that each triangle in the network appears three times in 

the sum. The number of edges is just . (For simplicity of notation we have included 
the diagonal terms in these sums. They are zero since the network is simple, so it makes no 
difference whether we include them or not.) Thus the graph Hamiltonian is

 

(15.76) 
  

This model, like the two-star model, can be solved exactly in the limit of large network size 
using a mean-field technique. The details of the calculation are more complicated than for the two-
star model. As well as replacing sums of the form ∑kAik by their average value, we also make a 
similar replacement for sums of the form ∑kAjkAki, and the values of these two quantities are 
expressed self-consistently in terms of each other. We will not go into the details of the calculation 
here—the interested reader is invited to consult Ref. [261]. The end result, however, is similar to 
that for the two-star model: there is a phase transition in the model beyond which the system 
develops a coexistence region where there are two distinct solutions to the equations, both of 
which are realized in simulations of the model. One solution corresponds to a network of high 
density and the other a network of low density but, as in the two-star case, there is in this regime 
no choice of model parameters that will give networks of medium density and as a result there is a 
wide range of networks that simply cannot be generated by this model. If one were to observe a 
network in the real world whose properties fell within this unattainable range, then Strauss’s model 
could not be used to mimic its properties. 

This is a fundamental problem with Strauss’s model and with many similar exponential random 
graphs. The entire point of a model such as this one is to create model networks with properties 
similar to those seen in real networks. Moreover, this model in particular and exponential random 
graphs in general seem at first sight to be a very logical approach to the creation of such networks: 
from a statistical point of view the construction of the model using a maximum entropy ensemble 
is natural and should, one might imagine, give sensible answers. The fact that it does not is a 
disturbing finding that is still not properly understood. That there are ranges of network properties 
that simply cannot be created using the model, while at the same time real-world networks can and 
do display properties in these ranges, indicates that there is a fundamental flaw or gap in our 
reasoning, or perhaps in our understand of the nature of networks themselves. Strauss himself was 
already aware of these issues when he proposed his model in the 1980s, and the fact that they are 
still unresolved indicates that there are some difficult issues here.

 

 



PROBLEMS  

15.1 Consider the following variation on the small-world model. Again we have a ring of n 
vertices in which each is connected to its c nearest neighbors, where c is even. And again a 
shortcut is added to the network with probability p for each edge around the ring, but now instead 
of connecting random vertex pairs, each shortcut connects a random vertex to the same single hub 
vertex in the center of the network:

 

This model could be, for example, a model of a (one-dimensional) world connected together by a 
bus or train (the central vertex) whose stops are represented by the shortcuts. 

Show that the mean distance between two vertices in this network in the limit of large n is ℓ = 2
(c2p + 1)/c2p (which is a constant, independent of n). 
  

15.2 One of the difficulties with the original small-world model depicted in Fig. 15.3a is that 
vertices can become disconnected from the rest of the network by the rewiring process. For 
instance, a single vertex can become disconnected if all of its incident edges around the ring are 
rewired and it has no shortcuts.

a. Show that the probability of this happening to any given vertex is [ pe−p ]c .
 

b. Hence, how large must the network be before we expect that one vertex will be 
disconnected, if c = 6 and p = 0.01? 

15.3 Consider an undirected exponential random graph model in which the Hamiltonian takes the 
form H = ∑i<j ΘijAij , where the Θij are parameters we control.

a. Derive an expression for the free energy.

 

 

 



b. Hence show that the probability of an edge between vertices i and j is 1/(eΘij + 1). 

15.4 Consider the mean-field solution of the two-star model, as described in Section 15.2.5 for the 
case β = −γn, or equivalently B = −C in the notation of Eq. (15.69). Let us define an order 
parameter x = 2p − 1.

a. Show that the order parameter obeys the equation x = tanh Cx. 
b. Sketch the solutions to this equation as a function of C. Argue that the order parameter 

must be zero on one side of the phase transition at C = 1 but takes non-zero values on the 
other. 

 

 



PART V 

PROCESSES ON NETWORKS 

 

 



CHAPTER 16 

PERCOLATION AND NETWORK RESILIENCE 

A discussion of one of the simplest of processes taking place on networks, percolation, and its 
use as a model of network resilience 

THE ULTIMATE goal in studying networks is to better understand the behavior of the systems 
networks represent. For instance, we study the structure of the Internet to understand better how 
Internet traffic flows or why communications protocols function the way they do or how we could 
change or rearrange the network to make it perform better. We study biochemical networks like 
metabolic networks because we hope they will lead to an understanding of the complex chemical 
processes taking place in the cell or perhaps to algorithmic tools that can help us extract biological 
insights from the large volumes of data generated by modern laboratory techniques. 

Studies of the structure of networks, such as those discussed in the previous chapters of this 
book, are only one step towards this kind of understanding. Another important step is to make the 
connection between network structure and function: once we have measured and quantified the 
structure of a network, how do we turn the results into predictions or conclusions about how the 
overall system will behave? Unfortunately, progress in this area has been far slower than progress 
on characterizing structure, which is why a majority of this book is devoted to the discussion of 
structure. Nonetheless, there are some areas in which substantial progress has been made and 
illuminating theories and models developed. Among these are studies of network failure and 
resilience, of dynamical systems on networks, and of epidemic and other spreading processes. The 
remaining chapters of this book are devoted to a description of our current understanding of these 
and similar network processes. We begin in this chapter with a study of one of the simplest of 
network processes, percolation, which leads to an elegant theory of the robustness of networked 
systems to the failure of their components.

 

 

 



16.1 PERCOLATION  

Imagine taking a network and removing some fraction of its vertices, along with the edges 
connected to those vertices—see Fig. 16.1. This process is called percolation (or, more precisely, 
site percolation—see below), and can be used as a model of a variety of real-world phenomena. 
The failure of routers on the Internet, for instance, can be formally represented by removing the 
corresponding vertices and their attached edges from a network representation of the Internet. In 
fact, about 3% of the routers on the Internet are non-functional for one reason or another at any one 
time, and it is a question of some practical interest what effect this will have on the performance of 
the network. The theory of percolation processes can help us answer this question. 

Another example of a percolation phenomenon is the vaccination or immunization of 
individuals against the spread of disease. As discussed in Chapter 1, and at greater length in 
Chapter 17, diseases spread through populations over the networks of contacts between 
individuals. But if an individual is vaccinated against a disease and therefore cannot catch it, then 
that individual does not contribute to the spread of the disease. Of course, the individual is still 
present in the network, but, from the point of view of the spread of the disease, might as well be 
absent, and hence the vaccination process can again be formally represented by removing vertices. 

One can see immediately that percolation processes can give rise to some interesting behaviors. 
The vaccination of an individual in a population, for example, not only prevents that individual 
from becoming infected but also prevents them from infecting others, and so has a “knock-on” 
effect in which the benefit of vaccinating one individual is felt by more than one. As we will show, 
this knock-on effect means that in some cases the vaccination of a relatively small fraction of the 
population can effectively prevent the spread of disease to anyone, an outcome known as herd 
immunity. 

Similar effects crop up in our Internet example, although in that case they are usually 
undesirable. The removal or failure of a single router on the Internet prevents that router from 
receiving data, but also prevents data from reaching others via the failed one, forcing traffic to take 
another route—possibly longer or more congested—or even cutting off some portions of the 
network altogether. One of the goals of percolation theory on networks is to understand how the 
knock-on effects of vertex removal or failure affect the network as a whole. 

Sometimes it is not the vertices in the network that fail but the edges. For instance, 
communication lines on the Internet can fail, disconnecting routers from one another, even though 
the routers themselves are still functioning perfectly. Phenomena like this can be modeled using a 
slightly different percolation process in which edges rather than vertices are removed from the 
appropriate network. If we need to distinguish between the two types of percolation process we 
could refer to them as vertex percolation on the one hand and edge percolation on the other, but in 
fact they are more commonly called site percolation and bond percolation, a nomenclature that 
derives from studies of percolation on low-dimensional lattices in physics and mathematics.242 In 
this chapter we will focus principally on site percolation (i.e., removal of vertices) but bond 
percolation (removal of edges) will become important in Chapter 17 when we look at epidemic 
processes. 

 



 

Figure 16.1: Percolation. A depiction of the site percolation process on a small network for 
various values of the occupation probability φ. Gray denotes vertices that have been removed, 
along with their associated edges, and black denotes those that are still present. The networks in 
panels (a) and (b) are above the percolation threshold while those in panels (c) and (d) are below it. 
  

There is more than one way in which vertices can be removed from a network. In the simplest 
case they could be removed purely at random: we could for example take away some specified 
fraction of the vertices chosen uniformly at random from the entire network. This is the most 
commonly studied form of site percolation, and indeed for many people the word “percolation” 
refers specifically to this particular process. But there are many other ways in which vertices could 
be removed and “percolation” as used in this chapter is considered to include all of them. One 
popular alternative removal scheme is to remove vertices according to their degree in some 
fashion. For instance, we could remove vertices in order of degree from highest to lowest, an 
approach that turns out to make an effective vaccination strategy for the control of disease. Other 
approaches have also been considered occasionally, such as removing vertices with high 
betweenness centrality. Let us begin, however, by examining the simplest case of uniformly 
random removal. 

 

 



16.2 UNIFORM RANDOM REMOVAL OF VERTICES  

Consider a network in which some fraction of the vertices, selected uniformly at random, are 
removed. As discussed above, in many real-world situations “removal” does not imply actual 
physical removal of the vertices, but only that they are non-functional in some way, such as routers 
that have failed on the Internet, or vaccinated individuals in a network of disease-causing contacts. 

Traditionally the percolation process is parametrized by a probability φ, which is probability that a 
vertex is present or functioning in the network. In the parlance of percolation theory, one says that 
the functional vertices are occupied and φ is called the occupation probability. Thus φ = 1 indicates 
that all vertices in the network are occupied (i.e., no vertices have been removed) and φ = 0 indicates 
that no vertices are occupied (i.e., all of them have been removed).243 

Now look again at Fig. 16.1 and consider panel (a), in which φ = 1, all vertices are present or 
occupied, and all vertices are connected together into a single component. (The network could have 
more the one component, but in this example it has only one.) Now look at the other panels. In panel 
(b) a few vertices have been removed, but those that remain are all still connected together by the 
remaining edges. In panel (c) still more vertices have been removed, and now so many are gone that 
the remaining vertices are no longer all connected together, having split into two small components. 
In the final panel, panel (d), all vertices have been removed and there is no network left at all. 

The behavior we see in this small example is typical of percolation processes. When φ is large the 
vertices tend to be connected together, forming a giant component that fills most of the network 
(although there may be small components also). But as φ is decreased there comes a point where the 
giant component breaks apart and we are left only with small components. Conversely, if we 
increase φ from zero we first form small components, which then grow in size and eventually 
coalesce to form a giant component that fills a large fraction the network. 

The formation or dissolution of a giant component in this fashion is called a percolation 
transition. When the network contains a giant component we say that it percolates and the point at 
which the percolation transition occurs is called the percolation threshold. 

The percolation transition is similar in many ways to the phase transition in the Poisson random 
graph at which a giant component forms (see Section 12.5). In the random graph we vary not the 
fraction of occupied vertices but the probability of connection between those vertices. In both cases, 
however, when enough of the network is removed the giant component is destroyed and we are left 
with only small components. 

In studies of percolation the “components” that remain after vertices have been removed are in 
fact usually called clusters, another term inherited from the physics and mathematics literature and 
one that we will use here—it will be useful to distinguish between the “components” of the 
underlying network and the “clusters” of the percolation process. That is, we will use “component” 
to refer to connected groups of vertices on the original network before any vertices have been 
removed and “cluster” to refer to those after removal. The giant component of the percolation 
process, if there is one, is thus properly called the giant cluster.244 

The percolation transition plays a central role in our interpretation of percolation phenomena. In a 
network like the Internet, for example, there has to be a giant cluster if the network is to perform its 
intended function as a communications network. If the network has only small clusters, as in Fig. 
16.1c, then every vertex has a connection to, at most, a handful of others and is cut off from 
everyone else. If there is a giant cluster, on the other hand, then the members of that giant cluster, 
who are a finite fraction of all vertices in the network, are connected and can communicate with one 
another, although the remainder of the network is still cut off. Thus the presence of a giant cluster is 
an indicator of a network that is at least partly performing its intended function, while the size of the 
giant cluster tells us exactly how much of the network is working.

 



16.2.1 UNIFORM REMOVAL IN THE CONFIGURATION MODEL  

To gain some understanding of the percolation transition and the giant cluster, let us consider the 
behavior of the site percolation process on networks generated using the configuration model of 
Chapter 13, a simple but useful model of a network with a specified degree distribution. We can 
calculate the properties of the giant percolation cluster in the configuration model by a method 
similar to the one we used for the giant component of configuration model in Section 13.8. 

Consider a configuration model network with degree distribution pk and a percolation process on 
that network in which vertices are present or occupied with occupation probability φ as above. 
Now consider one of the vertices that is present in the network (i.e., one that has not been 
removed). If that vertex is to belong to the giant cluster it must be connected to it via at least one of 
its neighbors. Equivalently, it is not a member of the giant cluster if and only if it is not connected 
to the giant cluster via any of its neighbors. Following the notation of Section 13.8, let us define u 
to be the average probability that a vertex is not connected to the giant cluster via a particular 
neighbor. Then if the vertex in question has degree k, the total probability of its not belonging to 
the giant cluster is uk . And if we then average over the probability distribution pk of the degree we 
find that the average probability of not being in the giant cluster is ∑kpku

k = g0 (u), where

 

(16.1) 
  

is the generating function for the degree distribution, as defined previously in Eq. (13.48). Then 
the average probability that a vertex does belong to the giant cluster is 1 − g0 (u). 

Bear in mind, however, that this is for a vertex that is itself assumed not to have been removed 
from the network. Vertices that have been removed are obviously not members of the giant cluster 
either. Thus out of all the original vertices in the network the total fraction S that are in the giant 
cluster is equal to the fraction φ that have not been removed times the probability 1 − g0 (u) that 
they are in the giant cluster:

 

(16.2) 
  

We still need to calculate the value of u, which is the average probability that a vertex is not 
connected to the giant cluster via a particular neighboring vertex. There are two ways to not be 
connected to the giant cluster via a neighbor: either the neighbor in question—let us call it vertex 
A—has been removed, which happens with probability 1 − φ, or it is present (probability φ) but it 
is not itself a member of the giant cluster. The latter happens if A is not connected to the giant 
cluster via any of its other neighbors. Suppose there are k of these. Then the probability that none 
of them connects us to the giant cluster is uk. Adding everything together, the total probability that 

 

 

 

 



we are not connected to the giant cluster via A is 1 − φ + φuk.
Since A is reached by following an edge, the value of k in this case is distributed according to 

the excess degree distribution

 

(16.3) 
  

(see Section 13.3) where �k� is the average degree in the network. Averaging over this 
distribution, we then arrive at an expression for the average probability u thus:

 

(16.4) 
  

where

 

(16.5) 
  

is the generating function for the excess degree distribution, defined previously in Eq. (13.49), 
and we have made use of the normalization condition ∑kqk = 1. 

Equations (16.2) and (16.4) give us a complete solution for the size of the giant cluster in our 
network.245 In practice it is often not possible to solve Eq. (16.4) in closed form, but there is an 
elegant graphical representation of the solution as follows. 

Consider Fig. 16.2a, which gives a sketch of the form of the function g1 (u). The exact form of 
the curve will depend on the degree distribution, but we know the general shape: g1 is a 
polynomial with all coefficients non-negative (because they are probabilities), so it must have a 
non-negative value and all derivatives non-negative for u ≥ 0. Thus in general it is an increasing 
function of u and curves upward as shown in the figure. 

To get the function 1 − φ + φg1 (u) that appears on the right-hand side of Eq. (16.4) we first 
multiply g1 (u) by φ then add 1 − φ. Graphically that is equivalent to compressing the unit square 
of Fig. 16.2a (along with the curve it contains) until it has height φ and then shifting it upward a 
distance 1 − φ as shown in Fig. 16.2b. The point or points at which the resulting curve crosses the 
line y = u (dotted line in Fig. 16.2b) are then the solutions to Eq. (16.4). 

In Fig. 16.2b there are two such solutions. One is a trivial solution at u = 1. This solution always 
exists because g1(1) = 1 for any correctly normalized excess degree distribution qk . But there is 
also a non-trivial solution with u < 1, indicated by the dot in the figure. Only if we have such a 

 

 

 



non-trivial solution can there be a giant cluster in the network and the value of u for this solution 
gives us the size of the giant cluster via Eq. (16.2). (The u = 1 solution gives S = 0 in Eq. (16.2) 
and so doesn’t give us a giant cluster.) 

Now consider Fig. 16.2d, which shows the equivalent graphical solution of Eq. (16.4) for a 
smaller value of φ. Now the curve of the generating function has been compressed more and the 
result is that the non-trivial solution for u has vanished. Only the trivial solution at u = 1 remains 
and so in this regime there can be no giant cluster. 

Figure 16.2c shows the borderline case between cases (b) and (d). The nontrivial solution for u 
vanishes at the point shown, where the curve just meets the dotted line. Mathematically this is the 
point at which the curve is tangent to the dotted line at u = 1, i.e., the point where its gradient at u 
= 1 is 1. In other words the percolation threshold occurs when

 

(16.6) 
  

 

 





Figure 16.2: Graphical solution of Eq. (16.4). The generating function g1 (u) for the excess 
degree distribution, panel (a), is compressed by a factor of φ and shifted upward to give the 
functional form y = 1 − φ + φg1(u). The resulting curve is shown for three different values of φ in 
panels (b), (c), and (d). In panel (b) φ is sufficiently large that there is a nontrivial solution where 
the curve crosses the dotted line y = u. In panel (d) φ is smaller and there is only a trivial solution 
at u = 1. Panel (c) shows the borderline case where the curve is tangent to the dotted line at u = 1. 
  

Performing the derivative we then find that the value of φ at the transition, which we call the 
critical value, denoted φc, is

 

(16.7) 
  

We can express the critical value more directly in terms of the degree distribution by making use 
of the definitions of the generating function g1 and the excess degree distribution, Eqs. (16.3) and 
(16.5). Substituting one into the other and differentiating, we find that

 

(16.8) 
  

and hence the critical occupation probability φc is given by

 

(16.9) 
  

an expression first given by Cohen et al. [74]. 
This equation tells us the minimum fraction of vertices that must be present or occupied in our 

configuration model network for a giant cluster to exist. Thus, for instance, if we were to consider 
the configuration model as a simple model of the Internet, we would want to make φc low, so that 
the network will have a giant cluster even when some fraction of vertices are non-functional, and 
hence go on functioning as a communication network. We can arrange this by making sure that 

 

 

 

 

 

 



�k2� ≫ �k� for the network. If, for instance, the network had a Poisson degree distribution,

 

(16.10) 
  

where c is the mean degree, then �k� = c and �k2 � = c(c + 1), so

 

(16.11) 
  

Then if we can make c large we will have a network that can withstand the loss of many of its 
vertices. For c = 4, for example, we would have , meaning that  of the vertices would have 
to fail before the giant cluster is destroyed. A network that can tolerate the loss of a large fraction 
of its vertices in this way is said to be robust against random failure. 

The degree distribution of the Internet, however, is not Poissonian. In fact, as discussed in 
Section 8.4, the Internet’s degree distribution appears roughly to follow a power law with an 
exponent α  2.5 (see Table 8.1). As we showed in Section 8.4.2, power laws with exponents in 
the range 2 < α < 3, which includes most real-world examples, have a finite mean �k�, but their 
second moment �k2� diverges. In this case Eq. (16.9) implies that φc = 0. In other words, no 

matter how many vertices we remove from the network there will always be a giant cluster. Scale-
free networks—those with power-law degree distributions—are thus highly robust networks that 
can survive the failure of any number of their vertices, a point first highlighted in the work of 
Albert et al. [14]. 

In practice, as discussed in Section 8.4.2, the second moment of the degree distribution is never 
actually infinite in any finite network. Even for finite n though it can still become very large, 
which can result in non-zero but very small values of φc, so that the network is still highly robust. 

The structure of the real Internet is not the same as that of a configuration model with the same 
degree distribution. It has all sorts of layers and levels of structure engineered into it, as discussed 
in Section 2.1. Nonetheless, it does appear to be quite robust to random removal of its vertices. For 
instance, Albert et al. [14] simulated the behavior of the Internet as vertices were randomly 
removed from its structure and found that performance is hardly affected at all by the removal of 
even a significant fraction of vertices. (Performance is of course completely destroyed for the 
vertices that are themselves removed, but for the remaining ones the effects are relatively minor.) 
These and related results are discussed further in Section 16.3. 

Network robustness also plays an important role in the vaccination example mentioned at the 
start of the chapter. A disease spreading over a contact network between individuals can only reach 
a significant fraction of the population if there is a giant cluster in the network. If the network 
contains only small clusters then an outbreak of the disease will be hemmed in by vaccinated 
individuals and unable to spread further than the small cluster in which it starts. Thus one does not 
have to vaccinate the entire population to prevent disease spread. One need only vaccinate enough 
of them to bring the network below its percolation threshold. This is the herd immunity effect 
mentioned earlier. 

 

 

 



In this example, network robustness is a bad thing. The fewer individuals we have to vaccinate 
to destroy the giant cluster the better. Thus small values of φc are bad in this case and large values 
are good. Unfortunately, we usually don’t have much control over the degree distributions of 
contact networks, so we may be stuck with a low value of φc whether we like it or not. In 
particular, if the network in question has a power-law (or approximately power-law) degree 
distribution, then φc may be very small, implying that almost all vertices have to be vaccinated to 
wipe out the disease. Some contact networks do indeed appear to have roughly power-law degree 
distributions [167, 197, 198] and it may be very difficult to eradicate some diseases as a result 
[264]. 

It is interesting to ask how the special behavior of power-law networks shows up in the 
graphical solution of Fig. 16.2. The answer is that, since gʹ1 (1) is infinite in the power-law case 

(because �k2� diverges in Eq. (16.8) while �k� remains finite), the curve of g1 (u) has infinite 

slope at u = 1. Thus g1 (u) must look something like Fig. 16.3. Because of the infinite slope, it 
makes no difference how much we compress the function (as in Fig. 16.2)—the curve will always 
drop below the line of y = u before coming back up again and crossing it to give a non-trivial 
solution for u. 

 

Figure 16.3: Generating function for the excess degree distribution in a scale-free network. 
The generating function g1(u) for a network with a power-law degree distribution has a derivative 
that diverges as u → 1, though the value of the generating function remains finite and tends to 1 in 
this limit. Thus the function looks generically like the curve sketched here. 
  

The position of the percolation threshold is not the only quantity important in assessing the 
robustness of a network. The size of the giant cluster also plays a role because it tells us what 
fraction of the network will be connected and functional. To find the size of the giant cluster we 
need to solve Eq. (16.4) for u and then substitute the result back into Eq. (16.2). In many cases, as 
we have said, we cannot solve for u exactly, but in some cases we can. Consider, for example, a 
network with an exponential degree distribution given by

 

 

 

 



(16.12) 
  

where λ > 0 and the leading factor of 1 − e−λ insures that the distribution is properly normalized. 
Then, as shown in Section 13.9.2, we have

 

(16.13) 
  

and Eq. (16.4) becomes

 

(16.14) 
  

This is a cubic equation, which is ugly (though not impossible) to solve. In this case, however, we 
don’t have to solve it directly. We observe instead that u = 1 is always a solution of Eq. (16.4) and 
hence that our cubic equation must contain a factor of u − 1. A few moments work reveals that 
indeed this is the case. Equation (16.14) factorizes as

 

(16.15) 
  

Thus the two other solutions for u satisfy the quadratic equation

 

(16.16) 
  

Of these two solutions one is greater than one for λ > 0 and so cannot be our probability u. The 
other is

 

 

 

 

 

 

 

 



(16.17) 
  

Now we can plug this value back into Eq. (16.2) to get an expression for the size of the giant 
cluster as a fraction of the whole network:

 

(16.18) 
  

Notice that the solution for u, Eq. (16.17), can become greater than 1 for sufficiently small φ, 
which is unphysical. In this regime the only acceptable solution is the trivial u = 1 solution, which 
gives S = 0 and so there is no giant cluster when this happens. This gives us an alternative way to 
derive the position of the percolation transition. The transition takes place at the point where Eq. 
(16.17) equals one, i.e., when

 

(16.19) 
  

Squaring both sides and rearranging for φ we find that the percolation threshold falls at

 

(16.20) 
  

It is left as an exercise to demonstrate that this is the same result we get if we apply the general 
formula, Eq. (16.7). 

Note also that if λ becomes sufficiently large then the value of φc given by Eq. (16.20) can 
become greater than one. For values of λ this large there is no percolation transition and the system 
never percolates because φ can never be greater than φc. The value of λ at which we enter this 

regime is the value at which , which gives λ = ln 3. Upon closer inspection, it turns 
out that this is precisely the point at which the network itself loses its giant component,246 which 
explains why percolation is not possible beyond this point. For λ > ln 3 the network has no giant 

 

 

 

 

 

 

 

 



component, and hence it is not possible to have a giant cluster even if every vertex in the 
network is present. (A similar result of course applies to all networks—a giant percolation cluster 
is never possible in a network without a giant component.) 

Figure 16.4 shows a plot of the value of S for our exponential network with  as a function 
of φ. For small φ there is a region in which there are only small clusters and no giant cluster. When 
we pass through the percolation transition, marked by the dotted line in the figure, a giant cluster 
appears and grows smoothly from zero as φ increases. This is an example of what a physicist 
would call a continuous phase transition.247 We saw other examples in Sections 13.9 and 15.2.5. 

The overall behavior shown in Fig. 16.4 is typical of percolation in networks. For most degree 
distributions we expect S to take a similar form with a continuous phase transition, as we can 
demonstrate by the following argument. Suppose the generating function g1(u) is well-behaved 
near u = 1, having all its derivatives finite,248 then we can expand it about this point as

 

(16.21) 
  

where we have made use of g1 (1) = 1 (see Eq. (13.20)) and Eq. (16.7). Substituting into Eq. 
(16.4), we then find that

 

(16.22) 
  

or

 

(16.23) 
  

 

 

 

 



 

Figure 16.4: Size of the giant cluster for site percolation in the configuration model. The 
curve indicates the size of the giant cluster for a configuration model with an exponential degree 
distribution of the form (16.12) with , as given by Eq. (16.18). The dotted line indicates the 
position of the percolation transition, Eq. (16.20). 
  

We can similarly expand g0 (u) as

 

(16.24) 
  

where we have used g0(1) = 1 and Eqs. (13.22) and (16.23). Substituting into Eq. (16.2) then gives 
us

 

(16.25) 
  

In other words, S varies linearly with φ − φc just above the percolation transition, going to zero 
continuously as we approach the transition from above. Thus we would expect the percolation 
transition for essentially all degree distributions to look generically like the curve in Fig. 16.4, with 

 

 

 

 

 



a continuous phase transition as we pass the percolation threshold.249

This result is important, because it implies that the giant cluster becomes very small as we 
approach the percolation transition from above. In other words, the network may be “functional” in 
the sense of having a giant cluster, but the functional portion of the network is vanishingly small. 
If the network is a communication network, for example, then a finite fraction of all the vertices in 
the network can communicate with one another so long as there is a giant cluster, but that fraction 
becomes very small as we approach the percolation threshold, meaning that in practice most 
vertices are cut off. Thus one could argue that it is misleading to interpret the percolation threshold 
as the point where the network stops functioning: in effect most of it has stopped functioning 
before we reach this point. To fully describe the functional state of the network one should specify 
not only whether it contains a giant cluster but also what the size of that cluster is. 

It is also important to note that the sharp percolation transition of Fig. 16.4 is only truly seen in 
an infinite network. For networks of finite size—which is all real networks, of course—the 
transition gets rounded off. To see this, consider the behavior of the giant cluster in a finite-sized 
network. Technically, in fact, there is no giant cluster for an individual finite network. The proper 
definition of the giant cluster, like the giant component in a random graph, is as a cluster whose 
size scales in proportion to the size of the network (see Section 12.5). But it makes no sense to talk 
about the scaling of a cluster with network size when the size of the network is fixed. In practice, 
therefore, we normally consider instead the largest cluster, which is a reasonable proxy for the 
giant cluster in a finite-size network. Its size as a fraction of the size of the network should be a 
reasonable approximation to the size of the giant cluster given by our theory when we are above 
the percolation transition. 

Below the transition the largest cluster will be small in size, but not zero, and hence fills a small 
but non-zero fraction of the network, in rough but not perfect agreement with the theoretical 
prediction S = 0. Furthermore, this non-zero value grows as we approach the transition point 
because small clusters in general, including the largest one, grow as the occupation probability φ 
increases. The net result is a slight rounding of the sharp transition predicted by the theory, which 
is often visible, for example, in computer simulations of percolation on smaller networks. Effects 
such as this that show up only in finite-sized systems are known as finite size effects. 

 

The phase transition at which the giant cluster appears is only sharp in an infinite system 
(solid line). In a finite sized system it gets rounded off (dashed line). 

Even in the limit of large network size there are exceptions to the behavior of Fig. 16.4 and Eq. 
(16.25). Consider a network with a power-law degree distribution with exponent 2 < α < 3, as 
discussed above. In this case our assumption that the derivatives of g1 are finite does not hold (see 
Fig. 16.3 and the accompanying discussion), so the argument above breaks down. Not only does 
the percolation threshold fall at φc = 0 for power-law networks, but the giant cluster does not grow 
linearly as φ increases. In general it will grow slower than linearly, the exact functional form 
depending on the shape of g1 (u) near u = 1. For example, a typical form is
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near u = 1 with c and β positive constants. Provided β < 1 this makes the gradient of g1 (u) (and 
all higher derivatives) infinite at u = 1 while still ensuring that g1 (1) = 1. With this form for g1 (u), 
Eq. (16.4) implies 
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Then
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close to u = 1, with �k� finite so long as the power-law exponent α > 2, and hence the giant 
cluster has size

 

(16.29) 
  

which goes to zero faster than linearly251 as φ→ 0 since (2 − β)/(1 − β) > 1 if β < 1.
 

 

 

 

 

 



 

Figure 16.5: Size of the giant cluster for a network with power-law degree distribution. The 
size of the giant cluster for a scale-free configuration model network with exponent α = 2.5, a 
typical value for real-world networks. Note the non-linear form of the curve near φ = 0, which 
means that S, while technically non-zero, becomes very small in this regime. Contrast this figure 
with Fig. 16.4 for the giant cluster size in a network with an exponential degree distribution. 
  

Thus we expect the giant cluster to become very small as φ → 0. Figure 16.5 shows the 
equivalent of Fig. 16.4 for a scale-free network with exponent α = 2.5, derived from numerical 
solutions of Eqs. (16.2) and (16.4) and the non-linear form of S close to φ = 0 is clear. 

This result mitigates somewhat our earlier statement that scale-free networks are highly robust 
because φc = 0. It is true that the percolation threshold is zero in these networks and hence that 
there is a giant cluster for any positive φ, but that giant cluster can become exceedingly small. A 
communication network with a power-law degree distribution, for instance, might be formally 
functional for very small values of φ, but in practice the fraction of vertices that could 
communicate with one another would be so small that the network would probably not be of much 
use. 

 

 



16.3 NON-UNIFORM REMOVAL OF VERTICES  

In the first part of this chapter we have considered percolation phenomena in the case where 
vertices are removed from a network uniformly at random. This is the classical form of percolation 
long studied by physicists and mathematicians. When discussing networks, however, it is 
interesting also to consider other ways in which vertices might be removed. In Section 16.1, for 
example, we mentioned the possibility of removing vertices in order of their degrees, starting with 
the highest degrees and working down. This might be effective, for example, as a vaccination 
strategy for preventing the spread of disease: should they become infected, the high degree vertices 
in the network clearly present a disease risk to their many neighbors, so perhaps vaccinating them 
first would be a sensible approach. 

Let us consider a generalization of our percolation process in which the occupation probability 
of a vertex can now depend on its degree. We define φk to be the probability that a vertex with 
degree k is present or occupied in our network. If φk is a constant, independent of k, then we 
recover the uniform scenario of previous sections. On the other hand, if φk = 1 for all vertices with 
degree k < k0 for some constant k0, and φk = 0 for all vertices with k ≥ k0, then we effectively 
remove from the network all vertices with degree k0 or greater. A host of other choices are also 
possible, resulting in more complex removal patterns. 

Let us again look at percolation on configuration model networks and as before define u to be 
the average probability a vertex is not connected to the giant cluster via one of its neighbors. If the 
vertex has degree k then the probability that it is not connected to the giant cluster via any of its 
neighbors is uk and the probability that it is connected to the giant cluster is 1 − uk. But in order to 
belong to the giant cluster, the vertex itself must also be present, which happens with probability 
φk, so the probability of it being a member of the giant cluster is φk (1 − uk). 

Now we average over the probability distribution pk of the degree to find the average probability 
of being in the giant cluster and get
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where
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Notice that this new generating function is not normalized in the conventional fashion—the value 
ƒ0(1) that appears in Eq. (16.30) is not in general equal to one. Instead it is given by

 

(16.32) 
  

which is the average probability that a vertex is occupied. 
We can calculate the value of u using an approach similar to that for the uniform percolation 

scenario. The value of u is the probability that you are not connected to the giant cluster via your 
neighbor, which happens if either the neighbor is not occupied or if it is occupied but it is not 
connected to the giant cluster via any of its other neighbors. Let k now be the excess degree of the 
neighboring vertex. Then the probability that the neighbor is not occupied is 1 − φk+1. Notice that 
the index is k + 1 because φk is defined in terms of the total degree of a vertex, which is one greater 
than the excess degree (see Section 13.3). The probability that the neighbor is occupied but is itself 
not connected to the giant cluster is φk+1u

k. Adding up the terms and averaging over the distribution 
qk of the excess degree, we then find that
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where

 

(16.34) 
  

and we have used ∑kqk = 1.
 

Like ƒ0(z), the function ƒ1 (z) is not normalized to unity. The definition of ƒ1 (z) looks slightly 
odd because of the subscript k + 1. If we prefer we can write it using the full expression for the 
excess degree distribution, Eq. (16.3), which gives

 

 

 

 

 



(16.35) 
  

which has a more symmetric look about it. Note also that

 

(16.36) 
  

where g0(z) is defined as before. This expression can be useful for calculating ƒ1(z) once ƒ0(z) 
has been found. 

Equations (16.30) and (16.33), which were first given by Callaway et al. [62], give us a 
complete solution for the size of the giant cluster for our generalized percolation process. 

As an example of their use, consider again a network with exponential degree distribution given 
by Eq. (16.12) and suppose we remove all vertices that have degree k0 or greater. That is, we 
choose
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Then we have
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and
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For this choice Eq. (16.33) becomes a polynomial equation of order k0 and unfortunately such 
equations are not solvable exactly for their roots (unless k0 ≤ 4). It is, however, fairly easy to find 
the roots numerically, especially given that we know that the root of interest in this case lies in the 
range between zero and one, and then we can calculate the size of the giant cluster from (16.30). 

Figure 16.6a shows the results of such a calculation, plotted as a function of k0. Looking at this 
figure, consider what happens as we lower k0 from an initial high value, effectively removing more 
and more of the high-degree vertices in our network. As the figure shows, the size of the giant 
cluster decreases only slowly at first. This is because there are not many vertices of very high 
degree in the network, so very few have been removed. Once k0 passes a value around 10, 
however, our attack on the network starts to become evident in a shrinking of the giant cluster, 
which becomes progressively more rapid until the size of the cluster reaches zero around k0 = 5. 

One might be forgiven for thinking that Fig. 16.6a portrays a network quite resilient to the 
removal of even its highest-degree vertices: it appears that we have to remove vertices all the way 
down to degree five in order to break up the giant cluster. This impression is misleading, however, 
because it fails to take account of the fact that the vast majority of vertices in the network are of 
very low degree, so that even when we have removed all vertices with degree greater than five, we 
have still removed only a small fraction of all vertices. 

 

Figure 16.6: Size of the giant percolation cluster as the highest degree vertices in a network 
are removed. (a) The size of the giant cluster in a network with an exponential degree distribution 

pk ∼ e−λk with  as vertices are removed in order of degree, starting from those with the highest 
degree. The curve is shown as a function of the degree k0 of the highest-degree vertex remaining in 
the network. Technically, since k0 must be an integer, the plot is only valid at the integer points 
marked by the circles; the curves are just an aid to the eye. (b) The same data plotted now as a 
function of the fraction  of vertices remaining in the network. 
  

Perhaps a more useful representation of the solution is to plot it as a function of the fraction  of 
occupied vertices in the network, which is

 

 

 



(16.40) 
  

Figure 16.6b shows the result replotted in this way and reveals that the giant cluster in fact 
disappears completely when only about 8% of the highest-degree vertices in the network have 
been removed. By contrast, when we removed vertices uniformly at random, as shown in Fig. 
16.4, we had to remove nearly 70% of the vertices to destroy the giant cluster. Though the 
difference is startling, however, it is also intuitively reasonable. The high-degree vertices have a lot 
of connections, all of which are lost if we remove those vertices. 

 

Figure 16.7: Removal of the highest-degree vertices in a scale-free network. (a) The size of the 
giant cluster in a configuration model network with a power-law degree distribution as vertices are 
removed in order of their degree, starting with the highest-degree vertices. Only a small fraction of 
the vertices need be removed to destroy the giant cluster completely. (b) The fraction of vertices 
that must be removed to destroy the giant cluster as a function of the exponent α of the power-law 
distribution. For no value of α does the fraction required exceed 3%. 
  

These results suggest, for example, that were we able to find the highest degree vertices in a 
network of disease-causing contacts and vaccinate them to effectively remove them from the 
network, it would be a much more efficient strategy for disease control than simply vaccinating at 
random. 

A particularly striking example of the effect described here arises in networks with power-law 
degree distributions. In these networks, as we have seen, uniform removal of vertices never 
destroys the giant cluster, provided the exponent of the power-law lies between two and three. By 
contrast, removal of the highest-degree vertices in these networks has a devastating effect. Once 
again we cannot solve for S in closed form in the power-law case but it is reasonably 
straightforward to perform a numerical solution. Figure 16.7a shows the equivalent of Fig. 16.6b 
for the power-law case, and as we can see the giant cluster disappears extraordinarily rapidly as the 
high-degree vertices are removed. Only a few percent of the vertices need be removed to 
completely destroy the giant cluster, the exact value depending on the exponent of the power law. 

Indeed, if we want to calculate only the fraction that need be removed to destroy the giant 
cluster, we can do so by observing once again that the phase transition at which the giant cluster 
appears or disappears falls at the point where the non-trivial solution of Eq. (16.33) appears or 

 

 

 

 



disappears, which is the point at which the right-hand side of the equation is tangent to the line y
= u at u = 1. That is, the general criterion for the transition point is

 

(16.41) 
  

(Alternatively, we could say that the giant cluster exists if and only if  > 1.) Again, exact 
solutions are often not possible but we can solve numerically. Doing this for the power-law case 
we find the results shown in Figure 16.7b, which plots the fraction of vertices that need be 
removed to destroy the giant cluster as a function of the exponent α. As we can see, the curve 
peaks around α = 2.2 at a value just below 3%. Thus in no case need we remove more than 3% to 
destroy the connectivity in the network. 

Scale-free networks are thus paradoxically both robust and fragile, a point first emphasized by 
Albert et al. [14]. On the one hand, they are remarkably robust to the random failure of their 
vertices, with the giant cluster persisting no matter how many vertices we remove. (Although one 
should bear in mind the proviso of Section 16.2.1 that the size of the giant cluster matters also, and 
this becomes very small when the fraction φ of occupied vertices tends to zero.) On the other hand, 
scale-free networks are very fragile to attacks targeted specifically at their highest-degree vertices. 
We need remove only the tiniest fraction of the high-degree hubs in such a network to entirely 
destroy the giant cluster. 

The fragility of scale-free network to such targeted attack is both bad news and good news. 
Some networks we wish to defend against possible attack. The Internet is an example: a 
communication network that can easily be brought down by a malicious adversary targeting just a 
few of its most crucial vertices may be a disaster waiting to happen. 

On the other hand, results like these could also be exploited to help eradicate or reduce disease 
by targeting vaccination efforts at network hubs. It is worth noting, however, that it’s not 
necessarily easy to find the hubs in a network, so that implementation of a targeted vaccination 
strategy may be difficult. In most cases one does not know the entire network and so cannot simply 
pick out the high-degree vertices from a list. 

One intriguing way of getting around this problem has been put forward by Cohen et al. [76], 
who suggest that we make use of the structure of the network itself to find the high-degree 
vertices. In their scheme, which they call “acquaintance immunization,” they propose that one 
choose members of the population at random and then get each of them to nominate an 
acquaintance. Then that acquaintance receives a vaccination against the disease under 
consideration. The acquaintance in this scenario is a “vertex at the end of an edge,” so in the 
configuration model it would have degree distributed according to the excess degree distribution, 
Eq. (13.46), rather than the original degree distribution of the network. But the excess degree 
distribution, as discussed in Section 13.3, is biased towards high-degree vertices since there are 
more edges that end at a high-degree vertex than at a low-degree one. Thus the selection of 
individuals in the scheme of Cohen et al. is also biased towards those with high degree. The 
selected individuals are not guaranteed to be the highest-degree vertices in the network, but we are 
a lot more likely to find the hubs this way than if we just choose vertices at random and in 
simulations the acquaintance immunization scheme appears to work quite well. 

The acquaintance immunization scheme does have some drawbacks. First, contact networks in 
the real world are of course not configuration models and it is unclear how accurately the 
theoretical results describe real situations. Second, real contact networks mostly don’t have power-
law degree distributions, instead having somewhat shorter tails than the typical power law, which 
will reduce the effectiveness of the scheme, or indeed of any scheme based on targeting the highly 
connected vertices. Another issue is that, in asking people to name their acquaintances, the 
acquaintance immunization scheme necessarily probes the network of who is acquainted with 

 



whom, which is in general not the same as the network of disease transmission, since people 
who are acquainted don’t necessarily have regular physical contact of the type necessary to spread 
disease and because diseases can be and often are transmitted between people who don’t know one 
another. We can do our best to make the networks similar, asking participants to name only 
acquaintances whom they have seen recently and in person, rather than those they might not have 
seen for a while or might only have to talked to on the phone. Still, the differences between the 
two networks means that the scheme might end up focusing vaccination efforts on the wrong set of 
people. 



16.4 PERCOLATION IN REAL-WORLD NETWORKS  

Having seen how percolation plays out in model networks, let us now take a look at some real 
ones. If we have data on the structure of a network then we can simulate the percolation process on 
a computer, removing vertices one by one and examining the resulting clusters. Although this is 
straightforward in theory, it requires some care to get good results in practice. The main issue is 
that the percolation process is normally a random one: the vertices are removed in random order, 
which means that the cluster sizes can vary depending on the precise order we choose. Even in the 
case where vertices are removed in decreasing order of their degree the process is still random to 
some extent since there can be many vertices with a given degree, among which we must choose 
somehow. To avoid possible biases, we usually choose among them at random. 

This randomness can easily be simulated on a computer using standard random number 
generators, but the results of the simulation will then vary from one run of our simulation to 
another depending on the output of the generator. To get a reliable picture of how percolation 
affects a network we must perform the entire calculation many times, removing the vertices in 
different random orders each time, so that we can see what the typical behavior is, as well as the 
range of variation around that typical behavior. And this in turn means that we need to be able to 
perform the percolation calculation quickly. In a typical situation we might want to repeat the 
percolation calculation a thousand times with different random orders of removal and even if each 
calculation took just one minute of computer time, all thousand runs would still take a day. 

If we are crafty, however, we can do much better than this and get an answer in just a few 
seconds for networks of the typical sizes we have been considering in this book. 

 



16.5 COMPUTER ALGORITHMS FOR PERCOLATION  

The simplest way to simulate the percolation process on a computer is to make use of the breadth-
first search algorithm of Section 10.3.4, which can find all components in a network in time O(m + 
n), where m is the total number of edges in the network and n is the total number of vertices, or 
just O(n) for a sparse network in which m ∝ n. If we remove a certain randomly chosen set of 
vertices from a network, along with the edges attached to them, then the resulting percolation 
clusters are by definition the components of the network that remains, and hence we can use the 
component-finding algorithm to find the clusters. Then we can, for example, look through those 
clusters until we find the largest one. 

In the case of uniformly random removal of vertices, for instance, we would go through each 
vertex in turn, removing it (and its edges) from the network with probability 1 − φ, finding the 
clusters, and (say) measuring the size of the largest one. Then we repeat the entire calculation, 
starting with the complete network again, removing a different set of vertices, and finding the 
clusters. Repeating the calculation a large number of times, we can calculate a mean value S(φ) for 
the size of the largest component when vertices are present or functioning with probability φ. 

If we are interested in only a single value of φ, this is, in fact, the best algorithm to use and the 
fastest known way of getting an answer. Usually, however, we are interested, as in previous 
sections, in the behavior of the system over the whole range of φ from zero to one, or at least some 
portion of that range. In that case, we would have to repeat the whole calculation above for many 
values of φ in the range of interest and this process is time-consuming and is not the best way to 
approach the problem. 

Consider instead the following alternative approach, which appears at first to be only a slight 
variation on the previous one, but leads, as we will see, to much more efficient algorithms. Instead 
of making each vertex in the network occupied with independent probability φ, let us make a fixed 
number r of vertices occupied, repeating the calculation many times for a given value of r and 
averaging to get a figure Sr for the size of the largest component (or any other quantity of interest) 
as a function of r. 

The calculation doesn’t directly give us the result we want: Sr is not the same as S(φ) and it is 
the latter we are interested in. If, however, we know the value of Sr for every allowed value of the 
integer r, i.e., from 0 to n, then we can calculate S(φ) as follows. If each vertex in the network is 
occupied with probability φ, then the probability that there are exactly r vertices occupied is given 
by the binomial distribution

 

(16.42) 
  

Averaging over this distribution, the average size of the largest component as a function of φ is 
then

 

 

 



 

(16.43) 
  

At first sight, this appears to be a less promising approach for calculating S(φ) than the previous 
approach. To make use of Eq. (16.43) we need to know Sr for all r and it takes time O(m + n) to 
calculate Sr for one value of r using breadth-first search, so it is going to take O(n(m + n) ) to 
calculate for all n values, or O(n2) on a sparse network. Given that we also need to perform each 
calculation of Sr many times to average over the randomness, the entire process could take a very 
long time to complete. 

There is however a faster way to calculate Sr for all r, inspired by the simple observation that if 
we have already found all the clusters in a network with r vertices present, then we can find the 
clusters with r + 1 vertices simply by adding one more vertex. Most of the clusters do not change 
very much when we add just one vertex, and if we can find only the clusters that change upon 
adding a vertex, then we can save ourselves the work of performing an entire new breadth-first 
search, and hence save ourselves a lot of computer time. A simple algorithm for doing this works 
as follows. 

 

Figure 16.8: Percolation algorithm. In the percolation algorithm described in the text we add 
vertices to our network one by one, rather than taking them away. Each addition consists of several 
steps. (a) We add the vertex itself but none of its accompanying edges yet. At this stage the vertex 
constitutes a new cluster in its own right. (b) We start adding the accompanying edges (if any) in 
any order we like. Only edges that connect to other vertices already present in the network are 
added. The first edge added (if any are added) will thus, by definition, always join the new vertex 
to one of the previously existing clusters. Or to put it another way, it will join two clusters 
together, one of the old clusters and the new cluster that consists of just the single added vertex. (c) 
In this example the next edge added also joins two clusters together. (d) The final edge added joins 
two vertices that are already members of the same cluster, so the cluster structure of the network 
does not change. 
  

Rather than removing vertices from the complete network, our algorithm works by building the 
network up from an initial state in which no vertices are occupied and switching on vertices one by 

 

 

 

 



one until we recover the entire network. As we add each vertex to the network we also add the 
accompanying edges that join it to other vertices. Only connections to other vertices that are 
already present need be added. 

For the purposes of our algorithm, let us break down this process as shown in Fig. 16.8. Each 
new vertex is first added with, initially, no accompanying edges (panel (a) in the figure). In this 
state it forms a cluster all on its own. Then, one by one, we add its edges, those that connect it to 
other vertices already present. If there are no edges attached to the vertex or none connect to 
vertices already present, then our new vertex remains a cluster on its own. If there are edges, 
however, then the first edge we add joins our vertex to an adjacent cluster—see Fig. 16.8b. 
Subsequent edges are more complicated. They can do one of two things. An edge can connect our 
vertex to another, different cluster, in which case in the process it joins two clusters together 
making them into a single cluster—see Fig. 16.8c. Alternatively, it could join our vertex to another 
member of the same cluster that it already belongs to, as in Fig. 16.8d. In this case, no clusters are 
joined together, and in terms of the size and identity of the clusters the added edge has no effect. 

 

Figure 16.9: Using labels to keep track of clusters. In the algorithm described in the text, each 
vertex is given a label, typically an integer, to denote which cluster it belongs to. In this example 
there are initially two clusters, labeled 1 and 2. Then a new vertex is added between them. (a) The 
new vertex is added initially without its accompanying edges and is labeled as a new cluster, 
cluster 3. (b) An edge is added that connects cluster 3 to cluster 1, so we relabel one cluster to give 
it the same label as the other. In the algorithm described in the text we always relabel the smaller 
of the two clusters, which is cluster 3 in this case. (c) The next edge added joins clusters 1 and 2 
and we relabel cluster 2 since it is smaller. 
  

To keep track of the clusters in the network, therefore, our algorithm needs to do two things. 
First, when an edge is added it needs to identify the clusters to which the vertices at either end 
belong. Second, if the clusters are different, it needs to join them together into a single cluster. (If 
they are the same nothing need be done.) 

There are various ways of achieving this but a simple one is just to put a label, such as an 

 

 



integer, on each vertex denoting the cluster to which it belongs—see Fig. 16.9a. Then it is a 
simple matter to determine if two vertices belong to the same cluster (they do if their labels are the 
same), and joining two clusters together is just a matter of relabeling all the vertices in one of the 
clusters to match the label of the other cluster. This process is illustrated in Fig. 16.9. 

Then our algorithm is as follows:

1. Start with an empty network with no occupied vertices. Let c = 0 be the number of clusters 
in the network initially. Choose at random an order in which the vertices will be added to 
the network. 

2. Add the next vertex in the chosen order, initially with no edges. This vertex is a cluster in 
its own right, so increase c by one and label the vertex with label c to indicate which cluster 
it belongs to. Also make a note that cluster c has size 1. 

3. Go through the edges attached to this vertex one by one. For each edge determine whether 
the vertex at the other end has already been added to the network. If it has, add the edge to 
the network. 

4. As each edge is added, examine the cluster labels of the vertices at either end. If they are 
the same, do nothing. If they are different, choose one of the clusters and relabel all its 
vertices to have the same label as the other cluster. Update the record of the size of the 
cluster to be equal to the sum of the sizes of the two clusters from which it was formed. 

5. Repeat from step 2 until all vertices have been added. 

At the end of this process, we have gone from an entirely empty network to the complete final 
network with all vertices and edges present and in between we have passed through a state with 
every possible intermediate number r of vertices. Moreover, in each of those states we had a 
complete record of the identities and sizes of all the clusters which we can use, for instance, to find 
the size Sr of the largest cluster. Then we can feed the results into Eq. (16.43) to get S(φ) for any φ. 
As before, we will typically want to average the results over many runs of the algorithm to allow 
for random variations from one run to another, which arise from variations in the order in which 
the vertices are added. This, however, is no longer a serious impediment to finishing the 
calculation because, if implemented appropriately, the algorithm can be made to run very quickly. 

The most time-consuming part of the algorithm is the relabeling of clusters when they are joined 
together. Note however that when an edge joins two different clusters we are free to choose which 
of the two we relabel. It turns out that the speed of the algorithm can be improved greatly if we 
choose always to relabel the smaller one. (If the two clusters have the same size, it does not matter 
which we choose to relabel.) To see this, consider the following argument. 

If we always relabel the smaller of two clusters, then the relabeled cluster must have been joined 
with one at least as large as itself and hence it is now a part of a cluster at least twice its size. Thus 
every time a vertex is relabeled the cluster it belongs to at least doubles in size. Given that each 
vertex starts off as a cluster in its own right of size 1, the size of the cluster to which it belongs 
after k relabelings is thus at least 2k. Since no vertex can belong to a cluster of size greater than the 
size n of the whole network, the maximum number of relabelings a vertex can experience during 
the entire algorithm is given by 2k = n or k = log2n, and the maximum number of relabeling 
operations on all n vertices is thus n log2n. Thus the total time to perform the relabeling part of the 
algorithm is O(n log n). 

The other parts of the algorithm are typically faster than this. The adding of the vertices takes O
(n) time and the adding of the edges takes O(m) time, which is the same as O(n) on a sparse 
network with m ∝ n. So the overall running time of the algorithm to leading order is O(m + n log 
n), or O(n log n) on a sparse network, which is much better than our first estimate of O(n(m + n)) 
above. 

Essentially the same algorithm can also be used when vertices are added or removed with 
probabilities other than the uniformly random ones considered here. For instance, if vertices are to 
be removed in decreasing order of their degrees we simply reverse that process and add vertices to 
an initially empty network in increasing order of degrees. The details of the algorithm itself are 

 



unchanged—only the order of the vertices changes.
This algorithm works well in practice for almost all calculations. It is not, however, the very 

fastest algorithm for the percolation problem. There exists an even faster one, which runs in O(m + 
n) time (or O(n) for a sparse network) and is also considerably simpler to program, although its 
outward simplicity hides some subtleties. The reader interested in learning more about this 
approach is encouraged to look at Ref. [255].



16.5.1 RESULTS  

Figure 16.10 shows results for four different networks as a function of the fraction of occupied 
vertices. In this case, the occupied vertices are chosen uniformly at random. The figure shows in 
each case the size S of the largest cluster as a fraction of system size, plotted as a function of φ. As 
described in Section 16.2.1, the largest cluster acts as a proxy for the giant cluster in numerical 
calculations on fixed networks for which the idea of a giant cluster, as a cluster that scales with 
system size, is meaningless. 

The top two networks in the figure, a power grid and a road network, are both networks with 
non-power-law degree distributions—the power grid has a roughly exponential distribution while 
the road network has only vertices of degree one to four and nothing else. For these cases, we 
expect to see behavior of the generic type described in Section 16.2.1: a continuous percolation 
transition at a non-zero value of φ from a regime in which S  0 to a regime of non-zero S. 
Because the networks are relatively small, however (4941 vertices for the power grid, 935 for the 
road network), we also expect to see some rounding of the transition (see Section 16.2.1). 

 

Figure 16.10: Size of the largest percolation cluster as a function of occupation probability 
for four networks. The four frames of this figure show the size of the largest cluster, measured as 
a fraction of network size, for random removal of vertices from four real-world networks: the 
western United States power grid, the network formed by the US Interstate highways, the Internet 
at the level of autonomous systems, and a social network of professional collaborations between 
physicists. Each curve is averaged over 1000 random repetitions of the calculation, which is why 
the curves appear smooth. 
  

And this is in fact what we do see. In each of these two cases S is close to zero below a certain 
value of φ, then grows rapidly but with a certain amount of rounding near the transition. Overall, 

 

 

 



other than the rounding, the shape of the curves is qualitatively similar to that of Fig. 16.4. One 
could even tentatively make an estimate of the percolation transition, which appears to fall around 
φ = 0.6 or 0.7 in both networks. 

The bottom two frames in the figure tell a different story. These show results for percolation on 
the Internet and a social network. Both of these networks have approximately power-law degree 
distributions and thus, based on the insights of Section 16.2.1, might be expected to show no 
percolation transition (or a transition at φ = 0 if you prefer) and non-linear growth of the largest 
cluster with growing φ. Again our expectations seem to be borne out, at least qualitatively, by the 
numerical results. In both networks the value of S appears to take non-zero values for all φ > 0 and 
the initial growth for small φ shows some curvature, indicating non-linear behavior. 

Thus our percolation theory for random graphs seems in this case to provide a good general 
guide to the robustness of networks. The power-law networks are robust against random removal 
of vertices, in the sense that a fraction of the vertices that haven’t been removed remain connected 
in a large cluster even when most vertices have been removed. The non-power-law networks, by 
contrast, become essentially disconnected after relatively few vertices have been removed—just 
about 40% in this case. 

Figure 16.11 shows results for the same four networks when vertices are removed in order of 
degree, highest degrees first. As we can see, this “attack” on the network is more effective at 
reducing the size of the largest component than is random removal for all four networks. However, 
the difference between Figs. 16.10 and 16.11 is not so great for the first two networks, the power 
grid and the road network. The giant component in both of these networks survives nearly as long 
under the targeted attack as under random removal. This is as we would expect, since neither has a 
significant number of very high-degree vertices (the road network, with maximum degree four, has 
none at all), so that removal of the highest-degree vertices is not so very different from the removal 
of vertices of average degree. 

For the second two networks, however, the Internet and the collaboration network, which both 
have roughly power-law degree distributions, the effect is far larger. Where these networks were 
more resilient to random removal than they others, they are clearly less resilient, at least by this 
measure, to targeted attack. The Internet in particular has a largest cluster size that falls essentially 
to zero when only about 5% of its highest-degree vertices have been removed, a behavior similar 
again to our theoretical calculations (see Fig. 16.7 on page 613). Thus the real Internet appears to 
show the mix of robust and fragile behavior that we saw in our calculations for the configuration 
model, being remarkably resilient to the random removal of vertices but far more susceptible to 
targeted attacks. 

 



Figure 16.11: Size of the largest percolation cluster as a function of occupation probability 
for targeted attacks on four networks. The four frames in this figure show the size of the largest 
cluster, measured as a fraction of network size, for the same four networks as Fig. 16.10, when 
vertices are removed in degree order, highest-degree vertices first. Since this is mostly a 
deterministic process and not a random one (except for random choices between vertices of the 
same degree) the curves cannot be averaged as in Fig. 16.10 and so are relatively jagged. 
  

Overall, therefore, the percolation theory seems to be successful as a qualitative guide to the 
resilience of networks. Certainly it does not perfectly predict the exact behavior of individual 
networks, but it gives a good feel for the behavior we expect of networks as vertices fail or are 
removed, as a function of their degree distribution. 

In the next chapter we will see another application of percolation, to the spread of diseases in 
networks. 

 

 



PROBLEMS  

16.1 Consider the problem of bond percolation on a square lattice and consider the following 
construction:

 

Here we have taken a bond percolation system (in black) and constructed another one interlocking 
it (in gray), such that the bonds of the new system are occupied if and only if the intersecting bond 
on the old system was not. Such an interlocking system is called a dual lattice.

a. If the fraction of occupied bonds on the original lattice is φ, what is the fraction of occupied 
bonds on the dual lattice? 

b. Show that there is a path from top to bottom of the dual lattice if and only if there is no 
path from side to side of the original lattice. 

c. Hence show that the percolation transition for the square lattice occurs at . 

16.2 Consider the site percolation problem with occupation probability φ on a Poisson random 
graph with mean degree c. Let πs be the probability that a vertex belongs to an non-giant 
percolation cluster of s vertices and define a generating function h(z) = . 

a. Show that h(z) = 1 − φ + φzec[h(z)−1].
 

b. Hence show that the mean size of a small cluster in the non-percolating regime (no giant 
cluster) is

 

 

 

 



c. Define ƒ(z) = [h(z) − 1 + φ]/φ. Using the Lagrange inversion formula, Eq. (12.49), solve for 
the coefficients in the series expansion of ƒ(z) and hence show that

 

16.3 Consider a configuration model network that has vertices of degree 1, 2, and 3 only, in 
fractions p1, p2, and p3, respectively. 

a. Find the value of the critical vertex occupation probability φc at which site percolation takes 
place on the network. 

b. Show that there is no giant cluster for any value of the occupation probability φ if p1 > 3p3. 
Why does this result not depend on p2? 

c. Find the size of the giant cluster as a function of φ. (Hint: you may find it useful to 
remember that u = 1 is always a solution of the equation u = 1 − φ + φg1 (u).) 

16.4 In Section 16.3 we examined what happens when the highest-degree vertices are removed 
from a configuration model network with a power-law degree distribution pk = k−α / ζ(α) for k ≥ 1 
and p0 = 0. 

a. Show that in this case the phase transition at which the giant cluster disappears occurs 
when all vertices with degree k > k0 have been removed, where the cut-off parameter k0 
satisfies

 

b. Using the fact that , and making use of the trapezoidal rule (Eq. 
(14.115) on page 524) for large values of k, show that

 

c. Keeping leading-order terms in k0 only, show that the giant cluster disappears 
approximately when (k0 + 1)−α+3 = (α - 3)[ζ (α - 2) - 2ζ (α - 1)]. 

d. Find the approximate value of k0 at the point where the giant cluster disappears for α = 2.5. 

16.5 Consider the computer algorithm for percolation described in Section 16.5, but suppose that 
upon the addition of an edge between two clusters we relabel not the smaller of the two clusters 
but one or the other chosen at random. Show by an argument analogous to the one in Section 16.5 
that the worst-case running time of this algorithm is O(n2), which is substantially worse than the O
(n log n) of the algorithm that always relabels the smaller cluster.

 

 

 



CHAPTER 17 

EPIDEMICS ON NETWORKS 

An introduction to the theory of the epidemic processes by which diseases spread over 
networks of contact between humans, animals, plants, and even computers 

ONE OF the reasons for the large investment the scientific community has made in the study of 
social networks is their connection with the spread of disease. Diseases spread over networks of 
contacts between individuals: airborne diseases like influenza or tuberculosis are communicated 
when two people breathe the air in the same room; contagious diseases and parasites can be 
communicated when people touch; HIV and other sexually transmitted diseases are communicated 
when people have sex. The patterns of such contacts can be represented as networks and a good 
deal of effort has been devoted to empirical studies of these networks’ structure. We have already 
discussed some network aspects of epidemiology in the previous chapter when we considered site 
percolation as a model for the effects of vaccination. In this chapter we look in more detail at the 
connections between network structure and disease dynamics and at mathematical theories that 
allow us to understand and predict the outcomes of epidemics. 

On a related topic, recent years have seen the emergence of a new type of infection, the 
computer virus, a self-reproducing computer program that spreads from computer to computer in a 
manner similar to the spread of pathogenic infections between humans or animals. Many of the 
ideas described in this chapter can be applied not only to human diseases but also to computer 
viruses. 

 

 

 



17.1 MODELS OF THE SPREAD OF DISEASE  

The biology of what happens when an individual (a “host” in the epidemiology jargon) catches an 
infection is complicated. The pathogen responsible for the infection typically multiplies in the 
body while the immune system attempts to beat it back, often causing symptoms in the process. 
One or the other usually wins in the end, though sometimes neither, with the final result being the 
individual’s recovery, their death, or a chronic disease state of permanent infection. In theory if we 
want to understand fully how diseases spread through populations we need to take all of this 
biology into account, but in practice that’s usually a dauntingly large job and it is rarely, if ever, 
attempted. Luckily there are more tractable approaches based on simplified models of disease 
spread that give a good guide to disease behavior in many cases and it is on these that we focus in 
this chapter. 

 



17.2 THE SI MODEL  

In the typical mathematical representation of an epidemic the within-host dynamics of the disease 
is reduced to changes between a few basic disease states. In the simplest version there are just two 
states, susceptible and infected. An individual in the susceptible state is someone who does not 
have the disease yet but could catch it if they come into contact with someone who does. An 
individual in the infected state is someone who has the disease and can, potentially, pass it on if 
they come into contact with a susceptible individual.252 Although this two-state classification 
sweeps a lot of biological details under the rug, it captures some of the gross features of disease 
dynamics and is a useful simplification in the case where, as here, we are focused more on what’s 
happening at the level of networks and populations than on what’s happening within the bodies of 
the individual population members. 

Mathematical modeling of epidemics predates the study of networks by many years, stretching 
back at least as far as the pioneering work of Anderson McKendrick, a doctor and amateur 
mathematician who made foundational contributions to the field early in the twentieth century. The 
theories that he and others developed form the core of traditional mathematical epidemiology, 
which is an extensive and heavily researched field. Classic introductions to the subject include the 
highly theoretical 1975 book by Bailey [25] and the more recent and practically oriented book by 
Anderson and May [17]. The review article by Hethcote is also a good resource [156]. 

The traditional approach avoids discussing contact networks at all by making use of a fully 
mixed or mass-action approximation, in which it is assumed that every individual has an equal 
chance, per unit time, of coming into contact with every other—people mingle and meet 
completely at random in this approach. This is, of course, not a realistic representation of the way 
the world is. In the real world, people have contact with only a small fraction of the population of 
the world, and that fraction is not chosen at random, which is precisely why networks play an 
important role in the spread of disease. Nonetheless, a familiarity with the traditional approaches 
will be useful to us in our study of network epidemiology, so we will spend a little time looking at 
its basic principles. 

Consider a disease spreading through a population of individuals. Let S(t) be the number of 
individuals who are susceptible at time t and let X(t) be the number who are infected.253 
Technically, since the disease-spreading process is a random one, these numbers are not uniquely 
determined—if the disease were to spread through the same population more than once, even 
under very similar conditions, the numbers would probably be different each time. To get around 
this problem let us define S and X more carefully to be the average or expected numbers of 
susceptible and infected individuals, i.e., the numbers we would get if we ran the process many 
times under identical conditions and then averaged the results.254 

The number of infected individuals goes up when susceptible individuals contract the disease 
from infected ones. Suppose that people meet and make contacts sufficient to result in the spread 
of disease entirely at random with a per-individual rate β, meaning that each individual has, on 
average, β contacts with randomly chosen others per unit time. 

 

The allowed transitions between states can be represented by flow charts like this simple one 
for the SI model. 

 

 



The disease is transmitted only when an infected person has contact with a susceptible one. If 
the total population consists of n people, then the average probability of a person you meet at 
random being susceptible is S/n, and hence an infected person has contact with an average of βS/n 
susceptible people per unit time. Since there are on average X infected individuals in total that 
means the overall average rate of new infections will be βSX/n and we can write a differential 
equation for the rate of change of X thus:

 

(17.1) 
  

At the same time the number of susceptible individuals goes down at the same rate:

 

(17.2) 
  

This simple mathematical model for the spread of a disease is called the fully mixed susceptible-
infected model, or SI model for short. 

It is often convenient to define variables representing the fractions of susceptible and infected 
individuals thus:

 

(17.3) 
  

in terms of which Eqs. (17.1) and (17.2) can be written

 

(17.4a) 
  

 

 

 

 

 

 

 

 

 



(17.4b) 
  

In fact, we don’t really need both of these equations, since it is also true that S + X = n or 
equivalently s + x = 1 because every individual must be either susceptible or infected. With this 
condition it is easy to show that Eqs. (17.1) and (17.2) are really the same equation. Alternatively, 
we can eliminate s from the equations altogether by writing s = 1 - x, which gives

 

(17.5) 
  

This equation, which occurs in many places in biology, physics, and elsewhere, is called the 
logistic growth equation. It can be solved using standard methods to give

 

(17.6) 
  

where x0 is the value of x at t = 0. Generically this produces an S-shaped “logistic growth curve” 
for the fraction of infected individuals, as shown in Fig. 17.1. The curve increases exponentially 
for short time, corresponding to the initial phase of the disease in which most of the population is 
susceptible, and then saturates as the number of susceptibles dwindles and the disease has a harder 
and harder time finding new victims.255 

 

 

 

 

 

 

 



Figure 17.1: The classic logistic growth curve of the SI epidemic model. A small initial number 
of infected individuals in an SI model (1% in this example) will at first grow exponentially as they 
infect others, but growth eventually saturates as the supply of susceptible individuals is exhausted, 
and the curve levels off at x = 1. 
  
 



17.3 THE SIR MODEL  

The SI model is the simplest possible model of infection. There are many ways in which it can be 
extended to make it more realistic or more appropriate as a model of specific diseases. One 
common extension deals with recovery from disease. 

In the SI model individuals, once infected, are infected (and infectious) forever. For many real 
diseases, however, people recover from infection after a certain time because their immune system 
fights off the agent causing the disease. Furthermore, people often retain their immunity to the 
disease after such a recovery so that they cannot catch it again. To represent this behavior in our 
model we need a new third disease state, usually denoted R for recovered. The corresponding 
three-state model is called the susceptible-infected-recovered or SIR model. 

With some other diseases people do not recover, but instead die after some interval. Although 
this is the complete opposite of recovery in human terms, it is essentially the same thing in 
epidemiological terms: it makes little difference to the disease whether a person is immune or 
dead—either way they are effectively removed from the pool of potential hosts for the disease.256 
Both recovery and death can be represented by the R state in our model. Diseases with mixed 
outcomes where people sometimes recover and sometimes die can also be modeled in this way—
from a mathematical point of view we don’t care whether the individuals in the R state are 
recovered or dead. For this reason some people say that the R stands for removed rather than 
recovered, so as to encompass both possibilities, and they refer to the corresponding model as the 
susceptible-infected-removed model. 

 

The flow chart for the SIR model. 
  

The dynamics of the fully mixed SIR model has two stages. In the first stage, susceptible 
individuals become infected when they have contact with infected individuals. Contacts between 
individuals are assumed to happen at an average rate β per person as before. In the second stage, 
infected individuals recover (or die) at some constant average rate γ. 

Given the value of γ we can calculate the length of time τ that an infected individual is likely to 
remain infected before they recover. The probability of recovering in any time interval δτ is γ δτ 
and the probability of not doing so is 1 - γ δτ. Thus the probability that the individual is still 
infected after a total time τ is given by

 

(17.7) 
  

and the probability p(τ) dτ that the individual remains infected this long and then recovers in the 

 

 

 

 



interval between τ and τ + dτ is this quantity times γ dτ:

 

(17.8) 
  

which is a standard exponential distribution. Thus an infected person is most likely to recover 
just after becoming infected, but might in theory remain in the infected state for quite a long 
time—many times the mean infectious time (which is just 1/γ). 

 

The distribution of times for which an individual remains infected is typically narrowly peaked 
around some average value for real diseases, quite unlike the exponential distribution assumed by 
the SIR model. 
  

Neither of these behaviors is very realistic for most real diseases. With real diseases, most 
victims remain infected for about the same length of time, such as a week, say, or a month. Few 
stay in the infected state for much longer or shorter than the average (see figure). Nonetheless, we 
will for the moment stick with this model because it makes the mathematics simple. This is one 
thing that will improve when we come to look at network models of epidemics. 

In terms of the fractions s, x, and r of individuals in the three states, the equations for the SIR 
model are

 

(17.9a) 
  

 

(17.9b) 
  

 

 

 

 

 

 

 



 

(17.9c) 
  

and in addition the three variables necessarily satisfy

 

(17.10) 
  

To solve these equations we eliminate x between Eqs. (17.9a) and (17.9c), giving

 

(17.11) 
  

and then integrate both sides with respect to t to get:

 

(17.12) 
  

where s0 is the value of s at t = 0 and we have chosen the constant of integration so that there are 
no individuals in the recovered state at t = 0. (Other choices are possible but we’ll use this one for 
now.) 

Now we put x = 1 - s - r in Eq. (17.9c) and use Eq. (17.12) to get

 

(17.13) 
  

If we can solve this equation for r then we can find s from Eq. (17.12) and x from Eq. (17.10). 
The solution is easy to write down in principle. It is given by

 

 

 

 

 

 

 



 

(17.14) 
  

Unfortunately, in practice we can’t evaluate the integral in closed form. We can however evaluate 
it numerically. An example is shown in Fig. 17.2. 

 

Figure 17.2: Time evolution of the SIR model. The three curves in this figure show the fractions 
of the population in the susceptible, infected, and recovered states as a function of time. The 
parameters are β = 1, γ = 0.4, s0 = 0.99, x0 = 0.01, and r0 = 0. 
  

There are a number of notable things about this figure. The fraction of susceptibles in the 
population decreases monotonically as susceptibles are infected and the fraction of recovered 
individuals increases monotonically. The fraction infected, however, goes up at first as people get 
infected, then down again as they recover, and eventually goes to zero as t → ∞. 

Note however that the number of susceptibles does not go to zero; a close inspection shows that 
the curve for s(t) ends a little above the axis. This is because when x → 0 there are no infected 
individuals left to infect the remaining susceptibles. Any individuals who survive to late enough 
times without being infected will probably never get the disease at all. They are the lucky ones 
who made it through the outbreak and out the other side. Similarly the fraction of recovered 
individuals does not quite reach one as t → ∞. 

The asymptotic value of r has an important practical interpretation: it is the total number of 
individuals who ever catch the disease during the entire course of the epidemic—the total size of 
the outbreak. It can be calculated from Eq. (17.13) as the value at which dr/dt = 0, which gives r = 
1 - s0e

-βr/γ. 
The initial conditions for the model can be chosen in a variety of ways, but the most common is 

to assume that the disease starts with either a single infected individual or a small number c of 
individuals and everyone else in the susceptible state. In other words, the initial values of the 
variables are s0 = 1 - c/n, x0 = c/n, and r0 = 0. In the limit of large population size n → ∞, we can 

 

 

 

 



then write s0  1, and our final value of r satisfies

 

(17.15) 
  

Interestingly, this is the same as the equation we derived in Section 12.5 for the size S of the giant 
component of a Poisson random graph, Eq. (12.15), provided we equate β/γ with the mean degree 
of the random graph, and this correspondence allows us immediately to say several useful things. 
First, we know what the size of the epidemic must look like (in the limit of large n) as a function of 
the parameters β and γ: it will look like the plot of giant component size shown in the right-hand 
panel of Fig. 12.1 on page 406, with c = β/γ. Second, it tells us that the size of the epidemic goes 
continuously to zero as β/γ approaches one from above and for β/γ ≤ 1, or equivalently β ≤ γ, there 
is no epidemic at all. The simple explanation for this result is that if β ≤ γ then infected individuals 
recover faster than susceptible individuals become infected, so the disease cannot get a toehold in 
the population. The number of infected individuals, which starts small, goes down, not up, and the 
disease dies out instead of spreading. 

The transition between the epidemic and non-epidemic regimes happens at the point β = γ and is 
called the epidemic transition. Note that there was no epidemic transition in the simpler SI model: 
in that model the disease always spreads because individuals once infected never recover and 
hence the number of infected individuals cannot decrease. (One can think of the SI model as the 
special case of the SIR model in which γ = 0, so that β can never be less than γ.) 

An important quantity in the study of epidemics is the basic reproduction number, denoted R0, 
which is defined as follows. Consider the spread of a disease when it is just starting out, when 
there are only a few cases of the disease and the rest of the population is susceptible—what is 
called a naive population in the epidemiology jargon—and consider a susceptible who catches the 
disease in this early stage of the outbreak. The basic reproduction number is defined to be the 
average number of additional people that such a person passes the disease onto before they 
recover. For instance, if each person catching the disease passes it onto two others on average, then 
R0 = 2. If half of them pass it on to just one person and the rest to none at all, then , and so 
forth. 

If we had R0 = 2 then each person catching the disease would pass it on to two others on 
average, each of them would pass it on to two more, and so forth, so that the number of new cases 

of the disease would double at each round, thus growing exponentially. Conversely if  the 
disease would die out exponentially. The point R0 = 1 separates the growing and shrinking 
behaviors and thus marks the epidemic threshold between regimes in which the disease either 
multiplies or dies out. 

We can calculate R0 straightforwardly for our model. If an individual remains infectious for a 
time τ then the expected number of others they will have contact with during that time is βτ. The 
definition of R0 is specifically for a naive population, and in a naive population all of the people 
with whom one has contact will be susceptible, and hence βτ is also the total number of people our 
infected individual will infect. Then we average over the distribution of τ, Eq. (17.8), to get the 
average number R0:

 

 

 

 



(17.16) 
  

This gives us an alternative way of deriving the epidemic threshold in the 

SIR: the epidemic threshold falls at R0 = 1, which corresponds in this model to the point β = γ, the 
same result as we found above by considering the long-time behavior.257

 



17.4 THE SIS MODEL  

 

Flow chart for the SIS model. 
  

A different extension of the SI model is one that allows for reinfection, i.e., for diseases that don’t 
confer immunity on their victims after recovery, or confer only limited immunity, so that 
individuals can be infected more than once. The simplest such model is the SIS model, in which 
there are just two states, susceptible and infected, and infected individuals move back into the 
susceptible state upon recovery. The differential equations for this model are

 

(17.17a) 
  

 

(17.17b) 
  

with

 

(17.18) 
  

Putting s = 1 – x in Eq. (17.17b) gives

 

 

 

 

 

 

 

 



 

(17.19) 
  

which has the solution

 

(17.20) 
  

where the integration constant C is fixed by the initial value of x to be

 

(17.21) 
  

In the case of a large population and a small number of initial carriers of the disease we have x0 → 
0 and C = βx0/(β - γ), which gives us the simpler solution

 

(17.22) 
  

If β > γ this produces a logistic growth curve similar to that of the basic SI model—see Fig. 
17.3—but differing in one important respect: we never have the whole population infected with the 
disease. In the limit of long time the system finds a stable state where the rates at which 
individuals are infected and recover from infection are exactly equal and a steady fraction of the 
population—but not all of them—is always infected with the disease. (Which particular 
individuals are infected changes over time, however, as some recover and others are infected.) The 
fraction of infected individuals can be found from Eq. (17.22), or more directly from Eq. (17.19) 
by setting dx/dt = 0 to give x = (β - γ)/β. In the epidemiology jargon the steady state is called an 
endemic disease state. 

Note that the fraction infected in the endemic state goes to zero as β approaches γ, and if β < γ 
then Eq. (17.22) predicts that the disease will die out exponentially. Thus, as in the SIR model, the 
point β = γ marks an epidemic transition between a state in which the disease spreads and one in 

 

 

 

 

 

 



which it doesn’t. As before, we can calculate a basic reproduction number R0, which again takes 
the value R0 = β/γ, giving us an alternative derivation of the position of the transition as the point at 
which R0 = 1. 



17.5 THE SIRS MODEL  

We will look at one more epidemic model before we turn to the properties of these models on 
networks. This is the SIRS model, another model incorporating reinfection. In this model 
individuals recover from infection and gain immunity as in the SIR model, but that immunity is 
only temporary, and after a certain period of time individuals lose it and become susceptible again. 
We introduce a new parameter δ to represent the average rate at which individuals lose immunity. 
Then the equations for this model are

 

(17.23a) 
  

 

(17.23b) 
  

 

(17.23c) 
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Figure 17.3: Fraction of infected individuals in the SIS model. The fraction of infected 
individuals in the SIS model grows with time following a logistic curve, as in the SI model. Unlike 
the SI model, however, the fraction infected never reaches unity, tending instead to an intermediate 
value at which the rates of infection and recovery are balanced. (Compare this figure with Fig. 17.1 
for the SI model.) 
  

 

Flow chart for the SIRS model 
  

The SIRS model cannot be solved analytically, although it can be treated using linear stability 
analysis and other tricks from the non-linear dynamics toolbox. A more straightforward approach 
is numerical integration of the differential equations, which reveals that the SIRS model has a rich 
palette of behaviors depending on the values of the three parameters, including behaviors where 
the disease persists in an endemic state, where it dies out, and where it oscillates between 
outbreaks and periods of remission. We will not delve into the behavior of the SIRS model further 
in this chapter; the interested reader can find more details in Ref. [156]. 
  
  

Many other epidemic models have also been proposed to model the spread of particular types of 
diseases. Extra states can be introduced such as an “exposed” state that represents people who have 
caught a disease but whose infection has not yet developed to the point where they can pass it on 
to others; or an initial immune state coming before the susceptible state, often used to represent the 
maternally derived immunity that newborn babies possess. There are also models that allow for 
new individuals to enter the population, by being born or immigrating, and models that distinguish 
between people who recover fully from disease and those who recover but remain carriers who can 
pass the disease to others. Those interested in pursuing the subject further are encouraged to take a 

 

 

 

 



look at the references given at the beginning of the chapter. For our purposes, however, the 
models we have seen so far will be enough. Let’s look at how these models behave when we 
include network structure in our calculations.



17.6 EPIDEMIC MODELS ON NETWORKS  

As discussed in Section 17.2, the standard approach to epidemic modeling described in the first 
part of this chapter assumes “full mixing” of the population, meaning that each individual can 
potentially have contact with any other, those contacts being realized, at a level sufficient to 
transmit the disease, with probability β per unit time. 

In the real world, however, it is not a good assumption to say that any two people could 
potentially have contact with one another. The chance of a meeting between two people chosen at 
random from the population of the entire world is probably small enough to be negligible. Most 
people have a set of regular acquaintances, neighbors, coworkers, and so forth whom they meet 
with some regularity and most other members of the world population can safely be ignored. The 
set of a person’s potential contacts can be represented as a network and the structure of that 
network can have a strong effect on the way a disease spreads through the population. 

Network models of disease typically work in the same way as the fully mixed models we have 
already seen but make use of this network of potential contacts instead of assuming that contact is 
possible with the entire population. Let us define the transmission rate or infection rate for our 
network disease process to be the probability per unit time that infection will be transmitted 
between two individuals, one susceptible and one infected, who are connected by an edge in the 
appropriate network. Alternatively it is the rate at which contact sufficient to spread the disease 
occurs between any two individuals connected by an edge. The transmission rate is commonly 
denoted β by analogy with the quantity appearing in the fully mixed models, and we will adopt that 
notation here, although you should note that the two parameters are not exactly equivalent since β 
in the fully mixed case is the rate of contacts between an infected individual and all others in the 
population, whereas in the network case it is the rate of contacts with just one other. 

The transmission rate is a property of the disease. Some diseases are transmitted more easily 
than others and so have higher transmission rates. But transmission rate is also a property of the 
social and behavioral parameters of the population. In some countries, for example, it is common 
etiquette for people with minor respiratory infections such as colds to wear surgical face masks to 
prevent the spread of disease. Such conventions are absent in other countries, and the difference in 
conventions could produce a difference in transmission rate.

 



17.7 LATE-TIME PROPERTIES OF EPIDEMICS ON NETWORKS  

Given a value for the transmission rate one can define models for the spread of disease over a 
network. Each of the models introduced in the first part of the chapter can be generalized to the 
network case. Consider the SI model, for instance. In the network version of this model we have n 
individuals represented by the vertices of our network, with most of them in the susceptible state at 
time t = 0 and just a small fraction x0, or maybe even just a single vertex, in the infected state. With 
probability β per unit time, infected nodes spread the disease to their susceptible neighbors and 
over time the disease spreads across the network. 

It is difficult to solve a model such as this for a general network, and in many cases the best we 
can do is to simulate it on a computer. There is, however, one respect in which the model is 
straightforward, and that is its late-time properties. It is clear that as t → ∞ in this model every 
individual who can be infected by the disease is infected: since infected individuals remain 
infectious forever, their susceptible neighbors will always, in the end, also become infected, no 
matter how small the transmission rate, so long as it is not zero. The only condition for being 
infected therefore is that a vertex must be connected to at least one infected individual by at least 
one path through the network, so that the disease can reach them. 

 

An outbreak starting with a single infected individual (circled) will eventually affect all those in 
the same component of the network, but leave other components untouched. 
  

Thus in the limit of long times the disease will spread from every initial carrier to infect all 
reachable vertices, meaning all vertices in the component to which the carrier belongs. In the 
simplest case, where the disease starts out with a single infected carrier, just one component will 
be infected. 

As we have seen, however, most networks have a one large component that contains a 
significant fraction of all vertices in the network, plus, typically, a selection of smaller 
components. If we have this kind of structure then an interesting behavior emerges. If we start with 
a single infected individual, and if that individual turns out to belong to the large component, then 
the disease will infect the large component and we will have a large outbreak. If the individual 
belongs to one of the small components, however, the disease will only infect the few members of 

 

 

 



that small component and then die out. If the initial carrier of the disease is chosen uniformly at 
random from the network, the probability that it will fall in the large component and we will have 
a large outbreak is simply equal to S, the fraction of the network occupied by the large component, 
and the size of the outbreak as a fraction of the network will also be S. Conversely, with 
probability 1 - S the initial carrier will fall in one of the small components and the outbreak will be 
small. In the latter case the size of the outbreak will be given by the size of the appropriate small 
component. If we can calculate the distribution of sizes of the small components, either 
analytically or numerically, for the network of interest, then we also know the distribution of 
possible sizes of these small outbreaks, although unless we know exactly which component the 
disease will start in we cannot predict its size exactly. 

This constitutes a new type of behavior not seen in fully mixed models. In fully mixed models 
the possible behaviors are also either a run-away epidemic that affects a large fraction of the 
population, or an outbreak that affects only a few then dies out. But the choice between these 
outcomes was uniquely determined by the choice of model and the model parameters. For a given 
model and parameter values the disease always either did one thing or the other. In our network 
model, however, the behavior depends on the network structure and on the position in the network 
of the first infected individual. Thus there is a new stochastic element in the process: with identical 
model parameters and an identical network the disease sometimes takes off and sometimes dies 
out. 



17.8 LATE-TIME PROPERTIES OF THE SIR MODEL  

The situation becomes more interesting still when we look at the SIR model. In the SIR model 
individuals remain infectious for only a finite amount of time and then they recover, so it is in 
general no longer true (as in the SI model) that the susceptible neighbor of an infected individual 
will always get infected in the end. If they are lucky, such neighbors may never catch the disease. 
The probability of this happening can be calculated in a manner similar to the calculation of Eq. 
(17.7), and is equal to e-βτ, where β is again the transmission rate and τ is the amount of time for 
which the infected individual remains infected. Thus the probability that the disease is transmitted 
is

 

(17.25) 
  

For simplicity, let us suppose that every infected individual remains infectious for the same 
length of time. This differs from the fully mixed version of the model, where τ was distributed 
according to an exponential distribution (see Eq. (17.8)), but in many cases is actually more 
realistic. As mentioned in Section 17.3, observed values of τ for many diseases are narrowly 
concentrated about a mean value, and their distribution is far from being exponential. 

With this assumption, the probability of transmission φ is a constant across the whole network. 
Every susceptible individual has equal probability φ of catching the disease from their infected 
neighbor. (Of course, if they have more than one infected neighbor the total probability is higher.) 

Now here is a nice trick, developed originally by Mollison [223] and Grassberger [144]. Let us 
take our network and “color in” or “occupy” each edge with probability φ, or not with probability 
1 - φ. This is just the ordinary bond percolation process introduced in Section 16.1, where a 
fraction φ of edges are occupied uniformly at random. The occupied edges represent those along 
which disease will be transmitted if it reaches either of the vertices at the ends of the edge. That is, 
the occupied edges represent contacts sufficient to spread the disease, but not necessarily actual 
disease transmission: if the disease doesn’t reach either end of an occupied edge then disease will 
not be transmitted along that edge, so edge occupation only represents the potential for 
transmission if the disease reaches an edge. 

With this in mind consider now the spread of a disease that starts at a randomly chosen vertex. 
We can immediately see that the set of vertices to which the disease will ultimately spread is 
precisely the set connected to the initial vertex by any path of occupied edges—the disease simply 
passes from one vertex to another by traversing occupied edges until all reachable vertices have 
been infected. The end result is that the disease infects all members of the bond percolation cluster 
to which the initial carrier belongs. 

 

 

 



 

Figure 17.4: Bond percolation. In bond percolation, a fraction φ of the edges in a network are 
filled in or “occupied” at random to create connected clusters of vertices. (a) For small occupation 
probability φ the clusters are small. (b) Above the percolation threshold a large cluster forms, 
though there are usually still some small clusters as well. (c) When φ = 1 all edges are occupied 
but the large cluster may still not fill the whole network: at φ = 1 the largest cluster corresponds to 
the largest component of the network, which is often just a subset of the whole network. 
  

It is important to appreciate that, as with our treatment of the network SI model in the previous 
section, this process does not give us any information about the temporal evolution of the disease 
outbreak. Individual infection events are stochastic and a calculation of the curve of infections as a 
function of time requires a more complicated analysis that takes their randomness into account. 
However, if we want to know only about long-time behavior, about the overall total number of 
individuals infected by the disease, then all we need do is count the vertices in the appropriate 
percolation cluster. 

Bond percolation is in many ways similar to the site percolation processes we studied in Chapter 
16. Consider Fig. 17.4. For low edge occupation probability φ there are just a few occupied bonds 
which group into small disconnected clusters. But as φ increases there comes a point, the 
percolation transition, where the disconnected clusters grow large enough to join together and form 
a giant cluster, although usually there exist other small clusters as well that are not joined to the 
giant cluster. As φ increases still further, the giant cluster grows, reaching its maximum size when 
φ = 1. Notice, however, that this maximum size is not generally equal to the size of the whole 
network. Even when every edge in the network is occupied, the size of the largest cluster is still 
limited to the size of the largest component on the network, which is usually smaller than the 
whole network. 

Translating these ideas into the language of epidemiology, we see that for small values of φ the 
cluster to which the initial carrier of a disease belongs must be small, since all clusters are small. 
Thus in this regime we will have only a small disease outbreak and most members of the 
population will be uninfected. Once we reach the percolation transition, however, and a giant 
cluster forms, then a large outbreak of the disease—an epidemic—becomes possible, although not 
guaranteed. If the giant cluster of the percolation process occupies a fraction S of the entire 
network, then our randomly chosen initial vertex will fall within it with probability S, and if it does 
then the disease will spread to infect the whole giant cluster, creating an epidemic reaching a 
fraction of the population also equal to S. With probability 1 - S, on the other hand, the initial 
vertex will fall in one of the small clusters and we will have only a small outbreak of the disease. 
As φ increases, S also increases and hence both the probability and the size of an epidemic increase 
with φ. 

Thus the percolation transition for bond percolation on our network corresponds precisely to the 
epidemic threshold for a disease on the same network, where the edge occupation probability φ is 
given in terms of the transmission rate β and recovery time τ for the disease by Eq. (17.25), and the 
sizes of outbreaks are given by the sizes of the bond percolation clusters. This mapping between 
percolation and epidemics is a powerful one that allows us to make a whole range of calculations 

 

 



of the effects of network structure on the spread of disease.
It is important to note that even when φ is above the epidemic threshold we are not guaranteed 

that there will be an epidemic. This is similar to the situation we saw in the simpler SI model, but 
different from the situation in the fully mixed SIR model of Section 17.3, where an epidemic 
always takes place if we are above the epidemic threshold. In many ways the behavior of our 
network model is more realistic than that of the fully mixed model. For many diseases it is true 
that outbreaks do not always result in epidemics. Sometimes a disease dies out because, just by 
chance, its earliest victims happen not to pass the disease on to others. Our theory tells us that the 
probability of this happening is 1 - S, where S is the size of the giant cluster, which is also the size 
of the epidemic if it does happen. The value of 1 - S is usually small when we are well above the 
epidemic threshold, but can be quite large if we are only a little above threshold, meaning that the 
probability of the disease dying out can be quite large in this regime. 

It is also important to bear in mind that percolation is a stochastic process. We occupy edges at 
random on our network to represent the random nature of the contacts that result in transmission of 
the disease. Two outbreaks happening under the same conditions on the same networks would not 
necessarily travel along the same edges and the shapes of the percolation clusters would not 
necessarily be the same. Thus a vertex that happens to belong to the giant cluster on one occasion 
might not belong to it on another and our theory cannot make exact predictions about disease 
outcomes. The best we can do is calculate probabilities or average behaviors. We could for 
instance calculate the expected number of people who would be affected by an outbreak, but we 
cannot predict the exact number for any given outbreak.



17.8.1 SIR MODEL AND THE CONFIGURATION MODEL  

In Section 16.2.1 we showed that it is possible to calculate exactly the average behavior of a site 
percolation process on configuration model networks. With only slight modification the same 
approach can also be used for bond percolation and hence we can make predictions about the size 
distribution of epidemics and the position of the epidemic threshold in such networks. 

Consider an SIR epidemic process of the kind discussed in the previous section, taking place on 
a configuration model network with degree distribution pk. Let u be the average probability that a 
vertex is not connected to the giant cluster via a specific one of its edges. There are two ways this 
can happen: either the edge in question can be unoccupied (with probability 1 - φ), or it is occupied 
(probability φ) but the vertex at the other end of the edge is itself not a member of the giant cluster. 
The latter happens only if that vertex is not connected to the giant cluster via any of its other edges, 
which happens with probability uk if there are k such edges. Thus the total probability is 1 - φ + 
φuk. 

The value of k is distributed according to the excess degree distribution

 

(17.26) 
  

(see Eq. (16.3)). Averaging over k we then arrive at a self-consistent expression for u thus:

 

(17.27) 
  

where g1 is the probability generating function for the excess degree distribution, defined in Eq. 
(13.49). Equation (17.27) is the same as the corresponding equation for the site percolation case, 
Eq. (16.4), and has the same solutions. 

The probability that a vertex of total degree k does not belong to the giant cluster is now simply 
uk, and the average such probability over the whole network, which is equal to 1 - S, is calculated 
by averaging uk over the degree distribution pk giving

 

(17.28) 
  

 

 

 

 



This equation differs from the corresponding equation in the site percolation case, Eq. (16.2), by 
an overall factor of φ, but is otherwise the same. Thus the shape of the curve for S as a function of 
φ will be different from the site percolation case, but the position φc of the percolation transition, 
which is dictated by the solution of Eq. (17.27), will be the same. The solution of Eq. (17.27) was 
shown graphically in Fig. 16.2 and the position of the transition is given by Eq. (16.7) to be

 

(17.29) 
  

This equation thus also gives us the position of the epidemic threshold in terms of the probability 
φ. If we prefer our solution in terms of the more fundamental parameters β and τ we can rearrange 
Eq. (17.25) to give

 

(17.30) 
  

If βτ exceeds this value then there is the possibility of an epidemic, though not the certainty, since 
the initial carrier or carriers of the disease could by chance fall outside the giant cluster. If βτ is 
smaller than this value then an epidemic is impossible, no matter where the initial carrier falls. The 
probability of the epidemic, if one is possible, is given by S, Eq. (17.28), as is the size of the 
epidemic if and when one occurs. 

Since the epidemic behavior of the model is controlled by the combination of parameters βτ, the 
epidemic transition can be driven either by an increase in the infectiousness time τ, which is a 
property of the particular disease under study, or by an increase in the transmission rate β, which is 
a property both of the disease and of the behavior of members of the population. At the same time, 
the precise position of the transition in terms of these variables, as well as the probability and size 
of any epidemic that occurs, depend on the structure of the network via the moments �k� and 

�k2� of the degree distribution. This contrasts with the fully mixed model of Section 17.3, which 
incorporated no network effects. 

Because of the close similarity between the site and bond percolation problems, we can easily 
translate a number of the results of Section 16.2.1 into the language of epidemics. For instance, a 
random graph with a Poisson degree distribution with mean c, which has g0(z) = g1(z) = ec(z-1), has 
an epidemic threshold falls at φc = 1/c (Eq. (16.11)), or

 

 

 

 

 

 

 



(17.31) 
  

and the size of the epidemic, when there is one, is given by the solution to the equations

 

(17.32) 
  

The first of these equations can be rearranged to read 1 - u = φ(1 - ec(u-1)) = φS and substituting into 
the second then gives

 

(17.33) 
  

which has no simple closed-form solution,258 but can easily be solved numerically by making an 
initial guess at the solution (  seems to work well) and then iterating the equation to 
convergence. 

Note that this equation is similar to Eq. (17.15) for the fully mixed model, but with different 
parameters. The similarity is not coincidental. In the fully mixed model an infected individual 
infects others chosen uniformly at random from the population, and in the Poisson random graph 
the network neighbors of any individual are also chosen uniformly at random. It is possible to 
show that there is a direct correspondence between the traditional fully mixed model and the 
network model on a random graph [30].259 

Another important case is the scale-free network with its power-law degree distribution. As we 
saw in Section 16.2.1, if the exponent α of the power law in such a network lies in the usual range 
2 < α < 3 then φc = 0, because �k2� diverges while �k� remains constant and hence Eq. (17.29) 

goes to zero. Thus in the power-law case there is always an epidemic, no matter how small the 
probability of transmission of the disease, at least in the limit of infinite network size. (For finite 
networks, �k2� is not infinite, but very large, and φc is correspondingly very small, but not 

precisely zero.) 
This statement is, however, slightly misleading since, as we saw in the previous chapter, the size 

of the giant cluster in a scale-free network becomes very small as we approach φ = 0; it generally 
decays faster than linearly with φ. Thus although technically there may be an epidemic for all 
positive values of φ, it can be very small in practice, affecting only the tiniest fraction of the 
population. (On the other hand, the difference between non-epidemic behavior and epidemic 
behavior, even with a tiny value of S, will become very important when we look at models such as 
the SIS model that incorporate reinfection. In such models the epidemic threshold separates the 
regime in which the disease persists and the regime in which it becomes extinct, an important 
distinction even if the number of individuals infected is small.)

 

 

 



17.9 TIME-DEPENDENT PROPERTIES OF EPIDEMICS ON NETWORKS  

The techniques of the previous section can tell us about the late-time properties of epidemics on 
networks, such as how many people will eventually be affected in an outbreak of a disease. If we 
want to know about the detailed progression of an outbreak as a function of time, however, then 
we need another approach that takes dynamics into account. Moreover, the techniques we have 
used so far cannot tell us about even the late-time behavior of models with reinfection, such as the 
SIS and SIRS models of Sections 17.4 and 17.5. For these models the equivalence between 
epidemics and percolation that we used above does not hold, and to understand their behavior, 
including at long times, we need to address the dynamics of the epidemic. 

A number of approaches have been proposed for tackling the dynamics of epidemics on 
networks, some exact and some approximate. Of course, given a specific network, one can always 
perform computer simulations of epidemics and get numerical answers for typical disease 
outbreaks. Analytic approaches, however, offer more insight and some results are known, as 
discussed below, but they are mostly confined to specific classes of model network, such as 
random graphs and their generalizations. In the following sections we will look at some of the 
most straightforward and general approaches to epidemic dynamics on networks, starting with the 
simple SI model and progressing to the more complex (and interesting) models in later sections.

 



17.10 TIME-DEPENDENT PROPERTIES OF THE SI MODEL  

The analytic treatment of the time-dependent properties of epidemic models revolves around the 
time evolution of the probabilities for vertices to be in specific disease states. One can imagine 
having repeated outbreaks of the same disease on the same network, starting from the same initial 
conditions, and calculating for example the average probabilities si(t) and xi(t) that vertex i is 
susceptible or infective at time t. Given the adjacency matrix of a network one can write down 
equations for the evolution of such quantities in a straightforward manner. Consider for instance 
the SI model. 

An SI outbreak starting with a single randomly chosen vertex somewhere eventually spreads, as 
we have seen, to all members of the component containing that vertex. Our main interest is in 
epidemics occurring in the giant component of the network, since all other outbreaks will only 
affect a small component and then die out, so let us focus on the giant component case. 

Consider a vertex i. If the vertex is not a member of the giant component then by hypothesis si = 
0 at all times, since we are assuming the epidemic to take place in the giant component. For i in the 
giant component we can write down a differential equation for si by considering the probability 
that i becomes infected between times t and t + dt. To become infected an individual must catch 
the disease from a neighboring individual j, meaning j must already be infected, which happens 
with probability xj = 1 - sj, and must transmit the disease during the given time interval, which 
happens with probability β dt. In addition we also require that i be susceptible in the first place, 
which happens with probability si. Multiplying these probabilities and then summing over all 
neighbors of i, the total probability of i becoming infected is βsi ∑jAijxj, where Aij is an element of 
the adjacency matrix. Thus si obeys the coupled set of n non-linear differential equations:

 

(17.34) 
  

Note the leading minus sign on the right-hand side—the probability of being susceptible goes 
down when vertices become infected. 

Similarly we can write an equation for xi thus:

 

(17.35) 
  

 

 

 

 



although the two equations are really the same equation, related to one another by si + xi = 1.
We will use the same initial conditions as we did in the fully mixed case, assuming that the 

disease starts with either a single infected vertex or a small number c of vertices, chosen uniformly 
at random, so that xi = c/n and si = 1 - c/n for all i. In the limit of large system size n, these become 
xi = 0, si = 1, and we will use this large-n limit to simplify some of the expression derived in this 
and the following sections. 

Equation (17.34) is not solvable in closed form for general Aij but we can calculate some 
features of its behavior by considering suitable limits. Consider for example the behavior of the 
system at early times. For large n, and assuming initial conditions as above, xi will be small in this 
regime. Working with Eq. (17.35) and ignoring terms of quadratic order in small quantities, we 
have

 

(17.36) 
  

or in matrix form

 

(17.37) 
  

where x is the vector with elements xi.
 

Now let us write x as a linear combination of the eigenvectors of the adjacency matrix:

 

(17.38) 
  

where vr is the eigenvector with eigenvalue κr . Then

 

(17.39) 
  

 

 

 

 

 



Then, comparing terms in vr, we get

 

(17.40) 
  

which has the solution

 

(17.41) 
  

Substituting this expression back into Eq. (17.38), we then have

 

(17.42) 
  

The fastest growing term in this expression is the term corresponding to the largest eigenvalue 
κ1. Assuming this term dominates over the others we will get

 

(17.43) 
  

So we expect the number of infected individuals to grow exponentially, just as it does in the fully 
mixed version of the SI model, but now with an exponential constant that depends not just on β but 
also on the leading eigenvalue of the adjacency matrix. 

Moreover, the probability of infection in this early period varies from vertex to vertex roughly 
as the corresponding element of the leading eigenvector v1. The elements of the leading 
eigenvector of the adjacency matrix are the same quantities that in other circumstances we called 
the eigenvector centrality—see Section 7.2. Thus eigenvector centrality is a crude measure of the 
probability of early infection of a vertex in an SI epidemic. 

At long times in the SI model the probability of infection of a vertex in the giant component 
tends to one (again assuming the epidemic takes place in the giant component). Thus overall we 
expect the SI epidemic to have a similar form to that seen in the fully mixed version of the model, 

 

 

 

 

 

 

 



producing curves qualitatively like that in Fig. 17.1 but with vertices of higher eigenvector 
centrality becoming infected faster than those of lower. 

Reasonable though this approach appears to be, it is not precisely correct, as we can see by 
integrating Eq. (17.35) numerically. Figure 17.5a shows the results of such a numerical integration 
(the curve labeled “first-order”) on a network generated using the configuration model (Section 
13.2), compared against an average over a large number of simulated epidemics with the same β 
spreading on the same network (the circular dots). As the figure shows, the agreement between the 
two is good, but definitely not perfect. 

The reason for this disagreement is an interesting one. Equation (17.34) may appear to be a 
straightforward generalization of the equivalent equation for the fully mixed SI model, Eq. (17.4), 
but there are some subtleties involved. The right-hand side of the equation contains two average 
quantities, si and xj, and in multiplying these quantities we are implicitly assuming that the product 
of the averages is equal to the average of their product. In the fully mixed model this is true (for 
large n) because of the mixing itself, but in the present case it is, in general, not, because the 
probabilities are not independent. The quantity si measures a vertex’s probability of being 
susceptible and xj measures the probability of its neighbor being infected. It should come as no 
surprise that in general these quantities will be correlated between neighboring vertices. 
Correlations of this type can be incorporated into our calculations, at least approximately, by using 
a so-called pair approximation or moment closure method, as described in the following section.



17.10.1 PAIR APPROXIMATIONS  

Correlations between the disease states of different vertices can be handled by augmenting our 
theory to take account of the joint probabilities for pairs of vertices to have given pairs of states. 
To handle such joint probabilities we will need to make our notation a little more sophisticated. 
Let us denote by �si� the average probability that vertex i is susceptible. This is the same quantity 
that we previously called si, but, as we will see, it will be useful to indicate the average explicitly 
with the angle brackets �...�. If you like, you can think of si(t) as now being a variable with value 

one if i is susceptible at time t and zero otherwise and �si� as being the average of this quantity 

over many different instances of disease outbreaks on the same network. Similarly �xi� will be 
the average probability that i is infected. And �sixj� indicates the average probability that i is 

susceptible and j is infected at the same time. 

 

Figure 17.5: Comparison of theory and simulation for the SI model on two different 
networks. (a) The fraction of infected individuals as a function of time on the giant component of 
a network with low transitivity (i.e., low clustering coefficient), calculated by numerical solution 
of the differential equations for the first- and second-order moment closure methods, and by direct 
simulation. (b) The same comparison for a network with high transitivity. The networks have one 
million vertices each and the transmission rate is β = 1 in all cases. Simulation results were 
averaged over 500 runs. 
  

 

 



In this notation it is now straightforward to write down a truly exact version of Eq. (17.34), 
taking correlations into account. It is

 

(17.44) 
  

Equation (17.34) is an approximation to this true equation in which we assume that �SiXj�  

�Si� �Xj�. 

The trouble with Eq. (17.44) is that we cannot solve it directly because it contains the unknown 
quantity �sixj� on the right-hand side. To find this quantity, we need another equation for �sixj�, 

which we can deduce as follows. To reach the state in which i is susceptible and j is infected in an 
SI model it must be the case that both i and j are susceptible to begin with and then j becomes 
infected. Even though i and j are neighbors j cannot be infected by i, since i is not infected, so j 
must be infected by some other neighboring vertex k, which itself must therefore be infected. In 
our new notation, the probability for the configuration in which i and j are susceptible and k is 
infected is �sisjxk�. If we have this configuration, then j will become infected via k with rate β. 

Summing over all neighbors k except for i, the total rate at which j becomes infected is then 

. 
Unfortunately, this is not the end of the story because �sixj� can also decrease —it decreases if 

i becomes infected. This can happen in two different ways. Either i can be infected by its infected 
neighbor j, which happens with rate β�sixj�, or it can be infected by another neighbor l ≠ j that 

happens to be infected, which happens with rate β�xlsixj�. Summing the latter expression over all 

neighbors l other than j gives a total rate of . 
Putting all of these terms together, with minus signs for those that decrease the probability, we 

get a final equation for �sixj� thus:

 

(17.45) 
  

In theory this equation will now allow us to calculate �sixj�. In practice, however, it involves yet 

more terms that we don’t know on the right-hand side, the three-variable averages �sisjxk� and 

�xlsixj�. We can write down further equations for these averages but, as you can no doubt guess, 
those equations involve still higher-order (four-variable) terms, and so forth. The succession of 
equations will never end—in the jargon of mathematics, it doesn’t close—and so looks as though it 
will be of no use to us.260 

In fact, however, we can still make progress by approximating our three-variable averages with 

 

 

 

 

 



appropriate combinations of one- and two-variable averages, which allows us to close the 
equations and get a set we can actually solve. This process is called moment closure and the 
method described in this section is called a moment closure method. The moment closure method 
at the level of two-variable averages that we discuss here is also called a pair approximation 
method. 

In fact, our first attempt at writing equations for the SI model on a network, Eq. (17.34), was 
itself a simple moment-closure method. We approximated the true equation, Eq. (17.44), by 
writing �sixj�  �si� �xj�, closing the equations at the level of one-variable averages. By going 

a step further and closing at the pair approximation level of two-variable averages, we can make 
our equations more precise because we will be taking two-variable correlations into account. In 
fact, as we will see, this “second-order” moment closure approach is exact for some networks, 
although only approximate for others. Even in the latter case, however, the method gives a 
remarkably good approximation. The approximation can be further improved by going to third 
order, but the equations rapidly become complicated and researchers have rarely used moment 
closure methods beyond the second-order, pair approximation level. 

The pair approximation is relatively straightforward however. Starting with Eq. (17.45) our goal 
is to approximate the three-variable averages on the right-hand side with lower-order ones. We do 
this by making use of Bayes theorem for probabilities thus:

 

(17.46) 
  

where P (i ∈ S) means the probability that vertex i is in the set S of susceptible vertices. We 
know that i and j are neighbors in the network and that j and k are neighbors, and our 
approximation involves assuming that the disease state of k doesn’t depend on the disease state of 
i. This is a good approximation—indeed not an approximation at all—if the only path in the 
network from i to k is through j. In that case, given that we know j to be susceptible, there is no 
way that the disease state of i can affect that of k because there is no other path by which the 
disease could spread from i to k. On the other hand, if there is another path from i to k that avoids 
vertex j then the disease can spread along that path, which will introduce correlations between i 
and k and in that case our approximation is just that—an approximation—although as we will see 
it may be a very good one. 

Assuming the state of k to be independent of the state of i, we have

 

(17.47) 
  

where we have used Bayes theorem again in the second equality. Putting Eqs. (17.46) and 
(17.47) together, we then have

 

 

 

 



(17.48) 
  

We can write a similar expression for the other three-variable average appearing in Eq. (17.45):

 

(17.49) 
  

and, substituting both into Eq. (17.45), we then get the pair approximation equation

 

(17.50) 
  

This equation now contains only averages over two variables at a time. It does also contain a new 
average �sisj� that we have not encountered before, but this can easily be rewritten as �sisj � = 

�si(1 - xj)� = �si � - �sixj� and so our equation becomes

 

(17.51) 
  

This equation is more complex than Eq. (17.34) but it can be simplified by rewriting it as 
follows. We define pij to be the conditional probability that j is infected given that i is not:

 

(17.52) 
  

Then the time evolution of pij is given by

 

 

 

 

 

 

 

 



 

(17.53) 
  

where we have used Eqs. (17.44) and (17.51) in the third line. All but one of the terms in the two 
sums over l now cancel out, leaving us with the relatively simple equation

 

(17.54) 
  

where we have used the fact that Aij = 1 (since i and j are neighbors). We can also rewrite Eq. 
(17.44) in terms of pij thus:

 

(17.55) 
  

which has the solution

 

(17.56) 
  

Between them, Eqs. (17.54) and (17.56) now give us our solution for the evolution of the 

 

 

 

 

 



epidemic. Note that there are two equations of the form (17.54) for each edge in the network, since 
pij is not symmetric in i and j. 

Figure 17.5a shows results from a numerical solution of these equations (the curve marked 
“second-order”), again on a configuration model network and, as the figure shows, the 
calculation now agrees very well with the simulation results represented by the dots in the figure. 
By accounting for correlations between adjacent vertices we have created a much more accurate 
theory. 

This near-perfect agreement, however, is something of a special case. Configuration model 
networks are locally tree-like, meaning they have no short loops, and, as discussed above, our 
second-order moment closure approximation is exact when non-adjacent vertices i and k have only 
a single path between them through some intermediate j. When there are no short loops in our 
network this is true to an excellent approximation—the only other way to get from i to k in such a 
network is by going around a long loop and the length of such loops dilutes any resulting 
correlations between the states of i and k, often to the point where they can be ignored. The 
network used in the simulations for Fig. 17.5a was sufficiently large (a million vertices) and the 
resulting loops sufficiently long that the pair approximation equations are an excellent 
approximation, which is why the agreement is so good in the figure. 

Unfortunately, as we saw in Section 7.9, most real social networks have a lot of short loops, 
which raises the question of how well our method does on such networks. Figure 17.5b shows a 
comparison between the predictions of our equations and direct simulations for a network with 
many short loops,261 for both the simple first-order moment closure, Eq. (17.34), and for our more 
sophisticated second-order approach. As the plot shows, the first-order calculation agrees quite 
poorly with the simulations, its predictions being inaccurate enough to be of little use in this case. 
The second-order equations, however, still do remarkably well. Their predictions are not in perfect 
agreement with the simulations, but they are close. 

Thus the pair approximation method offers a significant improvement on networks both with 
and without short loops, providing a usefully accurate approximation in the former case and being 
essentially exact in the latter. 



17.10.2 DEGREE-BASED APPROXIMATION FOR THE SI MODEL  

The analysis of the previous section gives exact equations for the dynamics of the SI model on a 
network with few short loops and an excellent approximation in other cases. Unfortunately those 
equations cannot in general be solved analytically, even for simple networks such as those of the 
configuration model. The solutions presented in Fig. 17.5 were derived by integrating the 
equations numerically. 

In this section we describe an alternative approximate approach that gives good, though not 
perfect, results in practice and produces equations that can be solved analytically. Moreover, the 
method can, as we will see, be generalized to other epidemic models such as the SIR model. The 
method was pioneered by Pastor-Satorras and coworkers [32, 33, 263, 264], though it has 
precursors in earlier work by May and others [199,212]. It takes its simplest form when applied to 
networks drawn from the configuration model and so it is on this model that we focus here, 
although in principle the method can be extended to other networks. 

Consider a disease propagating on a configuration model network, i.e., a random graph with a 
given degree distribution pk, as discussed in Chapter 13. As before we focus on outbreaks taking 
place in the giant component of the network, this being the case of most interest—outbreaks in 
small components by definition die out quickly and do not give rise to epidemics. 

An important point to notice is that the degree distribution of vertices in the giant component of 
a configuration model network is not the same as the degree distribution of vertices in the network 
as a whole. As shown in Section 13.8, the probability of a vertex of degree k belonging to the giant 
component goes up with vertex degree. This means that the degree distribution of vertices in the 
giant component is skewed towards higher degrees. (For a start, notice that there are trivially no 
vertices of degree zero in the giant component, since by definition such vertices are not attached to 
any others.) We will, as before, denote the degree distribution and the excess degree distribution in 
our calculations by pk and qk, but bear in mind that these are for vertices in the giant component, 
which means they are not the same as the distributions for the network as a whole. 

The approximation introduced by Pastor-Satorras et al. was to assume that all vertices of the 
same degree have the same probability of infection at any given time. Certainly this is an 
approximation. The probability of infection of a vertex of degree, say, five situated in the middle 
of the dense core of a network will presumably be larger than the probability for a vertex of degree 
five that is out on the periphery. Nonetheless, if the distribution of probabilities for vertices of 
given degree is relatively narrow it may be a good approximation to set them all equal to the same 
value. And in practice, as we have said, the approximation appears to work very well. 

Returning, for the sake of simplicity, to our earlier notation style, let us define sk (t) and xk (t) to 
be the probabilities that a vertex with degree k is susceptible or infected, respectively, at time t. 
Now consider a susceptible vertex A. To become infected, A has to contract the infection from one 
of its network neighbors. The probability that a particular neighbor B is infected depends on the 
neighbor’s degree, but we must be careful. By hypothesis vertex A is not infected and so B cannot 
have caught the disease from A. If B is infected it must have caught the disease from one of its 
remaining neighbors. In effect this reduces the degree of B by one—B will have the same 
probability of being infected at the current time as the average vertex with degree one less. To put 
that another way, B’s probability of infection depends upon its excess degree, the number of edges 
it has other than the edge we followed from A to reach it. B’s probability of infection is thus xk, but 
where k indicates the excess degree, not the total degree. 

The advantage of the degree-based approach now becomes clear: the probability of B being 
infected depends, in this approach, only on B’s excess degree and not on A’s degree. By contrast, 
the conditional probability pij in our earlier formalism was a function of two indices, making the 

 



equations more complicated. To derive the equations for the degree-based approximation, 
consider the probability that vertex A becomes infected between times t and t + dt. To become 
infected it must catch the disease from one of its neighbors, meaning that neighbor must be 
infected. The probability of a neighbor being infected is xk where k is the excess degree of the 
neighbor, and the excess degree is distributed according to the distribution qk of Eq. (13.46), which 
means that the average probability that the neighbor is infected is

 

(17.57) 
  

If the neighbor is infected then the probability that the disease will be transmitted to vertex A in 
the given time interval is β dt. Then the total probability of transmission from a single neighbor 
during the time interval is βv(t) dt and the probability of transmission from any neighbor is βkv(t) 
dt, where k is now the number of A’s neighbors. In addition we also require that A itself be 
susceptible, which happens with probability sk (t), so our final probability that A becomes infected 
is βkvsk dt. Thus the rate of change of sk is given by

 

(17.58) 
  

This equation can be solved exactly. We can formally integrate it thus:

 

(17.59) 
  

where we have fixed the integration constant so that all vertices have probability s0 of being 
susceptible at t = 0. Although we don’t yet know the form of the function v(t) this expression tells 
us that sk depends on k as a simple power of some universal k-independent function u(t):

 

(17.60) 
  

 

 

 

 

 

 



where in this case

 

(17.61) 
  

Writing xk = 1 − sk and substituting into Eq. (17.57) we then get

 

(17.62) 
  

where g1 (u) is the generating function for qk and we have made use of ∑kqk = 1. Substituting Eq. 
(17.60) into Eq. (17.58) then gives us

 

(17.63) 
  

This is a straightforward linear differential equation for u that, given the degree distribution, can be 
solved by direct integration. 

Finally, to calculate the total fraction x(t) of infected individuals in the network we average over 
k thus:

 

(17.64) 
  

Notice that the sums here start at k = 1 because there are no vertices of degree zero in the giant 
component. 

Equations (17.63) and (17.64) between them give us an approximate solution for the SI model 
on the giant component of a configuration model network with any degree distribution. 

Although the solution is elegant in principle, in most practical cases we cannot integrate Eq. 
(17.63) in closed form. Even without completing the integral, however, we can already see the 

 

 

 

 

 

 

 



basic form of the solution. First of all, at time t = 0 we have u = 1 by Eq. (17.61). Since v(t) is, 
by definition, positive and non-decreasing with time, the same equation also implies that u(t) 
always decreases and tends to zero as t → ∞. This implies that at long times Eq. (17.63) becomes

 

(17.65) 
  

and hence u(t) decays exponentially as eβ(1−s0 p1/�k�)t. Assuming the infection starts with only one 
or a handful of cases, so that s0 = 1 - c/n for some constant c, we have s0 → 1 in the limit of large n 
and

 

(17.66) 
  

Note that the long-time behavior is dictated by the fraction p1 of vertices with total degree one. 
This is because these are the last vertices to be infected—individuals with only one contact are best 
protected from infection, although even they are guaranteed to become infected in the end. In 
networks where the fraction p1 is zero or very small we have u(t) ∼ e−βt and the functional form of 
the long-time behavior depends only on the infection rate and not on the network structure. 

At short times we can write u = 1 − ∈ and to leading order in ∈ Eq. (17.63) becomes

 

(17.67) 
  

where x0 = 1 − s0 is the initial value of xk . This has solution

 

(17.68) 
  

where we have made use of the initial condition ∈ = 0. Equivalently we can write

 

 

 

 

 



(17.69) 
  

Given the short- and long-time behavior and the fact that u(t) is monotonically decreasing, we 
can now guess that u(t) has a form something like Fig. 17.6. Then, since g0 is a monotonically 
increasing function of its argument, x(t) in Eq. (17.64) has a similar shape but turned upside down, 
so that it looks qualitatively similar to the curve for the fully mixed version of the model shown in 
Fig. 17.1, although quantitatively it may be different. 

 

Figure 17.6: The function u(t) in the solution of the SI model. Generically we expect u(t) to 
have the form sketched here: it is monotonically decreasing from an initial value of 1 and has an 
exponential tail at long times. 
  

The initial growth of x(t) can be calculated by putting u = 1 - ∈ in Eq. (17.64) to give g0(1 − ∈) 

 and

 

(17.70) 
  

where we have again set s0 = 1. Thus, as we would expect, the initial growth of infection is 
roughly exponential. 

The appearance of  in Eq. (17.70) is of interest. As we saw in Eq. (13.68),  is equal to 
the ratio c2/c1 of the average number of second neighbors to first neighbors of a vertex and hence is 
a measure of how fast the network branches as we move away from the vertex where the disease 
first starts. It should be not surprising therefore (though it’s still satisfying) to see that this same 
quantity—along with the transmission rate β—controls the rate at which the disease spreads in our 
SI model. 

Another interesting feature of the model is the behavior of the quantities sk (t) that measure the 
probability that a vertex of a given degree is susceptible. Since these quantities are all proportional 

 

 

 

 

 



to powers of u(t)—see Eq. (17.60)—they form a family of curves as shown in Fig. 17.7. Thus, 
as we might expect, the vertices with highest degree are the ones that become infected first, on 
average, while those with low degree hold out longer.



17.11 TIME-DEPENDENT PROPERTIES OF THE SIR MODEL  

It is relatively straightforward to extend the techniques of Section 17.10 to the more complex (and 
interesting) SIR model. Again we concentrate on outbreaks taking place in the giant component of 
the network and we define si, xi , and ri to be the probabilities that vertex i is susceptible, infected, 
or recovered respectively. The evolution of si is (approximately) governed by the same equation as 
before:

 

(17.71) 
  

while xi and ri obey

 

(17.72) 
  

 

(17.73) 
  

where, as previously, γ is the recovery rate, i.e., the probability per unit time that an infected 
individual will recover.263

 

 

 

 

 



 

Figure 17.7: Fractions of susceptible and infected vertices of various degrees in the SI model. 
The various curves show the fraction of vertices of degree k that are susceptible (gray) and infected 
(black) as a function of time for k = 1, 2, 4, 8, and 16. The highest values of k give the fastest 
changing (leftmost) curves and the lowest values the slowest changing. The curves were calculated 
by integrating Eq. (17.63) numerically with β = 1 and a Poisson degree distribution with mean 
degree four. 
  

We can choose the initial conditions in various ways, but let us here make the same assumption 
as we did for the SI model, that at t = 0 we have a small number c of infected individuals and 
everyone else is susceptible, so that si (0) = 1 − c/n, xi (0) = c/n, and ri (0) = 0. 

As with the SI model we cannot solve these equations exactly, but we can extract some useful 
results by examining their behavior at early times. In the limit t → 0, xi is small and si = 1 − c/n, 
which tends to 1 as n becomes large, so Eq. (17.72) can be approximated as

 

(17.74) 
  

where δij is the Kronecker delta. This can be written in matrix form as

 

(17.75) 
  

where M is the n × n symmetric matrix

 

 

 

 



 

(17.76) 
  

As before we can write x as a linear combination of eigenvectors, though they are now 
eigenvectors of M rather than of the simple adjacency matrix as in the case of the SI model. But 
now we notice a useful thing: since M differs from the adjacency matrix only by a multiple of the 
identity matrix, it has the same eigenvectors vr as the adjacency matrix:

 

(17.77) 
  

Only the eigenvalue has been shifted downward by γ/β. 
The equivalent of Eq. (17.42) is now

 

(17.78) 
  

Note that the exponential constant now depends on βκr − γ and so is a function not only of the 
adjacency matrix and the infection rate but also of the recovery rate, as we would expect—the 
faster people recover from infection the less chance they have to spread the disease and the slower 
it will spread. 

Again the fastest growing term is that corresponding to the most positive eigenvalue κ1 of the 
adjacency matrix and individuals having the highest eigenvector centrality get infected first. Note, 
however, that it is now possible for γ to be sufficiently large that the exponential constant in the 
leading term becomes negative, meaning that the term decays exponentially rather than grows. 
And if the leading term decays, so necessarily do all other terms, and so the total number of 
infected individuals will decay over time and the disease will die out without causing an epidemic. 

The point at which this happens is the epidemic threshold for our model and it occurs at βκ1 – γ 
= 0, or equivalently

 

 

 

 

 

 

 

 



(17.79) 
  

Thus the position of the epidemic threshold depends on the leading eigenvalue of the adjacency 
matrix. If the leading eigenvalue is small, then the probability of infection β must be large, or the 
recovery rate γ small, for the disease to spread. In other words a small value of κ1 makes it harder 
for the disease to spread and a large value easier. This makes intuitive sense, since large values of 
κ1 correspond to denser adjacency matrices and smaller values to sparser ones. 

As in the case of the SI model, Eqs. (17.71-17.73) are only approximate, because they neglect 
correlations between the states of adjacent vertices. And as before we can allow for these 
correlations by using a pair approximation, but here we take a different approach and consider 
instead the equivalent of the methods of Section 17.10.2 for the SIR model. 264 

 



17.11.1 DEGREE-BASED APPROXIMATION FOR THE SIR MODEL  

As with the SI model, let us make the approximation that all vertices with the same degree behave 
in the same way. Again we concentrate on the example of the configuration model [229] and on 
outbreaks taking place in the giant component of the network. We define sk (t), xk (t), and rk (t) to 
be the probabilities that a vertex with degree k is susceptible, infected, or recovered, respectively, 
at time t. Then we consider the state of a vertex B that is the neighbor of a susceptible vertex A. 
For such a vertex to be infected it must have contracted the disease from one of its neighbors other 
than A, since A is susceptible. That means, as before, that B’s probability of being infected is 
given by xk, but with k equal to the excess degree, which is one less than the total degree. And the 
probability that B is recovered depends only on the probability that it was previously infected, 
which is given by rk where k is the excess degree, and the probability sk of being susceptible can be 
derived from sk + xk + rk = 1. 

Armed with these observations, we can now write down an appropriate set of equations for the 
epidemic. The rate at which the probability of being susceptible decreases is given by the same 
equation as before, Eq. (17.58):

 

(17.80) 
  

where v(t) is the average probability that a neighbor is infected:

 

(17.81) 
  

and the equations for xk and rk are

 

(17.82) 
  

 

 

 

 

 



 

(17.83) 
  

We can solve these equations exactly by a combination of the methods of Sections 17.3 and 17.10. 
We define the average probability that a neighbor is recovered thus:

 

(17.84) 
  

Then, using Eqs. (17.81) and (17.83), we find
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which we use to eliminate v from Eq. (17.80), giving

 

(17.86) 
  

This equation can be integrated to give

 

(17.87) 
  

where we have fixed the constant of integration so that at t = 0 all vertices have the same 

 

 

 

 

 

 

 

 



probability s0 of being susceptible and there are no recovered vertices (w = 0). 
Equation (17.87) implies that sk is again proportional to a power of a universal function:

 

(17.88) 
  

where in this case

 

(17.89) 
  

Then, using Eq. (17.87), we find

 

(17.90) 
  

and Eq. (17.85) becomes

 

(17.91) 
  

This is the equivalent for the SIR model of Eq. (17.63), and indeed differs from that equation only 
by the new term in ln u on the right-hand side. 

As before, Eq. (17.91) is a first-order linear differential equation in u and hence can, in 
principle, be solved by direct integration, although for any given degree distribution the integral 
may not have a closed-form solution. Once we have u (t) the probability sk of a vertex being 
susceptible is given by Eq. (17.88), or we can write the total fraction of susceptibles as

 

 

 

 

 

 

 

 



(17.92) 
  

Solving for xk and rk requires a little further work but with perseverance it can be achieved .265 
Figure 17.8 shows the equivalent of Fig. 17.7 for vertices of a range of degrees. As we can see, the 
solution has the expected form, with the number of infected individuals rising, peaking, then 
dropping off as the system evolves to a final state in which some fraction of the population is 
recovered from the disease and some fraction has never caught it (and never will). Among vertices 
of different degrees the number infected goes up sharply with degree, as we would expect. 

Even in cases where the integral in Eq. (17.91) cannot be performed, our solution can still shed 
light on features of the epidemic. Consider for example the long-time behavior. In the limit of long 
time we expect that the number of infected individuals will vanish leaving some individuals 
recovered and some who have never caught the disease. At t = ∞ the total fraction r(t) of recovered 
individuals measures the overall size of the outbreak of the disease and is given by

 

(17.93) 
  

where we have set s0 = 1 as before on the assumption that the system is large and the number of 
initially infected individuals small. 

 

Figure 17.8: Fractions of susceptible, infected, and recovered vertices of various degrees in 
the SI model. The fraction of vertices of degree k that are susceptible (light gray), infected (darker 
gray), and recovered (black) as a function of time for k = 1, 2, 4 and β = γ = 1 on a network with an 
exponential degree distribution (Eq. (13.129)) with λ = 0.2. The highest values of k give the fastest 
growing numbers of infected and recovered vertices and the lowest values the slowest growing. 
  

We can find the stationary value of u by setting du/dt = 0 in Eq. (17.91) to give

 

 

 

 



 

(17.94) 
  

In the special case where the outbreak is small, so that the final value of u is close to 1, we can 
expand ln u = ln [1 + (u − 1)] u − 1 and Eq. (17.94) becomes

 

(17.95) 
  

Equations (17.93) and (17.95) are similar in form to Eqs. (17.27) and (17.28) which give the final 
size of the outbreak in our treatment of the SIR model using percolation theory. The reason why 
Eq. (17.95) is only approximate in the present case where Eq. (17.28) was exact is that the model 
treated in this section is slightly different from the one treated earlier, having (as discussed in 
footnote 12 on page 662) a constant probability γ per unit time of recovery from disease for each 
infected individual as opposed to a fixed infection time for the model of Section 17.8.1. 

We can also examine the early-time behavior of the outbreak by looking at the behavior of Eq. 
(17.91) close to u = 1. Writing u = 1 − ∈ and keeping terms to leading order in ∈ we get

 

(17.96) 
  

assuming s0 = 1 again, which means that

 

(17.97) 
  

This is similar to Eq. (17.69) for the SI model, except for the inclusion of the term in γ. The 
fraction of susceptible degree-k vertices is given by

 

 

 

 

 

 

 

 



(17.98) 
  

and total cases of the disease, infected and recovered, which is just 1 − sk, grows exponentially as 
. 

The epidemic threshold for the model is the line that separates an initially growing number of 
cases of the disease from an initially decreasing one and is given in this case by the point at which 
the exponential constant in Eq. (17.98) equals zero, which gives

 

(17.99) 
  

This result is similar in form to Eq. (17.79) for the epidemic threshold on a general network,266 but 
with the leading eigenvalue of the adjacency matrix κ1 replaced with . It also looks similar to 
Eq. (17.29) for the percolation threshold for bond percolation, but this similarity is somewhat 
deceptive. In fact, the result most nearly corresponding to this one in the percolation treatment is 
Eq. (17.30). If we equate our recovery rate γ with the reciprocal of the infectiousness time τ in that 
previous treatment, then the two are roughly equivalent when the epidemic threshold is low, 
meaning either that β is small or that γ is large. If the threshold is higher then the match between 
the two models is poorer, which is again a result of the fact that the models are defined in slightly 
different ways. 

 

 

 



17.12 TIME-DEPENDENT PROPERTIES OF THE SIS MODEL  

It is straightforward to extend our methods to the SIS model also. By analogy with Eqs. (17.71-
17.73) we have

 

(17.100a) 
  

 

(17.100b) 
  

for the SIS model. Caveats similar to those for previous models apply here: these equations ignore 
correlations between the states of adjacent vertices and hence are only an approximation. 

Equations (17.100a) and (17.100b) are not independent since si + xi = 1, so only one is needed to 
form a solution. Taking the second and eliminating si we get

 

(17.101) 
  

At early times, assuming as before that xi (0) = x0 = 1 - c/n for all i and constant c, we can drop 
terms at quadratic order in small quantities to get

 

(17.102) 
  

 

 

 

 

 

 

 



which is identical to Eq. (17.74) for the SIR model at early times. Hence we can immediately 
conclude that the early-time behavior of the model is the same, with initially exponential growth 
and an epidemic threshold given by

 

(17.103) 
  

(See Eq. (17.79).) Also as in the SIR model the probability of infection of a given vertex at early 
times will be proportional to the vertex’s eigenvector centrality. 

At late times we expect the probability of infection to settle to a constant endemic level, which 
we can calculate by setting dxi/dt = 0 in Eq. (17.101) and rearranging, to give

 

(17.104) 
  

Typically we cannot derive a closed-form solution for xi from this expression, but we can solve it 
numerically by iteration starting from a random initial guess. We can also see the general form the 
solution will take by considering limiting cases. If β/γ is large, meaning that we are well above the 
epidemic threshold given in Eq. (17.103), then we can ignore the term γ/β in the denominator and 
xi  1 for all i, meaning that essentially all vertices will be infected all the time. This makes good 
sense since if β/γ is large then the rate of infection is very high while the rate of recovery is 
negligible. 

Conversely, if β/γ is only just above the epidemic threshold level set by Eq. (17.103) then xi will 
be small—the disease only just manages to stay alive—and we can ignore the sum in the 
denominator of Eq. (17.104) so that

 

(17.105) 
  

or

 

 

 

 

 

 



(17.106) 
  

where we have used Eq. (17.103). This implies that xi is proportional to the leading eigenvector 
of the adjacency matrix or, equivalently, proportional to the eigenvector centrality. (Note that this 
is at late times so this result is distinct from the finding above that xi is proportional to eigenvector 
centrality at early times.) 

Thus the long-time endemic disease behavior of the SIS model varies from a regime just above 
the epidemic threshold in which the probability of a vertex being infected is proportional to its 
eigenvector centrality, to a regime well above the threshold in which essentially every vertex is 
infected at all times. 



17.12.1 DEGREE-BASED APPROXIMATION FOR THE SIS MODEL  

We can also write down approximate equations for the evolution of the SIS model in which, as in 
Sections 17.10.2 and 17.11.1, we assume that the probability of infection is the same for all 
vertices with a given degree. Focusing once again on configuration model networks, the equivalent 
of Eqs. (17.80-17.82) is

 

(17.107a) 
  

 

(17.107b) 
  

where the variables sk and xk are as before, and again

 

(17.108) 
  

As before Eqs. (17.107a) and (17.107b) are not independent and only one is need to form a 
solution. Let us take the second and rewrite it using sk = 1 − xk to give

 

(17.109) 
  

Unfortunately, there is no known complete solution to this equation but we can once again find its 

 

 

 

 

 

 

 

 



behavior at early and late times. 
Assuming, as previously, that our epidemic starts off with only a single case or a small number 

of cases, the probability xk of being infected at early times is c/n for constant c and hence small in 
the limit of large n. Dropping terms of second order in small quantities then gives us the linear 
equation

 

(17.110) 
  

which can be rewritten using an integrating factor to read

 

(17.111) 
  

and hence integrated to give

 

(17.112) 
  

Thus xk (t) for short times takes the form

 

(17.113) 
  

where u(t) is some universal, k-independent function. Substituting into Eqs. (17.108) and (17.110), 
we then have

 

(17.114) 
  

 

 

 

 

 

 



and

 

(17.115) 
  

Thus we have exponential growth or decay of the epidemic at early times, with the epidemic 
threshold separating the two falling at the point where  – γ = 0, or

 

(17.116) 
  

just as for the SIR model (see Eq. (17.99)). 
At late times the disease to settles down into an endemic state in which some constant fraction 

of the population is infected. We can solve for this endemic state by setting dxk /dt = 0 for all k in 
Eq. (17.109) to give

 

(17.117) 
  

Substituting this expression into Eq. (17.108), we then find that

 

(17.118) 
  

In general there is no closed-form solution to this implicit equation for v, although it can typically 
be solved numerically for any given qk, and given the value we can then get xk from Eq. (17.117). 

What we can tell from Eq. (17.118) is that, given the degree distribution, v at late times is a 
function solely of β/γ (or γ/β if you prefer) and hence xk is solely a function of β/γ and k. Moreover, 
in order for Eq. (17.118) to be satisfied v must be an increasing function of β/γ—as β gets larger or 

 

 

 

 

 

 

 



γ smaller, v must increase in order to keep the sum in the equation equal to one. This means that 
xk will also be an increasing function of β/γ. (Equation (17.117) implies that it is an increasing 
function of k as well.) Thus the equations give us a qualitative picture of the behavior of the SIS 
model, although quantitative details require a numerical solution. 
  
  

We have in this chapter only brushed the surface of what is possible in the modeling of 
epidemics spreading across networks. We can extend our studies to more complicated network 
structures, such as networks with degree correlations, networks with transitivity, networks with 
community structure, and even epidemics on empirically observed networks. More complicated 
models of the spread of infection are also possible, such as the SIRS model mentioned in Section 
17.5, as well as models that incorporate birth, death, or geographic movement of individuals [17, 
156]. In recent years, scientists have developed extremely sophisticated computer models of 
disease spread using complex simulations of the behavior patterns of human populations, including 
models of entire cities down to the level of individual people, cars, and buildings [110], and 
models of the international spread of disease that incorporate detailed data on the flight patterns 
and timetables of international airlines [79]. These developments, however, are beyond the scope 
of our necessarily brief treatment in this chapter. 

 
 



PROBLEMS  

17.1 Consider an SIR epidemic on a configuration model network with exponential degree 
distribution pk = (1 − e−λ )e−λk .

a. Using the results of Section 16.2.1 write down an expression for the probability u appearing 
in Eq. (17.27) in terms of φ and λ. 

b. Hence find an expression for the probability that a vertex is infected by the disease if it has 
degree k. 

c. Evaluate this probability for the case λ = 1 and φ = 0.9, for k = 0, 1, and 10. 

17.2 Consider the spread of an SIR-type disease on a network in which some fraction of the 
individuals have been vaccinated against the disease. We can model this situation using a joint 
site/bond percolation model in which a fraction φs of the vertices are occupied, to represent the 
vertices not vaccinated, and a fraction φb of the edges are occupied to represent the edges along 
which contact takes place. 

a. Show that the fraction S of individuals infected in the limit of long time is given by the 
solution of the equations

 

where g0 (z) and g1 (z) are the generating functions for the degree distribution and excess 
degree distribution, as usual. 

b. Show that for a given probability of contact φb the fraction of individuals that need to be 
vaccinated to prevent spread of the disease is . 

17.3 We have been concerned in this chapter primarily with epidemic disease outbreaks, meaning 
outbreaks that affect a finite fraction of all individuals in a network. Consider, by contrast, a small 
SIR outbreak—an outbreak that corresponds to one of the non-giant percolation clusters in the 
bond percolation approach of Section 17.8—occurring on a configuration model network with 
degree distribution pk. 

a. What is the probability of such an outbreak occurring if the disease starts at a vertex chosen 
uniformly at random from the whole network (including vertices both within and outside 
the giant component)? 

b. Show that if the probability of transmission along an edge is φ then the generating function 
h0(z) for the probability πs that the outbreak has size s is given by the equations

 

where g0 (z) and g1 (z) are the generating functions for the degree distribution and excess 

 

 

 



degree distribution respectively. 
c. What is the mean size of such an outbreak? 

17.4 Consider an SI-type epidemic spreading on the giant component of a k-regular random graph, 
i.e., a configuration model network in which all vertices have the same degree k. Assume that 
some number c of vertices, chosen at random, are infected at time t = 0. 

a. Show using the results of Section 17.10 that the probability of infection of every vertex 
increases at short times as eβkt. 

b. Show that within the first-order moment closure approximation of Eq. (17.35) the average 
probability of infection x of every vertex is the same and give the differential equation it 
satisfies. 

c. Hence show that

 

d. Find the time at which the ʺinflection pointʺ of the epidemic occurs, the point at which the 
rate of appearance of new disease cases stops increasing and starts decreasing. 

17.5 Consider a configuration model network containing vertices of degrees 1, 2, and 3 only, such 
that the fractions of vertices of each degree in the giant component are p1 = 0.3, p2 = 0.3, and p3 = 
0.4. 

a. Find an expression for the excess-degree generating function g1(z) appearing in Eq. (17.63).
 

b. Hence, by solving Eq. (17.63), find an expression for t as a function of u for an SI epidemic 
on the giant component of the network, assuming that s0  1, and with initial condition u(0) 
= 1 − ∈, where ∈ is small. 

c. Show that in the limit of long times the number of susceptibles falls off in proportion to 
e−21βt/2. 

17.6 Consider the spread of an SIR-type disease in a network in which some fraction of the 
individuals have been vaccinated against the disease. We can model this situation using a joint 
site/bond percolation model in which a fraction φs of the vertices are occupied, to represent the 
vertices not vaccinated, and a fraction φb of the edges are occupied to represent the edges along 
which contact takes place.’ 

a. Show that the fraction S of individuals infected in the limit of long time is given by the 
solution of the equations

 

where g0 (z) and g1 (z) are the generating functions for the degree distribution and excess 
degree distribution, as usual. 

b. Show that for a given probability of contact φb the fraction of individuals that need to be 
vaccinated to prevent spread of the disease is . 

 

 

 

 



CHAPTER 18 

DYNAMICAL SYSTEMS ON NETWORKS 

A discussion of dynamical systems on networks, a subject area that is in its infancy but about 
which we nonetheless have some interesting results 

THE epidemic models of Chapter 17 are a particular example of the more general concept of 
dynamical systems on networks. A dynamical system is any system whose state, as represented by 
some set of quantitative variables, changes over time according to some given rules or equations. 
Dynamical systems come in continuous- and discrete-time varieties and can be either deterministic 
or stochastic. The epidemic models we looked at, for instance, were continuous-time dynamical 
systems because their equations described the continuous-time variation of the variables. They 
were also deterministic because the equations we wrote down exactly determine the values of all 
variables for all time: there was no random or external element affecting the evolution whose value 
was not known in advance. On the other hand, an explicit computer simulation of, say, an SI 
epidemic model on a network would be a stochastic dynamical system and might use either 
continuous- or discrete-time. The stochastic element in this case corresponds to the chance 
infection of a susceptible individual by an infectious neighbor. And time might be represented in 
discrete time-steps, although it might not, depending on the decision of the researcher. 

Many other real-world processes—or simplified models of real-world processes—can be 
represented as dynamical systems on networks. The spread of news or information between 
friends, the movement of money through an economy, the flow of traffic on roads, data over the 
Internet, or electricity over the grid, the evolution of populations in an ecosystem, the changing 
concentrations of metabolites in a cell, and many other systems of scientific interest are best 
thought of as dynamical processes of one kind or another taking place on an appropriate network. 

In other, non-network contexts, the theory of dynamical systems is a well-developed branch of 
mathematics and physics. (See, for example, the book by Strogatz [307].) In this chapter we delve 
into some of this theory and show how it can be applied to dynamical systems on networks. 
Necessarily our introduction only skims the surface of what could be said; dynamical systems is a 
topic of entire books in its own right. But the material covered here gives a flavor of the kinds of 
calculation that are possible. 

 

 

 



18.1 DYNAMICAL SYSTEMS  

Our discussion in this chapter will concentrate principally on deterministic systems of continuous 
real-valued variables evolving in continuous time t. We begin by introducing some of the basic 
ideas in a non-network context, then we extend these ideas to networks. 

A simple (non-network) example of a continuous dynamical system is a system described by a 
single real variable x(t) that evolves according to a first-order differential equation

 

(18.1) 
  

where ƒ (x) is some specified function of x. Typically we will also give an initial condition that 
specifies the value x0 taken by x at some initial time t0. 

The fully-mixed SI model of Section 17.2 is an example of a dynamical system of this kind, 
having a single variable x representing the fraction of infected individuals in the system, obeying 
the equation

 

(18.2) 
  

(See Eq. (17.5).) Thus in this case we have ƒ (x) = βx(1 − x). 
One can also have dynamical systems of two variables:

 

(18.3) 
  

and the approach can be extended to larger numbers of variables as well. When we come to 
consider systems on networks we will put separate variables on each vertex of the network. 

One could also imagine making the functions on the right-hand sides of our equations depend 
explicitly on time t:

 

 

 

 



 

(18.4) 
  

This, however, can be regarded as merely a special case of Eq. (18.3). If we write

 

(18.5) 
  

with initial condition y(0) = 0, then we have y = t for all times and dx/dt = ƒ (x, t) as required. By 
this trick it is always possible to turn equations with explicit dependence on t into equations 
without explicit dependence on t but with one extra variable. For this reason we will confine 
ourselves in this chapter to systems with no explicit dependence on t. 

Another possible generalization would be to consider systems governed by equations containing 
higher derivatives, such as second derivatives. But these can also be reduced to simpler cases by 
introducing extra variables. For instance the equation

 

(18.6) 
  

can be transformed by introducing a new variable y = dx/dt so that we have

 

(18.7) 
  

which is a special case of Eq. (18.3) again. 
Thus the study of systems of equations like (18.1) and (18.3) covers a broad range of situations 

of scientific interest. Let us look at some of the techniques used to analyze such equations.

 

 

 

 

 



18.1.1 FIXED POINTS AND LINEARIZATION  

Equation (18.1), which involves only the one variable x, can, at least in principle, always be solved 
by simply rearranging and integrating:

 

(18.8) 
  

although in practice the integral may not be known in closed form. For cases with two or more 
variables, on the other hand, it is not in general possible to find a solution. And for the network 
examples that we will be studying shortly the number of variables is typically very large, so that, 
unless we are lucky (as we were with some of the epidemiological models of the previous chapter), 
full analytic solutions are unlikely to be forthcoming. 

We can of course integrate the equations numerically and in some cases this can give useful 
insight. But let’s not give up on analytic approaches yet. There is in fact a well-developed set of 
techniques for understanding how dynamical systems work without first solving their equations 
exactly. Most of those techniques focus on the properties of fixed points. 

A fixed point is a steady state of the system—any value of the variable or variables for which the 
system is stationary and doesn’t change over time. In the one-variable system, Eq. (18.1), for 
example, a fixed point is any point x = x* for which the function on the right-hand side of the 
equation is zero

 

(18.9) 
  

so that dx/dt = 0 and x doesn’t move. If, in the evolution of the system, x ever reaches a fixed 
point then it will remain there forever. The fixed points of a one-variable system can be found 
simply by solving Eq. (18.9) for x. 

In a two-variable system like Eq. (18.3) a fixed point is a pair of values (x*, y*) such that ƒ (x*, 
y*) = 0 and g(x* , y* ) = 0, making dx/dt = dy/dt = 0 so that both variables stand still at this point. 

Consider the SI model of Eq. (18.2). Putting ƒ (x) = 0 in this model gives us βx(1 − x) = 0, 
which has solutions x = 1 and x = 0 for the fixed points. We can see immediately what these fixed 
points mean in epidemiological terms. The first at x = 1 represents the steady state in which 
everyone in the system is infected. Clearly once everyone is infected the system doesn’t change 
any more, because there is no one else to infect and because in the SI model no one recovers either. 
The second fixed point x = 0 corresponds to the state of the system where no one is infected. In 
this state no one will ever become infected, since there is no one to catch the disease from, so again 
we have a steady state. 

The importance of fixed points in the study of dynamical systems derives from two key features 
of these points: first, they are relatively easy to find, and second, it is straightforward to determine 

 

 

 



the dynamics of the system when it is close to, but not exactly at, a fixed point. The dynamics 
close to a fixed point is found by expanding about the point as follows. 

Consider first a simple one-variable system obeying Eq. (18.1). We represent the value of x 
close to a fixed point at x* by writing x = x* + ∈ where ∈, which represents our distance from the 
fixed point, is small. Then

 

(18.10) 
  

Now we perform a Taylor expansion of the right-hand side about the point x = x* to get

 

(18.11) 
  

where fʹ represents the derivative of ƒ with respect to its argument. Neglecting terms of order ∈2 

and smaller and noting that ƒ (x* ) = 0 (see Eq. (18.9)), we then have

 

(18.12) 
  

This is a linear first-order differential equation with solution

 

(18.13) 
  

where

 

(18.14) 

 

 

 

 

 

 

 



  

Note that λ is just a simple number, which we can calculate provided we know the position x∗ of 
the fixed point and the function ƒ(x). Depending on the sign of λ, Eq. (18.13) tells us that our 
distance ∈ from the fixed point will either grow or decay exponentially in time. Thus this analysis 
allows us to classify our fixed points into two types. An attracting fixed point is one with λ < 0, for 
which points close by are attracted towards the fixed point and eventually flow into it. A repelling 
fixed point is one with λ > 0, for which points close by are repelled away. In between these two 
types there is a special case when λ = 0 exactly. Fixed points with λ = 0 are usually still either 
attracting or repelling,267 but one cannot tell which is which from the analysis here; one must retain 
some of the higher-order terms that we dropped in Eq. (18.11) to determine what happens. 

Analysis of the kind represented by Eq. (18.12) is known as linear stability analysis. It can be 
applied to systems with two or more variables as well. Consider, for instance, a dynamical system 
governed by equations of the form of Eq. (18.3), with a fixed point at (x∗, y∗), meaning that

 

(18.15) 
  

We represent a point close to the fixed point in the two-dimensional x, y space by x = x∗ + ∈x and 
y = y∗ + ∈y, where ∈x and ∈y are both assumed small. As before we expand about the fixed point, 
performing now a double Taylor expansion:

 

(18.16) 
  

where ƒ(x) and ƒ(y) indicate the derivatives of ƒ with respect to x and y. Making use of Eq. (18.15) 
and neglecting all higher-order terms in the expansion, we can simplify this expression to

 

(18.17) 
  

Similarly

 

 

 

 

 

 

 



(18.18) 
  

We can combine Eqs. (18.17) and (18.18) and write them in matrix form as

 

(18.19) 
  

where ∈ is the two-component vector (∈x, ∈y) and J is the Jacobian matrix

 

(18.20) 
  

where the derivatives are all evaluated at the fixed point. 
For systems of three or more variables we an employ the same approach and again arrive at Eq. 

(18.19), but with the rank of the vectors and matrices increasing with increasing number of 
variables. 

Equation (18.19) is again a linear first-order differential equation but its solution is more 
complicated than for the one-variable equivalent. Let us begin with a particular simple case, the 
case where the Jacobian matrix is diagonal:

 

(18.21) 
  

where λ1 and λ2 are real numbers. In this case, the equations for ∈x and ∈y separate from one 
another thus:

 

 

 

 

 

 

 



(18.22) 
  

and we can solve them separately to get

 

(18.23) 
  

or equivalently

 

(18.24) 
  

so that x and y are independently either attracted or repelled from the fixed point over time, 
depending on the signs of the two quantities

 

(18.25) 
  

These results give rise to a variety of possible behaviors of the system near the fixed point, as 
shown in Fig. 18.1. If λ1 and λ2 are both negative, for instance, then the fixed point will be 
attracting, while if they are both positive it will be repelling. If they are of opposite signs then we 
have a new type of point called a saddle point that attracts along one axis and repels along the 
other. In some respects a saddle point is perhaps best thought of as a form of repelling fixed point, 
since a system that starts near a saddle point will not stay near it, the dynamics being repelled 
along the unstable direction. 

Unless we are very lucky, however, the Jacobian matrix is unlikely to be diagonal. In the 
general case it will have off-diagonal as well as diagonal elements and the solution above will not 
be correct. With a little more work, however, we can make progress in this case too. The trick is to 
find combinations of the variables x and y that move independently as x and y alone do above. 

Consider the combinations of variables

 

(18.26) 
  

 

 

 

 

 

 



In matrix form we can write these as

 

(18.27) 
  

or simply

 

(18.28) 
  

where Q is the matrix of the coefficients a, b, c, d. 
The time evolution of ξ close to the fixed point is given by

 

(18.29) 
  

where we have used Eqs. (18.19) and (18.28). If ξ1 and ξ2 are to evolve independently, then we 
require that the matrix QJQ−1 be diagonal, just as J itself was in the simple case we studied above. 
Linear algebra then tells us that Q must be the matrix of eigenvectors of J. More specifically, since 
J is in general asymmetric, Q is the matrix whose rows are the left eigenvectors of J and Q−1 is the 
inverse of that matrix, which is the matrix whose columns are the right eigenvectors of J (since the 
left and right eigenvectors of a matrix are mutually orthogonal).

 

 

 



 

Figure 18.1: Flows in the vicinity of different types of fixed points. The flows around a fixed 
point in a two-variable dynamical system with a diagonal Jacobian matrix, as described in the text, 
can take a variety of different forms as shown. (a), (b), and (c) are all attracting fixed points, (d), 
(e), and (f) are repelling, and (g) and (h) are saddle points. 
  

Thus, provided we can find the eigenvectors of J we can also find the combinations ξ1 and ξ2 
that move independently of one another near the fixed point. These combinations satisfy the 
equations

 

(18.30) 
  

 

 

 



where λ1 and λ2 are the elements of our diagonal matrix, which are also the eigenvalues of J 
corresponding to the two eigenvectors. Equation (18.30) has the obvious solution

 

(18.31) 
  

The lines ξ1 = 0 and ξ2 = 0 play the role of the axes in Fig. 18.1—they are lines along which we 
move either directly away from or directly towards the fixed point—and Eq. (18.31) indicates that 
our distance from the fixed point along these lines will either grow or decay exponentially 
according to the signs of the two eigenvalues. Since the eigenvectors of an asymmetric matrix are 
not in general orthogonal to one another, these lines are not in general at right angles, so the flows 
around the fixed point will look similar to those of Fig. 18.1 but squashed, as shown in Fig. 18.2. 
Nonetheless, we can still classify our fixed points as attracting, repelling, or saddle points as 
shown in the figure. Similar analyses can be performed for systems with larger numbers of 
variables and the basic results are the same: by finding the eigenvectors of the Jacobian matrix we 
can determine the combinations of variables that move independently and hence solve the 
evolution of the system in the vicinity of the fixed point. 

There is another subtlety that arises for systems of two or more variables that is not found in the 
one-variable case. The eigenvalues of an asymmetric matrix need not be real. Even if the elements 
of the matrix itself are real, the eigenvalues can be imaginary or complex. What does it mean if the 
eigenvalues of the Jacobian matrix in our derivation are complex? Putting such eigenvalues into 
Eq. (18.31) gives us a solution that oscillates around the fixed point, rather than simply growing or 
decaying. Indeed, the substitution actually gives us a value for ξ1 and ξ2 that itself is complex, 
which looks like it might be a problem, since the coordinates are supposed to be real. However, 
our equations are linear, so the real part of that solution is also a solution, as is the imaginary part, 
or any combination of the two. 

 

Figure 18.2: Examples of flows around general fixed points. When the Jacobian matrix is not 
diagonal the flows around a fixed point look like squashed or stretched versions of those in Fig. 
18.1. 
  

If λ1 = α + iω, for example, where α and ω are real numbers, then the general real solution for ξ1 
is

 

 

 

 

 



(18.32) 
  

where A and B are real constants and C is a complex constant. Thus the solution is the product 
of a part that oscillates and a part that either grows or decays exponentially. For the case of two 
variables, it turns out that the eigenvalues are always either both real or both complex, and if both 
are complex then they are complex conjugates of one another. In the latter case, both ξ1 and ξ2 then 
have this combined behavior of oscillation with exponential growth or decay, with the same 
frequency ω of oscillation and the same rate of growth or decay. The net result is a trajectory that 
describes a spiral around the fixed point. Depending on whether α is positive or negative the spiral 
either moves outward from the fixed point or inward. If it moves inward, i.e., if α < 0. then the 
fixed point is a stable one; otherwise, of α > 0, it is unstable. Thus stability is in this case 
determined solely by the real part of the eigenvalues. (In the special case where α = 0 we must, as 
before, look at higher-order terms in the expansion around the fixed point to determine the nature 
of the point.)

 

The flows around a fixed point whose Jacobian matrix has complex eigenvalues describe a spiral. 
  

When there are more than two variables, the eigenvalues must either be real or they appear in 
complex conjugate pairs. Thus again we have eigendirections that simply grow or decay, or that 
spiral in or out. 

We are, however, not done yet. There is a further interesting behavior arising in systems with 
two or more variables that will be important when we come to study networked systems. In 
addition to fixed points, one also finds in some systems limit cycles. A limit cycle is a closed loop 
in the dynamics such that a system finding itself on such a loop remains there indefinitely, 
circulating around and returning repeatedly to its starting point. Limit cycles can be treated in 
many ways rather like fixed points: we can study the dynamics close to the limit cycle by 
expanding in a small displacement coordinate. Like fixed points, limit cycles tend to be either 
attracting or repelling, meaning that points close to them either spiral inwards toward the limit 
cycle or outwards away from it. 

Physically, limit cycles represent stable oscillatory behaviors in systems. We mentioned one 
such behavior in Section 17.5 in our brief discussion of the SIRS model. In certain parameter 
regimes, the SIRS model can show “waves” of infection—oscillatory behaviors under which a 
disease infects a large fraction of the population, who then recover and gain immunity, reducing 
substantially the number of victims available to the disease and therefore causing the number of 
cases to drop dramatically. When the first wave of individuals later loses their immunity they 
move back into the susceptible state, become infected again, and another wave starts. Another 
example of oscillation in a dynamical system is the oscillation of the numbers of predators and 
prey in a two-species ecosystem represented, for example, by the Lotka-Volterra predator-prey 

 

 

 



equations [307]. Such oscillations have been famously implicated in the mysterious periodic 
variation in the populations of hares and lynx recorded by the Hudson Bay Company in Canada 
during the nineteenth century. A further discussion of this and other aspects of limit cycles can be 
found in Ref. [307]. 



18.2 DYNAMICS ON NETWORKS  

Let us now apply some of the ideas of the previous section to dynamical systems on networks. 
First, we need to be clear what we mean by such systems. Typically, we mean that we have 
independent dynamical variables xi, yi, . . . on each vertex i of our network and that they are 
coupled together only along the edges of the network. That is, when we write our equation for the 
time evolution of a variable xi, the individual terms appearing in that equation each involve only xi, 
other variables on vertex i, or one or more variables on a vertex adjacent to i in the network. There 
are no terms involving variables on non-adjacent vertices and no terms involving variables on 
more than one adjacent vertex. 

An example of a dynamical system of this type is our equation (17.35) for the probability of 
infection of a vertex in the network version of the SI epidemic model:

 

(18.33) 
  

This equation only has terms involving pairs of variables that are connected by edges since these 
are the only pairs for which Aij is non-zero. 

For a system with a single variable on each vertex we can write a general first-order equation

 

(18.34) 
  

where we have separated terms that involve variables on adjacent vertices from those that do 
not. You can think of ƒi as specifying the intrinsic dynamics of a vertex—it specifies how the 
variable xi would evolve in the absence of any connections between vertices, i.e., if Aij = 0 for all i, 
j. Conversely, gij describes the contribution from the connections themselves; it represents the 
coupling between variables on different vertices. 

Notice that we have specified different functions ƒi and gij for each vertex or pair of vertices, so 
the dynamics obeyed by each vertex can be different. In many cases, however, when each of the 
vertices represents a similar thing—such as a person in the case of an epidemic model—the 
dynamics for each vertex may be the same, or at least similar enough that we can ignore any 
differences. In such cases, the functions in Eq. (18.34) are the same for all vertices and the 
equation becomes

 

 

 

 



 

(18.35) 
  

In the examples in this chapter we will assume that this is the case. We will also assume that the 
network is undirected so that Aij is symmetric—if xi is affected by xj then xj is similarly affected by 
xi. (Note, however, that we do not assume that the function g is symmetric in its arguments: g(u, v) 
≠ g(v, u).) Again, the SI model of Eq. (18.33) is an example of a system of this kind, one in which 
ƒ(x) = 0 and g(xi, xj) = β(1 − xi)xj. 

 

 



18.2.1 LINEAR STABILITY ANALYSIS  

Let us try applying the tools of linear stability analysis to Eq. (18.35). Suppose we are able to find 
a fixed point  of Eq. (18.35) by solving the simultaneous equations

 

(18.36) 
  

for all i. Note that finding a fixed point in this case means finding a value  for every vertex 

i—the fixed point is the complete set . Note also that in general the position of the fixed point 
depends both on the particular dynamical process taking place on the network (via the functions ƒ 
and g) and on the structure of the network (via the adjacency matrix). If either is changed then the 
position of the fixed point will also change. 

Now we can linearize about this fixed point in the usual way by writing , performing 
a multiple Taylor expansion in all variables simultaneously, and dropping terms at second order in 
small quantities and higher:

 

(18.37) 
  

where we have used Eq. (18.36). 
If we know the position of the fixed point, then the derivatives in these expressions are simply 

numbers. For convenience, let us write

 

(18.38a) 

 

 

 

 



  

 

(18.38b) 
  

 

(18.38c) 
  

Then

 

(18.39) 
  

which we can write in matrix form as

 

(18.40) 
  

where M is the matrix with elements

 

(18.41) 
  

and δij is the Kronecker delta.
 

 

 

 

 

 

 

 

 



We can solve Eq. (18.40) by writing ∈ as a linear combination of the eigenvectors of M, 
specifically the right eigenvectors, since M is in general not symmetric:

 

(18.42) 
  

so that Eq. (18.40) becomes

 

(18.43) 
  

where μr is the eigenvalue corresponding to the eigenvector vr. Comparing terms in each 
eigenvector we then have

 

(18.44) 
  

which implies that

 

(18.45) 
  

Immediately we see that if the real parts of all of the eigenvalues μr are negative, then cr(t)—and 
hence ∈—is decaying in time for all r and our fixed point will be attracting. If the real parts are all 
positive the fixed point will be repelling. And if some are positive and some are negative then the 
fixed point is a saddle, although, as before, this is perhaps best looked at as a form of repelling 
fixed point: the flows near a saddle have at least one repelling direction, which means that a 
system starting in the vicinity of such a point will not in general stay near it, regardless of whether 
the other directions are attracting or not.

 

 

 

 

 



18.2.2 SPECIAL CASES  

Let us look at some common special cases of the general formalism above. A particularly simple 
case is when the fixed point is symmetric, meaning that  has the same value for every . 
This occurs in the SI model for instance—there is a fixed point at  for all i. 

For a symmetric fixed point, the fixed point equation, Eq. (18.36), becomes

 

(18.46) 
  

where ki is the degree of vertex i and we have made use of  (see Eq. (6.19)). Given the 
appearance of ki here, there are only two ways this equation can be satisfied for all i: either all 
vertices must have the same degree or g(x∗, x∗) = 0. Since the former is not really realistic—few 
networks of interest have all degrees the same—let us concentrate on the latter and assume that

 

(18.47) 
  

Again the SI model provides an example of this type of behavior. The coupling function g is of the 
form βx(1 − x) in that model, which is zero at the two fixed points at x = 0, 1. 

Equations (18.46) and (18.47) together imply also that ƒ(x∗) = 0 and hence the fixed point x∗ is 
the same in this case as the fixed point for the “intrinsic” dynamics of a vertex: it falls at the same 
place as it would if there were no connections between vertices at all. The position of the fixed 
point is also independent of the network structure in this case, a point that will shortly be 
important. 

For a symmetric fixed point, the quantities αi, βij, and γij defined in Eq. (18.38) become

 

(18.48a) 
  

 

 

 

 

 

 



 

(18.48b) 
  

 

(18.48c) 
  

Then Eq. (18.39) becomes

 

(18.49) 
  

The situation simplifies further if the coupling function g(xi, xj) depends only on xj and not on xi, 
i.e., if xi obeys an equation of the form dxi/dt = ƒ(xi) + ∑jAijg(xj). Then β = 0 and

 

(18.50) 
  

which we can write in matrix form as

 

(18.51) 
  

As in the general case, the fixed point will be stable if and only if all of the eigenvalues of the 
matrix αI + γA are negative. Let vr be the eigenvector of the adjacency matrix with eigenvalue κr. 

 

 

 

 

 

 

 

 

 



Then

 

(18.52) 
  

Hence vr is also an eigenvector of αI + γA, but with eigenvalue α + γκr. Now if all eigenvalues are 
to be negative, we require that

 

(18.53) 
  

for all r and from this we can deduce a number of things. First of all it implies that α < − γκr for all 
r. The adjacency matrix always has both positive and negative eigenvalues (a result that we will 
prove in Section 18.3.2), which means that for this inequality to be satisfied for all r we must have 
α < 0. If α > 0 then the fixed point is never stable. 

Second, we can rearrange Eq. (18.53) to give

 

(18.54a) 
  

 

(18.54b) 
  

for all r. Note, however, that if Eq. (18.54a) is satisfied for the largest (most positive) eigenvalue 
κ1 of the adjacency matrix, then it is necessarily satisfied by all the other eigenvalues as well. 
Similarly if Eq. (18.54b) is satisfied for the most negative eigenvalue κn then it is satisfied by all 
others. Thus the conditions above can be simplified to a single condition each:

 

(18.55a) 
  

 

 

 

 

 

 

 

 



 

(18.55b) 
  

Alternatively, we can take reciprocals of these conditions and combine them into a single 
statement:

 

(18.56) 
  

If we want we can fill in the explicit values of α and γ thus:

 

(18.57) 
  

where we have written g as a function of a single variable since, by hypothesis, it only depends on 
one argument in this case. 

Equation (18.57) is sometimes called a master stability condition. It has a special form: note that 
κ1 and κn depend only on the structure of the network and not on anything about the dynamics, 
while α and γ depend only the nature of the dynamics and not on the network structure. Thus Eq. 
(18.57) effectively gives us a single condition that must be satisfied by any type of dynamics and 
its associated fixed point if that dynamics is to be stable on our network. Or conversely, it gives a 
condition on the network structure, via the largest and smallest eigenvalues, that guarantees 
stability of a given fixed point for a given type of dynamics. 

Another case where we can derive a master stability condition is the case in which the coupling 
function g depends on its two arguments according to g(xi , xj) = g(xi) − g(xj). A physicist might 
think of this as a “spring-like” interaction—if g(x) were a simple linear function of its argument 
then xi and xj would act upon one another like two masses coupled by a spring, exerting forces that 
depend on the difference of their positions. More generally, g(x) is non-linear and we have a non-
linear spring. 

For this choice of coupling, and still assuming a symmetric fixed point, we have g(x∗, x∗) = 0 as 
before and hence also ƒ(x∗) = 0, and the quantities defined in Eq. (18.38) become

 

 

 

 

 

 

 



(18.58a) 
  

 

(18.58b) 
  

 

(18.58c) 
  

Then Eq. (18.39) becomes

 

(18.59) 
  

or in matrix form

 

(18.60) 
  

where L is the matrix with elements

 

(18.61) 
  

 

 

 

 

 

 

 

 

 



We have encountered this matrix before. It is the graph Laplacian—see Eq. (6.43). 
Equation (18.60) is of the same form as Eq. (18.51), with the adjacency matrix replaced by the 

graph Laplacian. Thus we can immediately see that the fixed point will be stable if and only if the 
eigenvalues λr of the Laplacian satisfy

 

(18.62) 
  

for all r. 
As shown in Section 6.13.2, the smallest eigenvalue of the Laplacian matrix is always zero, and 

hence Eq. (18.62), when applied to the smallest eigenvalue, implies again that α < 0 is a necessary 
(but not sufficient) condition for the fixed point to be stable, or equivalently

 

(18.63) 
  

Assuming this condition is satisfied then, since all eigenvalues of the Laplacian are non-negative it 
follows that 1/λr > −β/α for stability, regardless of the sign of β. Furthermore, if this condition is 
true for the largest eigenvalue, traditionally denoted λn, then it is true for all smaller eigenvalues as 
well, so the requirement for stability can be reduced to the requirement that 1/λn > −β/α, or

 

(18.64) 
  

along with the condition in Eq. (18.63). 
Again, Eq. (18.64) neatly separates questions of dynamics from questions of network structure. 

The structure appears only on the left of the inequality, via the eigenvalues of the graph Laplacian, 
and the dynamics appears only on the right, via derivatives of the functions ƒ and g. 

Apart from establishing a condition for the stability of a fixed point, the master stability 
condition is of particular interest in the study of bifurcations—situations in which a fixed point 
loses stability as the parameters of a system change. If we vary parameters appearing in the 
definitions of ƒ and g, for example, then we can cause a fixed point that initially satisfies a 
condition like (18.64) to stop satisfying it and so become unstable. In practice, this means that the 
system will suddenly change its behavior as it passes through the point where 1/λn = −β/α. At one 
moment it will be sitting happily at its stable fixed point, going nowhere, and at the next, as that 
point becomes unstable, it will start moving, gathering speed exponentially, and quite likely wind 
up in some completely different state far from where it started, as it falls into the basin of attraction 

 

 

 

 



of a different stable fixed point or limit cycle. We will see some examples of behavior of this 
kind shortly. 



18.2.3 AN EXAMPLE  

As an example, consider the following simple model of “gossip,” or diffusion of an idea or fad 
across a social network. Suppose some new idea is circulating through a community and xi 
represents the amount person i is talking about it, which will be governed by an equation of the 
form (18.35). We will put

 

(18.65) 
  

with a > 0, which means that the intrinsic dynamics of a single vertex has a stable fixed point at x∗ 
= 1—each person has an intrinsic tendency to talk this much about the latest craze, regardless of 
whether their friends want to hear about it or not. For the interaction term we will assume that 
people tend to copy their friends: they increase the amount they are talking about whatever it is if 
their friends are talking about it more than they are, and decrease if their friends are talking about it 
less. We represent this by putting g(xi, xj) = g(xj) − g(xi) with

 

(18.66) 
  

and b > 0. This is an increasing function of its argument, as it should be, but saturates when x » 
1—beyond some point, it makes no difference if your friends shout louder. 

Now we can apply the general formalism developed above. The symmetric fixed point for the 
model is at xi = 1 for all i. At this point everyone is talking about the topic du jour with equal 
enthusiasm. This fixed point, however, is stable only provided Eqs. (18.63) and (18.64) are 
satisfied. Equation (18.63) is always satisfied, given that a > 0. Equation 18.64 implies that 1/λn > 
b/4a, or equivalently

 

(18.67) 
  

Thus we can make the fixed point unstable, for example, by increasing b to the point where the 

 

 

 

 

 



right-hand side of this inequality falls below the largest eigenvalue λn of the Laplacian for the 
particular network we are looking at. Increasing b in this case corresponds to increasing the 
amount of influence your friends have on you. 

And what happens when the fixed point becomes unstable? There are no other symmetric fixed 
points for this particular system, since there are no other values that give ƒ(x) = 0 (which is a 
requirement for our symmetric fixed point). So the system cannot switch to another symmetric 
fixed point. One possibility is that the variables might diverge to ±∞, and this happens in some 
systems, but not in this one, where the form of ƒ(x) prevents it. Another possibility is that the 
system might begin to oscillate, or even enter a chaotic regime in which it meanders around in 
pseudorandom fashion indefinitely. In the present case, however, it does something simpler. It 
moves to a non-symmetric fixed point, one in which the fixed-point values of the variables xi are 
not all equal. This is an interesting and perhaps unexpected behavior. Our calculations are telling 
us when the influence between neighboring individuals in the network becomes very strong that 
instead of driving everyone to behave in the same way, as one might expect, it actually causes 
behaviors to differ. People spontaneously develop idiosyncrasies and start doing things their own 
way. 



18.3 DYNAMICS WITH MORE THAN ONE VARIABLE PER VERTEX  

Our developments so far have assumed that there is only a single variable xi on each vertex i of the 
network. Many systems, however, have more than one variable per vertex. The epidemiological 
examples of Chapter 17, mostly have several—s, x, r, and so forth. 

Consider a system with an arbitrary number of variables  on each vertex i, but let us 
assume that we have the same number of variables on each vertex and that, as before, they obey 
equations of the same form. For convenience let us write the set of variables on a single vertex as a 
vector  and then write the equations governing their time evolution as

 

(18.68) 
  

Note that the functions ƒ and g, representing the intrinsic dynamics and the coupling, have now 
become vector functions f and g of vector arguments, with the same rank as x. 

Following the same line of reasoning as before, we can study the stability of a symmetric fixed 
point xi = x∗ by writing xi = x∗ + ∈i and performing a Taylor expansion. The resulting linearized 
equation for the evolution of the μth component of ∈i is then

 

(18.69) 
  

where ƒμ and gμ represent the μth components of f and g.
 

As before, the derivatives in this expression are simply constants, and for convenience let us 
define

 

 

 

 

 

 



(18.70a) 
  

 

(18.70b) 
  

 

(18.70c) 
  

so that

 

(18.71) 
  

where δij is the Kronecker delta again.
 

We can write this equation in the matrix form

 

(18.72) 
  

where M is a matrix whose rows (and columns) are labeled by a double pair of indices (i, μ) and 
whose elements are

 

 

 

 

 

 

 

 



(18.73) 
  

In principle, we can now determine whether the fixed point is stable by examining the eigenvalues 
of this new matrix. If the real parts of the eigenvalues are all negative then the fixed point is stable, 
otherwise it is not. In practice this can be a difficult thing to do in general but, as before, there are 
some common special cases where the calculation simplifies, yielding a master stability condition.

 



18.3.1 SPECIAL CASES  

As before we consider the case where g(xi, xj) depends only on its second argument and not on its 
first. In this case βμν = 0 for all μ, ν and Eq. (18.71) becomes

 

(18.74) 
  

Now let  be the ith component of the eigenvector vr of the adjacency matrix corresponding to 
eigenvalue κr. Let us write

 

(18.75) 
  

This equation expresses the vector of elements  as a linear combination of eigenvectors in the 
usual way, but with a separate set of coefficients  for each dynamical variable μ. Substituting into 
Eq. (18.74), we get

 

(18.76) 
  

Equating terms in the individual eigenvectors on both sides of the equation, we thus conclude that

 

 

 

 

 

 

 

 

 



(18.77) 
  

We can think of this as itself a matrix equation for a vector  thus:

 

(18.78) 
  

where α and γ are matrices with elements αμν and γμν, respectively.
 

This equation expresses the dynamics of the system close to the fixed point as a decoupled set of 
n separate systems, one for each eigenvalue κr of the adjacency matrix. If the fixed point of the 
system as a whole is to be stable, then each of these individual systems also needs to be stable, 
meaning that their eigenvalues need to be negative, or, more simply, the largest (i.e., most 
positive) eigenvalue of α + κrγ needs to be negative for every r. 

Let us define the function σ(κ) to be equal to the most positive eigenvalue of the matrix α + κγ, 
or the most positive real part in the case where the eigenvalues are complex. Typically this is an 
easy function to evaluate numerically. Notice that α + κγ has only as many rows and columns as 
there are variables on each vertex of the network. If we have three variables on each vertex, for 
instance, the matrix has size 3 × 3, which is easily diagonalized. 

The function σ(κ) is called a master stability function. If our system is to be stable, the master 
stability function evaluated at the eigenvalue κr should be negative for all r:

 

(18.79) 
  

 

Figure 18.3: A sketch of a master stability function. One possible form for the master stability 

 

 

 

 

 



function σ(κ) might be as shown here (solid curve), with positive values for large and small κ but 
negative values in the intermediate range between κmin and κmax. If all the eigenvalues of the 
adjacency matrix (represented by the dots) fall in this intermediate range, then the system is stable. 
  

One possible form for the master stability function is shown in Fig. 18.3—it becomes large and 
positive for κ sufficiently small or sufficiently big, but is negative in some intermediate range κmin 
< κ < κmax. In that case, the system is stable provided all eigenvalues κr of the adjacency matrix fall 
in this range. Again this gives us a master stability condition that separates network structure from 
dynamics. The eigenvalues κr are properties solely of the structure, being derived from the 
adjacency matrix alone, while the limits κmin and κmax are properties solely of the dynamics, being 
derived from the matrices α and γ, which are determined by the derivatives of the functions ƒ and 
g. 

We can similarly write down the generalization of Eq. (18.58) to the case of many variables per 
vertex. If the interaction between vertices takes the form g(xi, xj) = g(xi) − g(xj), then γμν = − βμν 
and

 

(18.80) 
  

where Lij = δij − Aij is an element of the Laplacian. Then the equivalent of Eq. (18.78) is

 

(18.81) 
  

where λr is an eigenvalue of the Laplacian and β is the matrix with elements βμν. Again we can 
define a master stability function σ(λ) equal to the most positive eigenvalue of α + λβ (or the most 
positive real part for complex eigenvalues) and for overall stability of the system this function 
must be negative when λ = λr for all r:

 

(18.82) 
  

And once again, for suitable forms of the master stability function, this allows us to develop a 
stability criterion that separates structure from dynamics.

 

 

 

 

 



18.3.2 SPECTRA OF COMPLEX NETWORKS  

The formalism of the previous section turns questions about the stability of dynamical systems on 
networks into questions about the eigenvalue spectra of matrices. Given the definition of the 
dynamics taking place on the vertices of a network we calculate the master stability function and 
then the stability or not of the system depends on whether the master stability function is negative 
when evaluated at each of the eigenvalues of the appropriate matrix, such as the adjacency matrix 
or graph Laplacian. In particular, when the master stability function takes a relatively simple form 
like that sketched in Fig. 18.3, so that stability requires only that the eigenvalues fall in some 
specified range, then it is enough to know the smallest (most negative) and largest (most positive) 
eigenvalues of the matrix to insure stability—if the smallest and largest fall in the given range then 
necessarily all the others do too. 

A number of results are known about the spectra of networks, and in particular about the 
smallest and largest eigenvalues, which allow us to make quite general theoretical statements about 
stability. For the adjacency matrix, for example, we can derive limits on the eigenvalues as 
follows. 

Let x be an arbitrary real vector of n elements, which we will write as a linear combination of 
the eigenvectors vr of the adjacency matrix A thus:

 

(18.83) 
  

Then

 

(18.84) 
  

where, as before, κ1 is the largest eigenvalue and we have made use of the fact that . This 
inequality is correct for any choice of x. Thus, for instance, if x = 1 = (1, 1, 1, . . . ) then

 

(18.85) 
  

 

 

 

 

 



So the largest eigenvalue of the adjacency matrix is never less than the average degree of the 
network. 

Alternatively, suppose that vertex v is the highest-degree vertex in the network, with degree kmax, 
and let us choose the elements of x thus:

 

(18.86) 
  

Then

 

(18.87) 
  

(This result is non-trivial and you may find it helpful to work through each of the three cases to 
convince yourself that it is indeed correct.) 

Multiplying both sides of Eq. (18.87) by xi and summing over i we now get  or, 
using Eq. (18.84),

 

(18.88) 
  

Thus the largest eigenvalue of the adjacency matrix is never less than the square root of the largest 
degree. 

Equations (18.85) and (18.88) imply that if we increase either the average or the maximum 
degree in our network, we will eventually increase the maximum eigenvalue also. In a system with 
a master stability function like that depicted in Fig. 18.3, this will in the end cause the system to 
become unstable. 

We can also derive similar results for the lowest (most negative) eigenvalue κn of the adjacency 
matrix. We have

 

 

 

 

 

 

 



 

(18.89) 
  

for any real vector x. So, for instance, if vertex v is again the highest-degree vertex in the 
network and we make the choice

 

(18.90) 
  

then, following the same approach as before, we find that

 

(18.91) 
  

Thus increasing the highest degree in the network can also make the system unstable by the 
alternative route of decreasing the lowest eigenvalue. Whichever eigenvalue passes out of the 
region of stability first will be the one that makes the system unstable. 

(We note in passing that Eqs. (18.88) and (18.91) together also tell us that the adjacency matrix 
of an undirected network always has both positive and negative eigenvalues, unless the network 
has no edges in it at all, in which case all eigenvalues are zero. We used this result previously in 
Section 18.2.2.) 

Other results for the eigenvalues of the adjacency matrix can be derived for specific models of 
networks. For example, Chung et al. [68] have shown for the configuration model that the 
expected value of the largest eigenvalue in the limit of large network size is

 

(18.92) 
  

In many cases this gives values of κ1 considerably above the limits set by Eqs. (18.85) and (18.88). 
On configuration model networks with power-law degree distributions, for instance, where �k2� 

 

 

 

 

 

 



formally diverges in the limit of large n, we expect that κ1 will similarly diverge. 
One can also derive results for eigenvalues of the Laplacian. The smallest eigenvalue of the 

Laplacian is simple—it is always zero. For large networks the largest eigenvalue λn can be shown 
to lie in the range [18]

 

(18.93) 
  

which appears to be a relatively large range but in fact tells us a lot, ensuring again that the 
largest eigenvalue is guaranteed to increase if the highest degree in the network increases 
sufficiently. 

 



18.4 SYNCHRONIZATION  

A topic closely related to the study of dynamical stability is the study of synchronization. Many 
systems of scientific interest can be modeled as oscillators of one sort or another. The flashing of 
fireflies, the ticking of clocks, the synchronized clapping of a large audience, and the 
pathologically synchronized firing of brain cells during an epileptic attack can all be modeled as 
networks of oscillators coupled in such a way that the coupling causes the oscillators to 
synchronize. 

The periodic, synchronized oscillations of such an oscillator network correspond, in dynamical 
systems terms, to a limit cycle of the overall dynamics (see Section 18.1.1). Like fixed points, limit 
cycles can be stable or unstable, attracting or repelling, depending on whether small perturbations 
away from the periodic behavior tend to grow or decay over time. The mathematics of whether 
synchronized states are stable is very similar to that for fixed points. Again one starts with a 
system of equations of the form of Eq. (18.68) but now assumes a periodic limit-cycle solution, xi

(t) = s(t) for all i. Perturbing around this solution one can linearize the equations and, depending on 
the particular form of the interaction between vertices, expand the linearized solution as a 
combination of the eigenvectors of an appropriate matrix, such as the adjacency matrix or 
Laplacian. The result is a set of n decoupled systems, each oscillating independently and each of 
which must be stable if the system as a whole is to be stable. One can define a master stability 
function σ(λ) again, corresponding to the growth rate of perturbations away from the periodic 
solution, which in this context is known as a Lyapunov exponent, although it plays exactly the 
same role as the leading eigenvector in our earlier analysis. Once again this master stability 
function must be negative when evaluated at each of the eigenvalues λ of the appropriate matrix 
and this gives us a condition for stability of the synchronized state. 

Many details of the network synchronization process and many special cases have been studied. 
For a comprehensive discussion, the interested reader is encouraged to consult the review by 
Arenas et al. [23]. 

 

 

 



PROBLEMS  

18.1 Consider a dynamical system on a k-regular network (i.e., one in which every vertex has the 
same degree k) satisfying

 

and in which the initial condition is uniform over vertices, so that xi(0) = x0 for all i.

 

a. Show that xi(t) = x(t) for all i where

 

and hence that one has to solve only one equation to solve the dynamics. 
b. Show that for stability around a fixed point at xi = x∗ for all i we require that

 

18.2 Consider a dynamical system on an undirected network, with one variable per vertex obeying

 

as in Section 18.2.2. Suppose that the system has a symmetric fixed point at xi = x∗ for all i.

 

a. Show, using results given in this chapter, that the fixed point is always stable if the largest 
degree kmax in the network satisfies

 

b. Suppose that ƒ(x) = rx(1 − x) and g(x) = ax2. Show that there are two symmetric fixed 
points for this system, but that one if them is always unstable. 

c. Give a condition on the maximum degree in the network that will ensure the stability of the 
other fixed point. 

 

 

 



18.3 The dynamical systems we have considered in this chapter have all been on undirected 
networks, but systems on directed networks are possible too. Consider a dynamical system on a 
directed network in which the sign of the interaction along an edge attached to a vertex depends on 
the direction of the edge, ingoing edges having positive sign and outgoing edges having negative 
sign. An example of such a system is a food web of predator-prey interactions, in which an ingoing 
edge indicates in-flow of energy to a predator from its prey and an outgoing edge indicates out-
flow from a prey to its predator. Such a system can be represented by a dynamics of the form

 

where g is a symmetric function of its arguments: g(u, v) = g(v, u). 

a. Consider a system of this form in which the in- and out-degrees of every vertex are equal to 
the same constant k. Show that such a system has a symmetric fixed point  for all i 
satisfying ƒ(x*) = 0. 

b. Writing xi = x∗ + ∈i linearize around this fixed point to show that in the vicinity of the 
fixed point the vector ∈ = (∈1, ∈2, ...) satisfies

 

where M = A − AT. Determine the values of the constants α and β.

 

c. Show that the matrix M has the property MT = −M. Matrices with this property are called 
skew-symmetric matrices. 

d. If v is a right eigenvector of a skew-symmetric matrix M with eigenvalue μ, show that vT is 
a left eigenvector with eigenvalue −μ. Hence by considering the equality

 

show that the complex conjugate of the eigenvalue is μ∗ = −μ and hence that all eigenvalues 
of a skew-symmetric matrix are imaginary. 

e. Show that the dynamical system is stable if Re(α + βμr) < 0 for all eigenvalues μr of the 
matrix M, and hence that the condition for stability is simply α < 0. 

The last result means that if the individual vertices are stable in the absence of interaction with 
other vertices, then the coupled dynamical system is also stable at the symmetric fixed point. 
  

18.4 Following the arguments of Section 18.2.2 the stability of a fixed point in certain dynamical 
systems on networks depends on the spectrum of eigenvalues of the adjacency matrix. Suppose we 
have a dynamical system on a network that takes the form of an L × L square lattice with periodic 
(toroidal) boundary conditions along its edges, and suppose we label each vertex of the lattice by 
its position vector r = (i, j) where i, j = 1 ... L are the row and column indices of the vertex. 

a. Consider the vector v with one element for each vertex such that vr = exp(ikTr).

Show that this vector is an eigenvector of the adjacency matrix provided

 



 

where n1 and n2 are integers.

 

b. What range of values is permitted for the integers n1 and n2? Hence find the largest and 
smallest eigenvalues. 

18.5 Consider a network with an oscillator on every vertex. The state of the oscillator on vertex i is 
represented by a phase angle θi and the system is governed by dynamical equations of the form

 

where ω is a constant and the function g(x) respects the rotational symmetry of the phases, 
meaning that g(x + 2π) = g(x) for all x. 

a. Show that the synchronized state θi = θ∗ = ωt for all i is a solution of the dynamics.
 

b. Consider a small perturbation away from the synchronized state θi = θ∗ + ∈i and show that 
the vector ∈ = (∈1, ∈2, ...) satisfies

 

where L is the graph Laplacian. 
c. Hence show that the synchronized state is stable against small perturbations if and only if 

gʹ(0) < 0. 

 

 



CHAPTER 19 

NETWORK SEARCH 

A discussion of methods for searching networks for particular vertices or items, a process 
important for web search and peer-to-peer networks, and for our understanding of the 
workings of social networks 

IN CHAPTER 4 we saw a number of examples of networks that have information stored at their 
vertices: the World Wide Web, citation networks, peer-to-peer networks, and so forth. These 
networks can store large amounts of data but those data would be virtually useless without some 
way of searching through them for particular items. So important is it to be able to perform fast 
and accurate searches that the companies that provide the most popular search services are now 
some of the largest in their respective industries—Google, Thomson Reuters, LexisNexis—and 
constitute multibillion dollar international operations. In this chapter we examine some of the 
network issues involved in efficient searching and some implications of search ideas for the 
structure and behavior of networks. 

 

 

 



19.1 WEB SEARCH  

We have already discussed briefly some aspects of how web search engines work in Sections 4.1, 
7.4, and 7.5. In this section we discuss the issue in more detail. 

Traditional, or offline, web search is a multistage process. It involves first “crawling” the Web 
to find web pages and recording their contents, then creating an annotated index of those contents, 
including lists of words and estimates of the importance of pages based on a variety of criteria. 
And then there is the search process itself, in which a user submits a text query to a search engine 
and the search engine extracts a list of pages matching that query from the index. 

The process of web crawling by which web pages are discovered is interesting in itself and 
exploits the network structure of the Web directly. The crawler follows hyperlinks between web 
pages in a manner similar to the breadth-first search algorithm for finding components described in 
Section 10.3. The basic process is described in Section 4.1. Practical web crawlers for big search 
operations employ many elaborations of this process, including:

• Searching in parallel at many locations on the Web simultaneously using many different 
computers, 

• Placing the computers at distributed locations around the world to speed access times to 
pages coming from different places, 

• Repeatedly crawling the same web pages at intervals of a few days or weeks to check for 
changes in page contents or pages that appear or disappear, 

• Checking on pages more often if their contents have historically changed more often, 
• Checking on pages more often if they are popular with users of the search engine, 
• Heuristics to spot dynamically generated pages that can lead a crawler into an infinite loop 

or tree of pages and waste time, 
• Targeted crawling that probes more promising avenues in the network first, and 
• Altered behavior depending on requests from owners of specific sites, who often allow only 

certain crawlers to crawl their pages, or allow crawlers to crawl only certain pages, in order 
to reduce the load on their servers. 

At their heart, however, most web crawlers are still dumb animals, following links and recording 
what they see for later processing. 

The processing of the raw crawler output also has interesting networkrelated elements. Early 
search engines simply compiled indexes of words or phrases occurring in web pages, so one could 
look up a word and get a list of pages containing it. Pages containing combinations of words could 
also be found by taking the sets of pages containing each individual word in the combination of 
interest and forming the intersection of those sets. Indexes can be extended by adding annotations 
indicating, for example, how often a word appears on a page or whether it appears in the page title 
or in a section heading, which might indicate a stronger connection between that word and the 
subject matter of the page. Such annotations allow the search engine to make choices about which 
are the pages most relevant to a given query. Even so, search engines based solely on indexes and 
textual criteria of this sort do not return very good results and have been superseded by more 
sophisticated technology. 

Modern search engines do still use indexes in their search process, but only as a first step. A 
typical modern search engine will use an index to find a set of candidate pages that might be 
relevant to the given query and then narrow that set down using other criteria, some of which may 
be network-based. The initial set is usually chosen deliberately to be quite broad. It will typically 

 

 



include pages on which the words of the query appear, but also pages on which they don’t 
appear but that link to, or are linked to by, pages that do contain the query words. The net result is 
a set of pages that probably includes most of those that might be of interest to the user submitting 
the query, but also many irrelevant pages as well. The strength of the search engine, its ability to 
produce useful results, therefore rests primarily on the criteria it uses to narrow the search within 
this broad set. 

The classic example of a criterion for narrowing web searches comes from the Google search 
engine, which makes use of the eigenvector centrality measure known as PageRank, discussed in 
Section 7.4. PageRank accords pages a high score if they receive hyperlinks from many other 
pages, but does so in a way such that the credit received for a link is higher if it comes from a page 
that is itself highly ranked. PageRank, however, is only one of many elements that go into the 
formula Google uses to rank web pages. Others include traditional measures such as frequency of 
occurrence of query words in the page text and position of occurrence (near the top or bottom, in 
titles and headings, etc.), as well as occurrence of query words in “anchor text” (the highlighted 
text that denotes a hyperlink in a referring page) and previous user interest in a particular page 
(whether people selected this page from the list of search results on other occasions when the same 
text query, or a similar one, was entered). 

Google gives each web page in the initial set a score that is a weighted combination of these 
elements and others. The particular formula used is a closely guarded secret and is moreover 
constantly changing, partly just to try and improve results, but also to confound the efforts of web 
page creators, who try to increase their pages’ ranking by working out what particular elements 
carry high weight in Google’s formula and incorporating those elements into their pages. 

An important point to appreciate is that some parts of the score a page receives depend on the 
particular search query entered by the user—frequency of occurrence of query words, for 
instance—but others, such as PageRank, do not. This allows Google’s computers (or their 
counterparts in other search companies) to calculate the latter parts “offline,” meaning they are 
calculated ahead of time and not at the time of the query itself. This has some advantages. 
PageRank, for instance, is computationally intensive to calculate and it saves a lot of time if you 
only have to calculate it once. But there are disadvantages too. PageRank measures the extent to 
which people link to a given web page, but people may link to a page for many reasons. Thus a 
page may have a high PageRank for a reason unrelated to the current search query. A page whose 
text makes mention of two or more different topics (and many do) may be a crucial authority on 
one topic but essentially irrelevant on another, and PageRank cannot distinguish between the two. 

One could imagine a version of PageRank that was specific to each individual query. One could 
calculate a PageRank score within just the subnetwork formed by the set of pages initially selected 
from the index to match the query. But this would be computationally expensive and it’s not what 
Google does. As a result it is not uncommon for a page to be ranked highly in a particular search 
even though a casual human observer could quickly see that it was irrelevant to the search topic. In 
fact, a large fraction of “bad” search results returned by search engines probably fall in this 
category: they are pages that are important in some context, but not in the context of the specific 
search conducted. 

The overall process behind searches on Google and similar large search engines is thus as 
follows [55]. First the Web is crawled to find web pages. The text of those web pages is processed 
to created an annotated index, and the link structure of the hyperlinks between them is used to 
calculate a centrality score or scores for each page, such as PageRank in Google’s case or 
(presumably) some similar measure for other search engines. When a user enters a query the 
search engine extracts a deliberately broad set of matching pages from the index, scores them 
according to various query-specific measures such as frequency of occurrence of the query words, 
then combines those scores with the pre-computed centrality measure and possibly other pre-
computed quantities, to give each page in the set an overall score. Then the pages are sorted in 
order of their scores and the ones with the highest scores are transmitted to the user. Typically only 
a small number of the highest-scoring pages are transmitted—say the first ten—but with an option 
to see lower-scoring pages if necessary. 

Despite the reservations mentioned above, this system works well in practice, far better than 
early web search engines based on textual content alone, and provides useful search results for 



millions of computer users every day.



19.2 SEARCHING DISTRIBUTED DATABASES  

Some information networks form distributed databases. A typical example is a peer-to-peer file-
sharing network, in which individual computers in the network each store a subset of the data 
stored in the network as a whole. The form and function of peer-to-peer networks were described 
in Section 4.3.1. 

The “network” in a peer-to-peer network is typically a virtual one, in which individual 
computers maintain contacts with a subset of others, which are not necessarily those with which 
they have direct physical data connections. In this respect peer-to-peer networks are somewhat 
similar to the World Wide Web, in which the hyperlinks between websites are virtual links chosen 
by a page’s creator and their topology need have nothing to do with the topology of the underlying 
physical Internet. Indeed, the World Wide Web is itself, in a sense, a distributed database, storing 
information in the pages at its vertices, but web search works in a fundamentally different way 
from search in other distributed databases, so we treat the two separately. 

Search is a fundamental problem in peer-to-peer networks and similar systems: how do we find 
specific items among those stored at the many vertices of the network? One way would be to copy 
the web search approach of Section 19.1 and construct a comprehensive index of all items at some 
central location and then search that index for items of interest. For a variety of reasons, however, 
most peer-to-peer networks don’t go this route, but instead make use of distributed search 
techniques in which the search task is shared among the computers in the network via messages 
passed along network edges. Indeed the performance of such distributed searches is the primary 
reason for linking the vertices into a network in the first place and there are some interesting 
principles relating the structure of the network to the efficiency with which searches can be 
performed. 

Suppose that we have a peer-to-peer network composed of n individual computers and each 
computer is linked by virtual connections to a selection of the others, where “linked” in this 
context merely means that these others are the ones with which a computer has agreed to 
communicate directly in the course of performing searches. There is no reason in principle why a 
computer could not communicate with all others if it wanted to, but in practice this would demand 
too much effort or data bandwidth, and limiting the number of network neighbors a computer has 
brings the resources required within reasonable bounds. 

The simplest form of distributed search, used in some of the earliest peer-to-peer networks, is a 
version of the breadth-first search algorithm described in Section 10.3 (where it was used for 
finding network components and shortest paths). Under this approach, a user gives the computer a 
search term, such as the name of a computer file, and the computer sends a query to each of its 
neighbors in the peer-to-peer network, asking if they have the file in question. If they do, they send 
the file to the first computer and the search is complete. If they don’t, then they send a further 
query to each of their neighbors asking for the file. Any neighbor that has seen the query before, 
such as the computer that originated it in the first place, ignores it. All others check to see if the 
have the requested file and send it back to the originating computer if they do. If not, they pass the 
query on to their neighbors, and so on. 

This simple strategy certainly works and it has some advantages. For instance, assuming that the 
network displays the small-world effect (Section 8.2), the number of steps we will have to take in 
our breadth-first search will be small even when the network is large (typically increasing only 
logarithmically with n—see Section 12.7). This means that most searches will take only a short 
amount of time to find the desired file. 

But there are some serious disadvantages with the approach as well. First, as we have described 
it the search doesn’t actually stop when the target file is found. There is no mechanism to inform 

 



computers that the file has been found and that they don’t need to pass the query on to anyone 
further. This problem can be fixed relatively easily, however, for example by requiring each 
computer receiving the query to check with the originating computer to see if the file has been 
found before they do anything else. 

A more serious problem is that the messages transmitted in the process of spreading a query 
across the network quickly add up to a huge amount of data and can easily overwhelm the capacity 
of the computers involved. Assuming a worst-case scenario in which a desired file exists on only a 
single computer in the network, we will, on average, have to pass our query to half of all 
computers before we find the file. That means the number of messages sent in the course of one 
query is O(n). Suppose that users perform queries at some constant average rate r, so that the 
overall rate of queries is rn = O(n). Then the total number of messages sent per unit time is O(n) × 
O(n) = O(n2) and the number of messages per computer per unit time is, on average, O(n2)/n = O
(n), which goes up linearly with the size of the network. This means that, no matter how much 
bandwidth our computers have to send and receive data, it will in the end always become swamped 
if the network becomes large enough. And peer-to-peer networks can become extremely large. 
Some of the largest have millions of users. 

Luckily this worst-case scenario is not usually realized. It is in fact rarely the case that an item 
of interest exists on only one computer in a network. Most items in typical peer-to-peer networks 
exist in many places. Indeed, assuming that some fraction of the user population likes or needs 
each item, it is more reasonable that any given item appears on some fixed fraction c of the 
vertices in the network, so that the total number of copies cn goes up as the size of the network 
increases. If this is the case, and assuming for the moment that the value of c is the same for every 
item, then one will have to search on average only 1/c vertices before finding a copy of an item. 
This means that the total number of query messages sent over the network per unit time is O(n/c) 
and the number per computer per unit time is O(1/c), which is just a constant and does not increase 
with increasing network size. 

A more realistic calculation allows for the fact that some items are more popular than others. 
Suppose that the factors c, which are proportional to popularity, have a distribution p(c), meaning 
that the probability of falling in the interval c to c + dc is p(c) dc. Also important to note is that not 
all items are searched for with equal frequency. Indeed a more reasonable assumption is that they 
are searched for with frequency proportional to their popularity, i.e., that the probability of a search 
query asking for an item with popularity in the interval c to c + dc is cp(c) dc/�c�, where the 

factor of �c� = ∫ cp(c) dc insures that the distribution is properly normalized. Then the average 
number of vertices we have to examine before we find the item corresponding to a typical query is

 

(19.1) 
  

and hence the number of query messages sent or received per computer per unit time is O
(1/�c�), which is again a constant as network size becomes large. 

In principle, therefore, if a node can handle messages at the rate given by Eq. (19.1) then the 
network should go on functioning just fine as its size becomes large. In practice, however, there 
are still problems. The main difficulty is that vertices in the network vary enormously in their 
bandwidth capabilities. Most vertices have relatively slow communications with the network, i.e., 
low bandwidth, while a few have much better, higher-bandwidth connections. This means that 
even if bandwidth requirements per vertex are reduced to a constant as above, the network will still 
run at a speed dictated by the majority slow vertices, making queries slow and possibly 
overwhelming the capacity of some vertices.

 



To get around this problem, most modern peer-to-peer networks make use of supernodes (also 
called superpeers). Supernodes are high-bandwidth nodes chosen from the larger population in the 
network and connected to one another to form a supernode network over which searches can be 
performed quickly—see Fig. 19.1. 

 

Figure 19.1: The structure of a peer-to-peer network with supernodes. Client nodes (filled 
circles) are connected to a network of supernodes (open circles) that have aboveaverage network 
bandwidth and hence can conduct searches quickly. 
  

A supernode acts a little like a local exchange in a telephone network (see Section 2.2). Each 
normal user, or client, in the network attaches to a supernode (or sometimes to more than one) that 
acts as their link to the rest of the network. Each supernode has a number of such clients and the 
clients communicate to the supernode a list of the files or other data items they possess so that the 
supernode can respond appropriately to search queries from other supernodes. An individual client 
wanting to perform a search then sends their search query to the local supernode, which conducts a 
breadth-first search interrogation of the network of supernodes to find the desired item. Since the 
supernodes possess records of all the items that the clients have, the entire search can be performed 
on the network of supernodes alone and no client resources are used at all. And since the 
supernodes are deliberately selected to have fast network connections, the search runs at the speed 
of the quickest vertices in the network. 

In practice schemes like this work quite well—well enough to be in wide use in peer-to-peer 
networks of millions of users. More sophisticated schemes have been devised that in theory could 
work better still—an example is the “Chord” system proposed by Stoica et al. [305]—but such 
systems have yet to find widespread adoption since the more traditional supernode approach 
appears to work well enough for practical purposes.

 

 



19.3 MESSAGE PASSING  

A different variation of the distributed search problem is the problem of getting a message to a 
particular node in a network. The classic example of this problem is Stanley Milgram’s “small-
world” experiment, described in Section 3.6. In this experiment participants were asked to get a 
message to a specific target individual by passing it from acquaintance to acquaintance through the 
social network. Milgram famously found that messages that arrived at the destination passed 
through only about six people on their way, which is the origin of the popular concept of the “six 
degrees of separation.” As discussed in Section 3.6, however, there is another perhaps more 
surprising implication of the experiment, first pointed out by Kleinberg [177], which is that short 
paths not only exist in the network but that people are remarkably good at finding them. Of course 
if one knows the structure of an entire network then one can find short paths directly using, for 
example, the breadth-first search method of Section 10.3.5. Participants in Milgram’s experiment, 
however, did not know the whole network and probably only knew a very small part of it, and yet 
they were still able to get a message rapidly to the desired target. 

This observation raises a number of interesting questions. How, in practice, did people find 
these short paths to the target? Can we come up with an algorithm that will do the job efficiently? 
How does the performance of that algorithm depend on the structure of the network? In the 
following sections we consider two different models of the message passing process that address 
these questions. As we will see, these models suggest that social (or other) networks must have a 
very particular type of structure if one wants to be able to find short paths easily without a global 
knowledge of the network. 

 



19.3.1 KLEINBERG’S MODEL  

The instructions to the participants in Milgram’s experiment were that upon receiving the message 
(actually a small booklet or “passport” sent through the mail), they were to forward it to an 
acquaintance who they believed to be closer to the target than they were. The definition of “closer” 
was left vague, however, and one of the first things we need to do if we want to model the 
mechanics of the experiment is decide on a practical definition. 

An illuminating attempt at modeling Milgram’s experiment was made by Kleinberg [177, 178], 
who employed a variant of the small-world model of Section 15.1, as shown in Fig. 19.2. As in the 
standard small-world model, it has a ring of vertices around the edge plus a number of “shortcut” 
edges that connect vertex pairs at random points around the ring. In Kleinberg’s model all vertices 
are connected to their two immediate neighbors around the ring—c = 2 in the notation of Chapter 
15—and Kleinberg made use of the connections in the ring to define the “closeness” of vertices for 
the purposes of the message-passing experiment. He proposed that individuals in the network, 
represented by vertices, are aware of the distance around the ring to other individuals, and hence 
can say when one of their acquaintances is “closer” to the target vertex than they are in this sense. 

 

Figure 19.2: The variant small-world model used to model message passing.In the variant of 
the small-world model used here, vertices are connected around a ring and shortcuts added 
between them as in the normal small-world model. However, the shortcuts are now biased so that 
there are more of them connecting nearby vertices than distant vertices. The strength of the bias is 
controlled by the parameter α. In the proof given in the text, the vertices are divided into numbered 
classes, class 0 consisting of just the target vertex and higher classes radiating out from the target, 
each successive class containing twice as many vertices as the previous one. 
  

In his calculations Kleinberg considered a greedy algorithm for message passing in which each 
individual receiving a message passes it on to the one of their neighbors who is closest to the target 
in the sense above. This algorithm is guaranteed always to get the message to the target eventually. 

 

 

 



Every individual has at least one neighbor who is closer to the target in the Kleinberg sense than 
they are—their neighbor around the ring in the direction towards the target. Thus on each step of 
the message passing process the message is guaranteed to get at least one step closer to the target 
around the ring and hence it must eventually get to the target. In the worst case individuals simply 
pass the message around the ring until it reaches its destination but generally we can expect to do 
better than this because of the shortcuts. The question is how much better. Kleinberg showed that it 
is possible for the greedy algorithm to find the target vertex in O(log2n) steps, but that it can do so 
only for particular choices of the arrangement of the shortcuts. 

Kleinberg considered a one-parameter family of models that generalizes the standard small-
world model by allowing for different arrangements of the shortcuts.268 Instead of assuming that 
shortcuts are placed uniformly at random, we assume (not unreasonably) that people have more 
acquaintances among those close to them (in the sense defined above) than among those far away. 
By analogy with the standard small-world model let us place shortcuts around the ring equal in 
number to p times the number of edges in the ring itself, which in this case is just n. Since each 
shortcut has two ends this means that the average number of shortcuts attached to each vertex will 
be 2p (and the actual number will be Poisson distributed with mean 2p). Where we differ from the 
standard small-world model is in how these shortcuts are placed. Shortcuts are still placed at 
random, but they are chosen so that the probability of a particular shortcut covering a distance r 
around the ring is Kr-α, where α is a non-negative constant and K is a normalizing constant. That is, 
for each shortcut we choose first its length r from this distribution, then we place the shortcut, 
spanning exactly r vertices, at a position around the ring chosen uniformly at random. If α = 0 then 
we recover the standard small-world model of Section 15.1, but more generally, for α > 0, the 
model has a preference for connections between nearby vertices. 

Note that the probability that a particular shortcut connects a specific pair of vertices a distance r 
apart is equal to Kr-α/n, which is the probability Kr-α that the shortcut has length r multiplied by the 
probability 1/n that out of the n possible choices it falls in the specific position around the ring that 
connects the two vertices in question. Given that there are np shortcuts in the whole network, this 
means that the total probability of having a shortcut between a given pair of vertices is np × K-α/n = 
pKr-α. (More correctly, this is the expected number of such shortcuts, but so long as the number is 
small, the difference is negligible.) 

The normalizing constant K is fixed by the condition that every shortcut must have some length, 

and that all lengths lie between 1 and , so that

 

(19.2) 
  

We can approximate the sum by an integral using the trapezoidal rule of Eq. (14.115) thus:

 

(19.3) 
  

 

 

 



which gives

 

(19.4) 
  

as n becomes large.270
 

We can now show that, for suitable choice of α, the greedy algorithm on this network can indeed 
find a given target vertex quickly. The proof is as follows. Suppose, without loss of generality, that 
the target vertex is at the top of the ring, as depicted in Fig. 19.2, and let us divide up the other 
vertices into classes according to their distance from the target. Class 0 consists of just the target 
itself. Class 1 consists of all vertices distance d = 1 from the target around the ring, of which there 
are two. Class 2 consists of vertices with distances in the range 2 ≤ d < 4, class 3 of vertices 4 ≤ d 
< 8, and so forth. Each class is double the size of the previous one. In general, class k consists of 
vertices at distances 2k-1 ≤ d < 2k and contains nk = 2k vertices. (For simplicity, let us assume that 
the total number n of vertices is a power of two, minus one, so that everything works out neatly.) 

Now consider a message being passed through the network according to the greedy algorithm 
described above and suppose that at a particular step of the process the message is at a vertex of 
class k. How many more steps will it take before the message leaves class k and passes into a lower 
class? The total number of vertices in lower classes is

 

(19.5) 
  

and from Fig. 19.2 we can see that all of these are, at most, a distance 3 × 2k— 2 < 2k+2 from the 
vertex in class k that currently holds the message. Thus the probability of the vertex with the 
message having a shortcut to a particular one of these vertices in lower classes is at least pK 2-(k+2)α, 
and the probability of having a shortcut to any of them is at least pK 2k-1-(k+2)α. 

If our vertex has no shortcut that takes the message out of class k then, in the worst case, it 
simply passes the message to another vertex in class k that is closer to the target, either via a 
shortcut or by passing around the ring. Using the probability above, the expected number of such 
moves made before we find a shortcut that takes us out of class k is at most

 

(19.6) 
  

Finally, again in the worst case, the message will pass through each of the classes before 

 

 

 

 



reaching the target. There are log2 (n + 1) classes in total and summing over them we find that 
an upper bound on the expected number of steps ℓ needed to reach the target is

 

(19.7) 
  

Making use of Eq. (19.4) for the constant K and taking the limit of large n we find that 
asymptotically

 

(19.8) 
  

where A, B, and C are constants depending on α and p, but not n, whose rather complicated values 
we can work out from Eqs. (19.4) and (19.7) if we want. 

Since Eq. (19.8) gives an upper bound on ℓ, this result guarantees that for the particular case α = 
1 we will be able to find the target vertex in a time that increases as log2n with the size of the 
network. This is not quite as good as log n, which is the actual length of the shortest path in a 
typical network, but it is still a slowly growing function of n and it would be fair to claim that the 
small-world experiment would succeed in finding short paths in a network that had α = 1. Thus it 
is possible, provided the network has the correct structure, for a simple strategy like the greedy 
algorithm, in which vertices have knowledge only of their immediate network neighborhood, to 
produce results similar to those observed by Milgram in his experiment. 

On the other hand, if α ≠ 1 then Eq. (19.8) increases as a power of n, suggesting that it would 
take much longer in such networks to find the target vertex. In particular, for the original small-
world model of Section 15.1, which corresponds to α = 0, Eq. (19.8) grows linearly with n, 
suggesting that the Milgram experiment could take millions of steps to find a target in a social 
network of millions of people. Equation (19.8) is only an upper bound on the time taken, so if one 
is lucky one may be able to find the target faster. For instance, if the message starts at a vertex that 
happens to have a shortcut directly to the target vertex then one can find the target in a single step. 
However, Kleinberg [178] was also able to prove that the average time it takes to find the target 
increases at least as fast as a power of n except in the special case α = 1, so in general the greedy 
algorithm for α ≠ 1 will not work well.271 

These results tell us two things. First, they tell us that it is indeed possible for the small-world 
experiment to work as observed even if the participants don’t know the details of the whole 
network. Second, they tell us that, at least within the context of the admittedly non-realistic model 
used here, the experiment only works for certain very special values of the parameters of the 
network. Thus the success of Milgram’s experiment suggests not only that, as Milgram concluded, 
there are short paths in social networks, but also that they have a particular structure that makes 
path finding possible. 

 

 

 



19.3.2 A HIERARCHICAL MODEL OF MESSAGE PASSING  

While interesting, the results of the previous section are not wholly convincing because the model 
is clearly not a realistic one. People don’t live around a circle with just a few shortcuts to others, 
and message passing doesn’t work because people know where others live on the circle. 

So can we derive similar results for a more realistic network model? To answer this question let 
us first ask how message passing does work. We can get a hint from the “reverse small-world” 
experiments of Killworth and Bernard [39, 174] discussed in Section 3.6. Recall that in these 
experiments researchers asked subjects to imagine that they were participating in Milgram’s small-
world experiment and then asked them what information they would want to know about the target 
in order to make a decision about who to pass their message on to. Killworth and Bernard found 
that three pieces of information were sought more often than any others, and by almost all 
subjects: the name, occupation, and geographic location of the target. 

The target’s name is an obvious requirement in the small-world experiment, since it’s needed to 
recognize the target when you find him or her. Beyond that, however, it probably doesn’t play 
much role in the message passing, except perhaps in cultures where names can give a clue as to the 
location or social status of an individual. Occupation and geographic location, on the other hand, 
are of great use in deciding how to forward a message, and these appear to be the primary pieces of 
information participants in the experiment use. 

Take geographic location as an example. How would one use information on geography to route 
a message? Presumably, one would attempt to pass the message to someone closer geographically 
to the target than oneself. Suppose for instance that the target lives, as Milgram’s did, in a suburb 
of the city of Boston, Massachusetts, in the United States. A participant in, say, England, 
attempting to get a message to this target, would perhaps first forward it to someone they knew in 
the US. That person might forward it in turn to someone they knew in the state of Massachusetts, 
who would forward it to someone in Boston, who would forward it to the target’s specific suburb, 
and so forth. At each step in the process, the participants narrow down the search to a smaller and 
smaller geographic area until, with luck, the area is so small that someone there knows the target 
individual directly. 

In a sense, this is what happens in Kleinberg’s model. In Section 19.3.1 we divided Kleinberg’s 
circle into zones or classes that get ever smaller as they close in on the target and showed that 
under suitable circumstances it takes only a small number of steps of the message-passing process 
to find a connection from one class to the next smaller one. Since the number of classes is 
logarithmic in the size of the network, this means that it also takes only a small number of steps 
overall to home in on the target. Kleinberg’s network structure was unrealistic, but the basic idea 
of progressively narrowing the field is a good one and we would like to find a more realistic 
network model to which the same type of argument can be applied.

 



 

Figure 19.3: The hierarchical model of Watts et al. Small groups of individuals (boxes) are 
divided up in a hierarchical structure represented by a binary tree, which might, for instance, 
correspond to the hierarchical division of geographic space into countries, regions, towns, and so 
forth. The hierarchy dictates which social connections (indicated by curves) are most likely. A 
vertex in group A, for instance, is most likely to be connected to others close to it in the tree (B, C) 
and less likely to be connected to those further away (D, E). 
  

Such a model is the hierarchical model of Watts et al. [322], in which the interplay of social 
structure and geographic or other dimensions is represented by a tree or dendrogram.272 In the 
context of geography, for example, the world would be divided into countries, the countries into 
regions, states, or provinces, the regions into cities and towns, and so forth. The division ends 
when we reach units so small that it can reasonably be assumed that everyone knows everyone 
else—a single family, for instance. 

The divisions can be represented by a tree structure like that shown in Fig. 19.3. The tree 
depicted is a binary tree in this case. Each branch splits in two, then in two again, and so forth. In 
the real world branches might easily split into more than two parts. There are more than two 
countries in the world after all. However, the binary tree is the simplest case to study (and the one 
studied by Watts et al.), and the analysis given here for the binary case can be generalized to other 
cases quite easily. 

Let us also assume that the groups at the bottom of the tree all have the same size g. Again this 
is a simplification, but a useful one that does not have a major effect on the results. If the total 
number of individuals in the network is n then the number of groups is n/g, and the number of 
levels in the tree is log2(n/g). 

The model of Watts et al. makes two other important assumptions. First, it assumes that people 
measure distance to a target individual in terms of the tree, and more specifically in terms of the 
lowest common ancestor in the tree that they share with the target. That is, people are able to tell 
when someone lives in the same country as themselves, or the same region or town, but do not 
have any detailed information beyond that. This is a more conservative assumption than is made 
by Kleinberg’s model. In Kleinberg’s model it is assumed that people know their exact geometric 
distance to the target, no matter where in the network the target falls. In the present model people 
have a much more coarse-grained impression of how close they are to the target. 

The second assumption in the model of Watts et al. is that the social network itself is correlated 
with the hierarchical tree structure so that people who are closer together in the tree, in the sense of 
sharing a lower common ancestor, are also more likely to be acquainted. Thus people are more 
likely to know others in their own country than in other countries, more likely to know others in 

 

 



their own town than in other towns, and so forth. A few sample acquaintances are represented 
by the curves at the bottom of the figure. 

Thus there are really two networks present in this model. There is the “real” network of actual 
acquaintances represented by the curves, and a “shadow” network, the hierarchical tree, which is 
not a network of actual acquaintances but which influences the acquaintance network and of which 
individuals are somewhat aware, in the sense that they know how close they are to others in the 
tree. 

An important point to note about this model is that although an individual is less likely to know 
others far away in the tree, there are also more such faraway individuals than there are ones close 
by, and the two effects cancel out to some extent so that it is quite possible for a given individual 
to know others who are both near and far. The people who live on your street, for instance, are 
close by, so you are likely to know some of them, but they are also few in number. By contrast, 
India may be far away for you (depending on where you live) but there are a lot of people there, so 
even though you are not very likely to know any particular inhabitant, it is nonetheless quite likely 
that you know at least one out of the whole population. This behavior is crucial to making the 
message-passing experiment work on this network. 

Consider an individual in group A in Fig. 19.3. Let us suppose that, because of the effect above, 
this individual has at least one acquaintance at every “distance” in the tree, i.e., one acquaintance 
in every subtree of the hierarchy with which they share a common ancestor. That is, they know one 
of the individuals in group B, the one group with which they share ancestor 1, and they also know 
(say) someone in group C, one of the two with whom they share ancestor 2, and so on through 
groups D and E as shown. And suppose that a similar pattern of acquaintances holds for every 
individual in the network: everyone knows at least one person in every subtree with whom they 
share a common ancestor. 

Now consider a greedy algorithm for message passing on this network. Suppose the message 
starts at a vertex in group A and, as before, the holder of the message at each step passes it to an 
acquaintance closer to the target than they are, distance now being measured in the sense of the 
hierarchical tree as described above. 

Suppose the target vertex is in group X, which shares a common ancestor with A only at the 
highest and coarsest level marked 4 in the figure. That is, the target is in the opposite subtree of 
ancestor 4 from A. By hypothesis, the individual holding the message knows this and hence knows 
that in order to get the message closer to the target they must pass it to someone in that opposite 
subtree. Luckily, under the assumption above they always have such an acquaintance, in this case 
in group E. So they pass the message to their friend in group E. The friend now notes that the 
target X is in the subtree with whom they share the common ancestor marked 5 and hence knows 
that they must pass the message to a neighbor in that subtree to get it closer to the target. Again, by 
definition, they have at least one such neighbor, to whom they pass the message. And so the 
process proceeds. At each step we narrow down our search to a smaller subtree of the overall 
network, or equivalently we move to a lower level in the hierarchy, pivoting about a lower 
common ancestor. But the total number of levels in the hierarchy is log2(n/g) and hence this is the 
maximum number of steps that the process will take to reach the target. In this model, therefore, 
the message always reaches its target in a logarithmic number of steps. 

It’s not, however, very realistic to assume that each individual in the network knows at least one 
person at each distance. Watts et al. considered a more realistic probabilistic model in which there 
is a probability pm of two individuals knowing one another when their lowest common ancestor is 
at level m in the tree. The level is defined to be m = 0 for groups that are immediately adjacent, as 
A and B are in Fig. 19.3, and to increase by one for each higher level up to a maximum of m = log2 
(n/g) - 1 at the top of the tree. 

Watts et al. considered the particular choice

 
 



(19.9) 
  

where C and β are constants.273 So long as β is positive this choice gives, as desired, a lower 
probability of acquaintance with more distant individuals, the exact rate of variation being 
controlled by the value of β. The parameter C controls the overall number of acquaintances that 
each individual has. 

The number of vertices with which any given vertex shares its ancestor at level m is just 2mg and 
hence the expected number of such vertices that it will be connected to is

 

(19.10) 
  

with the choice above for pm. Summing over all levels the total expected number of 
acquaintances an individual has, their average degree in the network, is

 

(19.11) 
  

Thus the constant C is given by

 

(19.12) 
  

In the limit of large n this simplifies to

 

(19.13) 
  

Now if a particular vertex receives a message and wants to pass it to a member of the opposite 

 

 

 

 

 

 

 



subtree at level m, it can do so provided it has a suitable acquaintance. If (19.10) is small, 
however, then most likely it will not, in which case the best it can do is to pass the message to 
someone else in the subtree it is already in, who can then repeat the process. The expected number 
of times this will happen before one person does have a neighbor in the opposite subtree is given 
by the reciprocal of (19.10), which is 2(β-1)m /Cg. Then, summing this over all levels, the total 
expected number of steps to reach the target is

 

(19.14) 
  

It is also possible that the vertex holding the message will not have a neighbor either in the 
opposite subtree or in its own subtree. If this happens then the vertex has only neighbors further 
from the target than it is and none nearer. In this case the Milgram experiment fails—recall that 
participants were asked to pass the message to someone closer to the target. This, however, is not 
necessarily unrealistic. As Watts et al. pointed out, this presumably does happen in the real 
experiment sometimes, and moreover it is well documented that many messages, a majority in fact, 
get lost and never reach their target. For messages that do get through, however, Eq. (19.14) gives 
an estimate of the number of steps they take to arrive. 

Equation (19.14) is rather similar to the corresponding expression for the model of Kleinberg, 
Eq. (19.7), which is not a coincidence since the mechanisms by which the message-passing 
process proceeds are similar in the two cases. Taking the limit of large n and making use of Eq. 
(19.13), we find that

 

(19.15) 
  

where D, E, and ƒ are constants. 
These results have the same functional form as those of Eq. (19.8) for Kleinberg’s model and 

tell us that it is indeed possible for Milgram’s experiment to succeed in networks of this type, but 
only for the special parameter value β = 1. For all other values, the number of steps ℓ taken to 
reach the target increases as a power of n. 

Thus the model of Watts et al. confirms Kleinberg’s results in the context of a more realistic 
network. The results are, however, somewhat mysterious in a way. The idea that the network must 
be tuned to a special point in order for the Milgram experiment to succeed is surprising. The 
Milgram experiment does appear to succeed when conducted on real-world social networks, but on 
the face of it there is no clear reason why real-world networks should fall at this special point. Is it 
really true that if the world happened to be a little different from the way it is, Milgram’s 
experiment would fail? This is a point that is not yet fully understood. It is possible that our model 
misses some important feature of the network structure that makes message passing more robust in 

 

 

 



the real world and less dependent on the precise tuning of the network, or that people are using a 
different scheme for passing messages that works substantially better than our greedy algorithm. 
On the other hand, it is also possible that our model is basically correct but that the world is in fact 
only rather loosely tuned to the special point β = 1 at which message passing succeeds in finding 
short paths. For values of β close to 1 the power of n in Eq. (19.14) is small and hence ℓ still grows 
quite slowly. Indeed it is in general difficult to distinguish experimentally between low powers and 
logarithms, so any value of β in the rough vicinity of β = 1 could result in good apparent 
performance in the message passing experiment. 

 
 



PROBLEMS  

19.1 Suppose that we use a web crawler to crawl a small portion of the Web, starting from a 
randomly chosen web page somewhere in the large in-component. Let us model the crawl as a 
breadth-first search starting from the given vertex and proceeding for r “waves” of search, i.e., 
until it reaches vertices that are r steps away from the start. Let Si be the size of the large in-
component. 

a. What is the probability that a given web page has been crawled at the “zeroth” wave of the 
algorithm, i.e., when only the one starting page has been crawled? 

b. Argue that the probability pi that a page is first reached by the crawl on the rth wave is 
given approximately by p(r) = Ap(r— 1), where p = (p1, p2, ...). Why is this relation only 
approximate in general? 

c. Hence argue that the probability of a page being found in a small crawl is roughly 
proportional to the eigenvector centrality of the page. Recall that the eigenvector centrality 
is zero for vertices in the in-component that don’t also belong to the strongly connected 
component (see Section 7.2). Explain why this makes sense in the present context. 

19.2 Suppose that a search is performed on a peer-to-peer network using the following algorithm. 
Each vertex on the network maintains a record of the items held by each of its neighbors. The 
vertex originating a search queries one of its neighbors, chosen uniformly at random, for a desired 
item and the neighbor responds either that it or one of its neighbors has the item, in which case the 
search ends, or that they do not. In the latter case, the neighboring vertex then passes the query on 
to one of its neighbors, chosen at random, and the process repeats until the item is found. 
Effectively, therefore, the search query makes a random walk on the network.  

a. Argue that, in the limit of a large number of steps, the probability that the query encounters 
a vertex i on any particular step is ki/2m, where ki is the degree as usual and m is the total 
number of edges in the network. 

b. Upon arriving at a vertex of degree k, the search learns (at most) about the items held by all 
of that vertex’s k neighbors except for the one the query is coming from, for a total of k - 1 
vertices. Show that on average at each step the search learns about the contents of 
approximately �k2�/�k�—1 vertices and hence that, for a target item that can be found at 

a fraction c of the vertices in the network, the expected number of copies of the item found 
on a given step is c(�k2�/�k� - 1). 

c. Argue that the probability of not finding the target item on any particular step is 
approximately q = exp[c(1 -�k2�/�k�)] and that average number of steps it takes to find a 

copy of the item is 1/(1 - q). 
d. On a network with a power-law degree distribution with exponent less than 3, so that �k2� 

→ ∞, this last result implies that in the limit of large network size the search should end 
after only one step. Is this really true? If not, explain why not. 

Although the random walk is not a realistic model for actual network search it is nonetheless 
useful: presumably more intelligent search strategies will find results quicker than a mindless 

 

 

 



random walk and hence the random walk provides an upper bound on the length of search needed 
to find an item. In particular, if the random walk works well, as in the example above, then it 
suggests that more intelligent forms of search will also work well. 
  

19.3 The network navigation model of Kleinberg described in Section 19.3.1 is a one-dimensional 
version of what was, originally, a two-dimensional model. In Kleinberg’s original version, the 
model was built on a two-dimensional square lattice with vertices connected by shortcuts with 
probability proportional to r-α where r is the “Manhattan” distance between the vertices, i.e., the 
geodesic network distance in terms of number of edges traversed (rather than the Euclidean 
distance). Following the outline of Section 19.3.1, sketch an argument to show for this variant of 
the model that it is possible to find a target vertex in O(log2n) steps, but only if α = 2. 
  

19.4 Show that the ability to find short paths (of order log2n) in the hierarchical model of Section 
19.3.2 coincides with the state of the network in which a vertex has equal numbers of neighbors on 
average at each possible distance, where “distance” is defined by the lowest common ancestor two 
vertices share. 
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bibliometrics 

bicomponent 

bifurcation 

big-O notation 

big-Θ notation 

binary heap 

and Dijkstra’s algorithm 

and epidemic simulation 

and hierarchical clustering 

binary tree 

binary heap 

data structure 

dendrogram 

hierarchical network model 

partially ordered 

binomial degree distribution 

binomial distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



biochemical network 

biological network 

assortative 

disassortative 

empirical measurement 

food webs 

genetic regulatory networks 

metabolic networks 

models of 

neural networks 

protein-protein interaction networks 

vertex copying in 

biologist coauthorship network 

bipartite network 

boards of directors 

CEOs of companies 

coauthorship 

directed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



examples 

film actors 

incidence matrix 

index 

keyword index 

metabolic network 

mutualistic network 

pictures of 

protein-protein interaction network 

rail network 

recommender network 

singular value decomposition 

social network 

Southern Women Study 

weighted 

bisection 

community detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



graph partitioning 

Kernighan-Lin algorithm 

modularity maximization 

problems with 

repeated bisection 

spectral algorithm 

block diagonal matrix 

adjacency matrix 

Laplacian 

blog network 

blood vessel network 

boards of directors network 

bond 

bond percolation 

and epidemiology 

and SIR model 

giant cluster 

percolation threshold 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



square lattice 

bootstrap percolation 

Bose-Einstein condensation 

bow tie diagram 

World Wide Web 

brain cell 

branching polymers 

breadth-first search 

augmenting path algorithm 

betweenness centrality 

burning algorithm 

closeness centrality 

computational complexity 

dense networks 

Edmonds-Karp algorithm 

finding components 

finding shortest paths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



implementation 

peer-to-peer networks 

percolation 

proof of correctness 

running time 

shortest augmenting path algorithm 

shortest path tree 

sparse networks 

variants 

web crawling 

web search 

bridge problem 

broker 

burning algorithm, see breadth-first search 

business relationships 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Caenorhabditis elegans 

metabolic network 

neural network 

call graph 

software 

telephone 

cargo network 

cascade model 

cascading failure 

catabolic metabolism 

cavity method 

Cayley tree 

percolation on 

C. elegans 

metabolic network 

neural network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



centrality 

authority centrality 

betweenness centrality 

closeness centrality 

degree centrality 

distribution 

eigenvector centrality 

flow betweenness 

hub centrality 

Katz centrality 

PageRank 

random-walk betweenness 

regular graphs 

CEO network 

CERN 

chromatic number 

circle model 

circuit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



electronic 

resistor networks 

statistics 

circuit switched network 

citation data 

Arts and Humanities Citation Index 

Citebase 

Citeseer 

Google Scholar 

legal opinions 

patents 

Science Citation Index 

Scopus 

Social Science Citation Index 

web crawlers 

citation network 

academic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



acyclic 

assortative mixing 

bibliographic coupling networks 

cocitation networks 

cumulative degree distribution 

data for 

degree centrality 

degree distribution 

eigenvector centrality 

indirect citations 

legal citations 

loops in 

models of 

multiedges 

patent citations 

power-law degree distribution 

Price model 

scale-free network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Science Citation Index 

scientific 

statistics 

strongly connected components 

time ordering 

vertex copying model 

Citebase 

Citeseer 

class A subnet 

class B subnet 

class C subnet 

Internet representation 

clique 

in one-mode projection 

k-clique 

transitivity 

closeness centrality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



algorithm 

distribution 

dynamic range 

film actor network 

problems with 

variants 

clusterability theorem 

clusterable network 

clustering 

agglomerative 

average-linkage 

clusterable network 

clustering coefficient 

community detection 

complete-linkage 

directed network 

ego-centered networks 

hierarchical 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



local 

partial 

perfect 

random graph 

single-linkage 

small-world model 

social networks 

Strauss model 

transitivity 

clustering coefficient 

algorithm 

alternative definition 

and community structure 

calculation of 

coauthorship networks 

configuration model 

directed networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



email networks 

film actor network 

food webs 

Internet 

local clustering coefficient 

observed values 

Poisson random graph 

power-law degree distribution 

random graphs 

scale-free networks 

small-world model 

social networks 

statistics 

trees 

triangular lattice 

World Wide Web 

clusters 

cliques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



clusterability 

community detection 

graph partitioning 

percolation 

coauthorship network 

affiliation network 

average degree 

average neighbor degree 

biologists 

bipartite network 

clustering coefficient 

funneling effect 

mathematicians 

mean degree 

neighbor degree 

percolation 

physicists 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



picture of 

statistics 

triadic closure 

cocitation 

and cosine similarity 

differences from bibliographic coupling 

legal citation network 

matrix 

network 

patent citation network 

scientific citation network 

cocitation matrix 

cocitation network 

self-edges 

weighted 

coexistence region 

Strauss model 

two-star model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



co-immunoprecipitation 

co-link 

collaboration network 

affiliation network 

average degree 

average neighbor degree 

biologists 

bipartite network 

clustering coefficient 

funneling effect 

mathematicians 

mean degree 

neighbor degree 

percolation 

physicists 

picture of 

statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



triadic closure 

collaborative filtering 

coloring 

chromatic number 

four-color theorem 

structural balance 

community detection 

agglomerative clustering 

algorithms 

average-linkage clustering 

betweenness algorithm 

bisection 

clustering 

complete-linkage clustering 

genetic algorithm 

greedy algorithm 

hierarchical clustering 

loop counting algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



modularity maximization 

more than two groups 

simulated annealing 

single-linkage clustering 

spectral algorithm 

two communities 

using cosine similarity 

vertex moving algorithm 

community food web 

community structure 

and assortativity 

and clustering coefficient 

detection 

friendship networks 

karate club network 

metabolic networks 

social networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



World Wide Web 

company director network 

affiliation network 

bipartite network 

statistics 

compartmental model 

complete-linkage clustering 

complexity, computational 

component 

algorithm for 

bicomponents 

configuration model 

directed networks 

disease spread 

film actor network 

giant 

in-components 

k-components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



large 

out-components 

Poisson random graph 

Price model 

random graphs 

real-world networks 

sizes 

small 

strongly connected 

tricomponents 

undirected networks 

weakly connected 

World Wide Web 

computational complexity 

adjacency list operations 

adjacency matrix operations 

augmenting path algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



betweenness centrality algorithm 

breadth-first search 

Dijkstra’s algorithm 

hierarchical clustering 

Kernighan-Lin algorithm 

modularity maximization 

on sparse networks 

power method 

spectral partitioning 

worst-case 

computer algorithm, see algorithm 

computer virus 

condensation, in Bianconi-Barabási model 

configuration model 

average component size 

average degree 

average neighbor degree 

bond percolation on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



clustering coefficient 

component sizes 

condition for giant component 

continuous phase transition 

definition 

degree sequence 

density of multiedges 

density of self-edges 

directed networks 

edge probability 

ensemble 

epidemics on 

epidemic threshold 

examples 

exponential degree distribution 

giant component 

giant percolation cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



graphical solution 

largest eigenvalue 

mean component size 

multiedges 

neighbor degree 

neighbors at a given distance 

number of common neighbors 

numerical solution 

pair approximation 

percolation on 

phase transition 

power-law degree distribution 

scale-free network 

second moment of degree distribution 

second neighbors 

self-edges 

SI model on 

SIR model on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



site percolation on 

small components 

third neighbors 

connectance 

connected network 

connectivity 

algebraic connectivity 

algorithm 

and network robustness 

augmenting path algorithm 

directed networks 

edge connectivity 

vertex connectivity 

consumer ISP 

contact tracing 

continuous phase transition 

configuration model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



epidemic transition 

exponential random graph 

percolation 

random graph 

second-order 

Strauss model 

two-star model 

core/periphery structure 

correlation coefficient 

algorithm for 

and assortative mixing 

and community detection 

calculation of 

for degree 

for rows of adjacency matrix 

cosine similarity 

and cocitation 

and community detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



and hierarchical clustering 

covariance 

assortative mixing 

degrees 

rows of adjacency matrix 

crawler, see web crawler 

critical point, see phase transition 

cryptography 

asymmetric 

public key 

trust networks 

cumulative advantage 

cumulative degree distribution 

calculation of 

citation network 

disadvantages 

Internet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



power-law distribution 

preferential attachment model 

Price model 

scale-free network 

World Wide Web 

cumulative distribution function 

betweenness centrality 

calculation of 

degree 

eigenvector centrality 

power-law distribution 

rank/frequency plot 

current law 

cut set 

algorithm for 

and network robustness 

edge cut set 

vertex cut set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



cut size 

and community detection 

and graph partitioning 

and Laplacian 

cycle 

acyclic networks 

limit cycles 

number of a given length 

strongly connected components 

cyclic network 

cypher 

asymmetric 

 

 

 

 

 

 

 

 

 

 

 

 

 



databases 

actors 

citations 

distributed 

films 

food webs 

genetic regulatory networks 

legal citations 

metabolic pathways 

movies 

protein interactions 

data structures 

adjacency list 

adjacency matrix 

AVL tree 

balanced tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



binary heap 

binary tree 

forest 

tree 

dating network 

degree 

algorithm 

and adjacency list 

and adjacency matrix 

and vertex age 

assortative mixing by 

average 

calculation 

correlations 

covariance 

cumulative distribution function 

degree centrality 

degree distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



degree sequence 

directed networks 

disassortative mixing by 

friendship networks 

out-degree 

Pearson correlation coefficient 

sequence 

social networks 

undirected networks 

variance 

degree centrality 

degree distribution 

Barabási-Albert model 

Bianconi-Barabási model 

binomial 

calculation of 

citation networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



configuration model 

cumulative 

definition 

directed networks 

excess degree distribution 

exponential 

exponential random graphs 

generating functions 

histograms 

in giant component 

Internet 

metabolic networks 

non-power-law 

plots of 

Poisson 

Poisson random graph 

power law 

random graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



right skewed 

second moment 

small-world model 

social networks 

statistics 

tail of 

undirected networks 

variance 

World Wide Web 

degree sequence 

configuration model 

directed networks 

delivery networks 

dendrogram 

community detection 

hierarchical clustering 

hierarchical network model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



dense network 

adjacency matrix 

breadth-first search on 

food webs 

density 

deoxyribonuclease footprinting assay 

diameter 

Poisson random graph 

power-law degree distributions 

random graphs 

scale-free networks 

scaling with network size 

diffusion 

equation 

of diseases 

of ideas 

digital signature 

digraph, see directed network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dijkstra’s algorithm 

binary heap 

proof of correctness 

running time 

shortest path tree 

DIMES project 

directed edge 

directed network 

adjacency list 

adjacency matrix 

augmenting path algorithm 

average degree 

betweenness centrality 

bipartite 

citation networks 

clustering coefficient 

components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



connectivity 

correlation of in- and out-degree 

cycles in 

degree 

degree distribution 

degree sequence 

dynamical system on 

eigenvector centrality 

excess degree distribution 

exponential random graphs 

food webs 

friendship networks 

geodesic distance 

giant components 

in-components 

in-degree 

in-degree distribution 

independent paths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



joint degree distribution 

Katz centrality 

Laplacian 

loops 

mapping to undirected network 

maximum flow 

mean degree 

metabolic networks 

multiedges 

out-components 

out-degree 

out-degree distribution 

path lengths 

paths 

random graph model 

reciprocity 

self-edges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



shortest distance 

social networks 

transitivity 

World Wide Web 

directed random graph 

average degree 

edge probability 

ensemble 

excess degree distribution 

generating functions 

giant components 

giant in-component 

giant out-component 

in-components 

mean degree 

out-components 

phase transition 

small components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



strongly connected components 

weakly connected components 

disassortative mixing 

and modularity 

biological networks 

by degree 

by gender 

by scalar characteristics 

by vector characteristics 

information networks 

random graphs 

simple graphs 

social networks 

technological networks 

disconnected network 

disease spread 

and bond percolation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



and components 

and diffusion 

and eigenvector centrality 

and percolation threshold 

compartmental models 

computer simulation 

contact tracing 

fully mixed approximation 

herd immunity 

immunity 

immunization 

infected state 

infection rate 

infective state 

models 

naive population 

on networks 

recovered state 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



reinfection 

removed state 

SI model 

SIR model 

SIRS model 

SIS model 

small outbreaks 

susceptible state 

disjoint paths 

distributed database 

peer-to-peer network 

World Wide Web 

distribution network 

gas pipelines 

optimization of 

package delivery 

rivers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



sewerage 

water supply 

divisive clustering 

DNA 

gene 

repeat 

DNA computer 

DNA microarray 

dolphins, social network 

domain, Internet 

dominance hierarchy 

drug users 

dynamical system 

and Laplacian 

bifurcations 

continuous 

deterministic 

diffusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



directed networks 

discrete 

explicit time dependence 

fixed points 

gossip model 

Jacobian matrix 

limit cycles 

linearization 

linear stability analysis 

Lyapunov exponent 

more than one variable per vertex 

on a network 

one variable 

oscillation 

oscillator networks 

regular graphs 

second order 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SI model 

SIRS model 

stochastic 

synchronization 

two variables 

dynamic web 

 

 

 

 

 

 



E. coli 

ecological network 

food web 

host-parasite network 

mutualistic network 

ecosystem 

edge betweenness 

edge connectivity 

algorithm 

edge cut set 

algorithm 

edge-disjoint paths, see edge-independent paths 

edge incidence matrix 

edge-independent paths 

algorithm 

edge lengths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



airline networks 

and network optimization 

and shortest paths 

formula for 

Internet 

road networks 

social networks 

edge list 

edge percolation, see bond percolation 

edge probability 

configuration model 

directed random graphs 

exponential random graphs 

random graphs 

two-star model 

edges 

citation network 

directed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



examples of 

food webs 

friendship networks 

hyperedges 

Internet 

lengths 

metabolic networks 

multiedges 

negative weights 

percolation on 

protein-protein interaction network 

reciprocated 

self-edges 

signed 

social networks 

valued 

variables on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



weighted 

World Wide Web 

Edmonds-Karp algorithm 

ego 

ego-centered network 

assortative mixing 

clustering 

eigenvalues 

adjacency matrix 

algorithms for 

Jacobian matrix 

Laplacian 

largest 

Perron-Frobenius theorem 

power method 

eigenvector centrality 

acyclic networks 

algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



and probability of infection 

and SIR model 

and SIS model 

and snowball sampling 

citation networks 

cumulative distribution function 

directed networks 

distribution 

Internet 

normalization 

PageRank 

power-law distribution of 

problems with 

regular graphs 

undirected networks 

eigenvectors 

adjacency matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



algorithms 

eigenvector centrality 

Laplacian 

leading 

modularity matrix 

Perron-Frobenius theorem 

power method 

sparse networks 

electric circuit 

resistor network 

statistics 

electricity grid, see power grid 

electronic circuit 

resistor network 

statistics 

electrophoresis 

electrophoretic mobility shift assay 

email 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



addresses 

logs 

messages 

networks 

small-world experiment 

viruses 

email network 

address book network 

clustering coefficient 

message network 

reciprocity 

endemic disease 

SIRS model 

SIS model 

ensemble 

configuration model 

directed random graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



exponential random graph 

Poisson random graph 

random graph 

entropy 

maximum 

enzyme 

enzyme inhibitor 

epidemic models 

epidemic threshold 

and percolation threshold 

configuration model 

Poisson random graph 

SIR model 

SIS model 

epidemics 

and diffusion 

and eigenvector centrality 

and percolation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



compartmental models 

computer simulation 

contact tracing 

fully mixed approximation 

herd immunity 

immunity 

immunization 

infected state 

infection rate 

infective state 

models of 

naive population 

on networks 

recovered state 

reinfection 

removed state 

SI model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SIR model 

SIRS model 

SIS model 

small outbreaks 

susceptible state 

equivalence, regular 

Erdős, Paul 

Erdős-Rényi model, see Poisson random graph 

Escherichia coli 

Euclidean distance 

Euler beta function 

integral form 

power-law tail 

Stirling’s approximation 

Euler, Leonard 

Königsberg bridge problem 

Euler tour 

Eulerian path 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



applications 

excess degree 

excess degree distribution 

directed network 

directed random graph 

generating function 

undirected network 

expansion of a network 

exponent 

Barabási-Albert model 

biases 

citation networks 

formula for 

Hill estimator 

Internet 

Lyapunov exponent 

maximum likelihood estimate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



measurement 

preferential attachment models 

Price model 

statistical error on 

values 

vertex copying model 

World Wide Web 

exponential degree distribution 

and robustness 

configuration model 

generating functions 

network optimization 

percolation threshold 

power grid 

site percolation 

exponential distribution 

generating function 

Lorenz curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



normalization 

recovery times 

stretched exponential 

exponential generating function 

exponential random graph 

continuous phase transition 

degree distribution 

directed networks 

edge probability 

ensemble 

expectation values 

fixed degrees 

free energy 

graphical solution 

Hamiltonian 

mean-field theory 

partition function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



phase transition 

reciprocity model 

simple graphs 

sparse networks 

Strauss model 

transitivity 

 

 

 

 

 

 



Facebook 

Fibonacci heap 

filesharing network, see peer-to-peer network 

film actor database 

film actor network 

affiliation network 

betweenness centrality 

bipartite representation 

closeness centrality 

clustering coefficient 

components 

largest component 

small-world effect in 

statistics 

finite size effect 

first-in/first-out buffer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



first mover advantage 

first-order phase transition 

first passage time 

fixed choice survey 

fixed point 

attracting 

expansion around 

flows near 

linearization 

mixed 

neutral 

non-symmetric 

repelling 

saddle point 

SI model 

symmetric 

Florentine families network 

flow betweenness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



food chain 

food web 

acyclic 

Antarctic species 

cascade model 

clustering coefficient 

community food webs 

connectance 

databases 

density 

edges 

empirical measurements 

freshwater species 

Little Rock Lake 

marine species 

model of 

nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



pictures of 

sink food webs 

source food webs 

statistics 

transitivity 

trophic levels 

vertices 

weighted networks 

Ford-Fulkerson algorithm 

forest, data structure 

four-color theorem 

free choice survey 

free energy 

freshwater food web 

friendship network 

AddHealth study 

animosity in 

average degree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



community structure in 

degree 

directed networks 

edges 

geodesic distance 

groups in 

in-degree 

karate club network 

out-degree 

schoolchildren 

sparse networks 

frustration 

FTP (File Transfer Protocol) 

fully mixed approximation 

SI model 

SIR model 

SIS model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



funneling effect 

coauthorship networks 

Internet 

 

 

 



gamma function 

integral form 

Stirling’s approximation 

gas pipeline network 

picture of 

gel electrophoresis 

gender, disassortative mixing by 

gene duplication 

General Social Survey 

generating function 

and average degree 

average of distribution 

component sizes 

degree distribution 

derivatives of 

directed networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



directed random graphs 

divergence 

examples 

excess degree distribution 

exponential distribution 

exponential generating functions 

moments of distribution 

normalization 

Poisson distribution 

Poisson random graph 

power-law distribution 

powers of 

preferential attachment model 

properties of 

generative network models 

genes 

duplication 

expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



regulatory networks 

transcription 

translation 

genetic algorithm 

genetic regulatory network 

databases 

geodesic distance 

algorithm 

and closeness centrality 

average 

diameter 

directed networks 

friendship networks 

infinite 

Internet 

longest 

random graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



scale-free networks 

small-world model 

social networks 

geodesic path 

absence of loops in 

algorithm 

and betweenness centrality 

diameter of network 

infinite 

longest 

overlapping 

self-avoiding 

uniqueness 

weighted networks 

geography 

autonomous systems 

Internet 

network search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



power grid 

river network 

social networks 

telephone network 

transportation networks 

giant cluster 

algorithm 

and epidemics 

bond percolation 

configuration model 

definition 

near percolation threshold 

non-uniform percolation 

real-world networks 

scale-free networks 

scaling with network size 

site percolation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



size 

giant component 

condition for 

configuration model 

degree distribution in 

directed networks 

directed random graphs 

exponential degree distribution 

film actor network 

in-component 

more than one 

numerical calculation 

out-component 

Poisson random graph 

power-law degree distribution 

random graphs 

scale-free networks 

strongly connected 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



uniqueness 

weakly connected 

giant in-component 

giant out-component 

directed random graphs 

World Wide Web 

giant strongly connected component 

giant weakly connected component 

Gibbs entropy 

Gibbs, Willard 

G (n, m) 

G (n, p) 

Gnutella 

Google 

Google Scholar 

gossip 

model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gram-Schmidt orthogonalization 

graph 

graph bisection 

community detection 

graph partitioning 

Kernighan-Lin algorithm 

modularity maximization 

problems with 

repeated bisection 

spectral algorithm 

graph Hamiltonian, see 

Hamiltonian 

graph Laplacian, see Laplacian 

graph partitioning 

and Laplacian 

applications 

bisection 

exhaustive search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



in parallel computing 

Kernighan-Lin algorithm 

more than two groups 

ratio cut partitioning 

repeated bisection 

spectral partitioning 

two groups 

graph theory 

Graphviz (software package) 

greedy algorithm 

community detection 

message passing 

modularity maximization 

network optimization 

small-world experiment 

GTL (software library) 

Guare, John 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hamiltonian 

directed random graph 

random graph 

reciprocity model 

Strauss model 

two-star model 

Hamiltonian path 

applications 

self-avoiding 

Hamming distance 

Harary, Frank 

Harary’s clusterability theorem 

heap data structure 

adding an element to 

binary heap 

Dijkstra’s algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



epidemic simulation 

Fibonacci heap 

finding smallest value 

hierarchical clustering 

modified 

reducing a value in 

removing an element from 

root element 

sifting 

herd immunity 

heuristic algorithm 

hidden population 

hierarchical clustering 

algorithm 

and cosine similarity 

average-linkage clustering 

complete-linkage clustering 

computational complexity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



example 

implementation 

karate club network 

problems with 

running time 

single-linkage clustering 

hierarchical decomposition 

hierarchical structure 

high-throughput method 

Hill estimator 

histogram 

degree distribution 

power-law distribution 

HITS algorithm 

homophily, see assortative mixing 

host-parasite network 

Householder algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HTML (Hypertext Markup Language) 

HTTP (Hypertext Transfer Protocol) 

hub 

airline networks 

and degree distribution 

Bianconi-Barabási model 

hub-and-spoke networks 

hub centrality 

hubs and authorities 

Internet 

removal 

superhub 

hub-and-spoke network 

hub centrality 

hubs and authorities algorithm 

hyperedge 

hypergraph 

hyperlinks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



anchor text 

crawling 

distribution of 

 

 

 

 



igraph (software library) 

immune system 

immunity 

epidemic models 

herd immunity 

infants 

SIR model 

SIRS model 

SIS model 

temporary 

immunization 

acquaintance immunization 

percolation theory 

scale-free network 

targeted 

non-uniform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



immunoprecipitation 

incidence matrix 

bipartite network 

edge incidence matrix 

in-component 

directed random graph 

giant 

overlapping 

Price model 

tree-like 

World Wide Web 

in-degree 

average 

citation network 

correlation with out-degree 

degree centrality 

distribution 

social networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



World Wide Web 

independent paths 

algorithm 

and robustness 

directed networks 

edge-independent 

Menger’s theorem 

vertex-independent 

INDEX experiment 

infected state 

infection rate 

infective state 

InFlow (software package) 

information network 

assortative mixing 

citation networks 

disassortative mixing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



empirical measurements 

keyword indexes 

peer-to-peer networks 

recommender networks 

statistics 

World Wide Web 

information science 

instant messaging 

intermarriage network 

Internet 

autonomous system representation 

average degree 

average neighbor degree 

backbone 

betweenness centrality 

class C subnet representation 

clustering coefficient 

cumulative degree distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



degree distribution 

DIMES project 

domain 

domain representation 

edges 

eigenvector centrality 

exponent 

failure of routers 

funneling effect 

geodesic distances 

geography 

highest degree vertex 

Internet service providers 

IP addresses 

largest component 

mean degree 

neighbor degree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



network backbone providers 

nodes 

packet loss 

packets 

percolation on 

pictures of 

power-law degree distribution 

protocols 

robustness 

router representation 

routers 

Routeviews project 

scale-free network 

schematic picture of 

shortest paths 

site percolation on 

small-world effect 

sparse network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



statistics 

subnet representation 

subnets 

transitivity 

vertices 

Internet Movie Database 

Internet Protocol (IP) 

interviews 

inversion formula 

IP address 

ISP (Internet Service Provider) 

local 

regional 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Jacobian matrix 

diagonal 

dynamical system 

eigenvalues 

JAVA libraries 

JUNG (software library) 

 

 

 

 

 

 

 



kangaroos, social network 

karate club network 

community structure 

hierarchical clustering 

pictures of 

split in 

Katz centrality 

calculation 

directed networks 

extensions 

parameter value 

regular graphs 

undirected networks 

Katz similarity 

k-clan 

k-clique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



k-club 

k-component 

and robustness 

bicomponent 

contiguous 

non-contiguous 

random graph 

tricomponent 

k-connected component, see k-component 

k-core 

Kernighan, Brian 

Kernighan-Lin algorithm 

community detection 

comparison with spectral partitioning 

computational complexity 

example 

implementation 

key-signing network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



keyword index 

Kirchhoff current law 

Kleinberg small-world model 

Königsberg Bridge Problem 

k-plex 

k-regular graph 

circle model 

dynamical system 

eigenvector centrality 

Katz centrality 

SI model 

Krichhoff’s current law 

Kuratowski, Kazimierz 

Kuratowski’s theorem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lagrange inversion formula 

Lambert W-function 

Lanczos algorithm 

landline telephone network 

LAPACK (software library) 

Laplacian 

and algebraic connectivity 

and cut size 

block diagonal 

directed networks 

dynamical systems 

eigenvalues 

eigenvectors 

graph partitioning 

largest eigenvalue 

random walks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



reduced 

resistor networks 

second eigenvalue 

singular 

smallest eigenvalue 

spectral gap 

spectral partitioning 

spectrum 

zero eigenvalue 

large component 

absence of 

directed networks 

more than one 

World Wide Web 

largest component 

film actor network 

giant component 

Internet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



random graph 

statistics 

strongly connected 

weakly connected 

World Wide Web 

latent semantic indexing 

LEDA/AGD (software library) 

Lee, Christopher 

left eigenvector 

legal citation network 

Lerch transcendent 

letter-passing experiment, see small-world experiment 

LexisNexis 

library science 

LimeWire 

limit cycle 

linearization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



linear stability analysis 

link 

LinkedIn 

Little Rock Lake food web 

LiveJournal 

local clustering coefficient 

and global clustering coefficient 

and redundancy 

dependence on degree 

local ISP 

logarithmic binning 

logistic growth 

SI model 

SIS model 

long-distance telephone network 

longitudinal network studies 

loops 

absence in acyclic networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



absence in citation networks 

absence in geodesic paths 

absence in small components 

absence in trees 

in directed networks 

length three 

length two 

number of given length 

self-loops 

structural balance 

Lorenz curve 

exponential distribution 

power law 

scale-free network 

Lorenz, Max 

Lotka-Volterra equations 

Lyapunov exponent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Maple (software package) 

marine food web 

marriage network 

mass-action approximation 

master equation 

Barabási-Albert model 

Bianconi-Barabási model 

for component sizes 

generalized preferential attachment 

non-linear preferential attachment 

preferential attachment 

Price model 

vertex copying model 

master stability condition 

master stability function 

Mathematica (software package) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



mathematics coauthorship network 

Matlab (software package) 

matrix 

adjacency matrix 

bibliographic coupling matrix 

cocitation matrix 

edge incidence matrix 

incidence matrix 

Jacobian 

Laplacian 

modularity matrix 

nilpotent 

Schur decomposition 

skew symmetric 

triangular 

max-flow/min-cut theorem 

weighted network 

maximum entropy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



maximum flow 

algorithm 

and connectivity 

and minimum cut 

augmenting path algorithm 

directed networks 

flow betweenness 

max-flow/min-cut theorem 

preflow-push algorithm 

weighted networks 

maximum likelihood 

McKendrick, Anderson 

mean degree, see average degree 

mean-field theory 

exponential random graph 

small-world model 

Strauss model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



two-star model 

medical doctor network 

Medici family 

Menger, Karl 

Menger’s theorem 

message passing 

greedy algorithm 

hierarchical model 

Kleinberg model 

reverse small-world experiment 

small-world experiment 

messenger RNA 

metabolic network 

bipartite representation 

C. elegans 

community structure 

databases 

degree distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



E. coli 

edges 

empirical measurements 

nodes 

picture of 

power-law degree distribution 

scale-free network 

statistics 

tripartite representation 

vertex copying 

vertices 

metabolic pathway 

databases 

metabolic reaction 

databases 

enzymes 

inhibition of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



products 

substrates 

metabolism 

anabolic 

catabolic 

metabolite 

microarray 

Milgram small-world experiment, see small-world experiment 

Milgram, Stanley 

minimum cut 

algorithm 

and connectivity 

and maximum flow 

augmenting path algorithm 

directed networks 

max-flow/min-cut theorem 

preflow-push algorithm 

weighted networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



minimum spanning tree 

mixed fixed point 

model 

airline network 

biological networks 

cascade model 

circle model 

citation network 

compartmental 

disease spread 

epidemics 

food web 

generative 

gossip 

growing network 

hierarchical model 

message passing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



network formation 

network optimization 

of Barabási and Albert 

of Bianconi and Barabási 

of Erdős and Rényi 

of Ferrer i Cancho and Solé 

of Gastner and Newman 

of Kleinberg 

of Price 

of Strauss 

of Watts and Strogatz 

preferential attachment 

protein-protein interaction network 

p-star models 

reciprocity model 

road network 

SI model 

SIR model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SIRS model 

SIS model 

small-world effect 

small-world model 

two-star model 

vertex copying 

World Wide Web 

modularity 

alternative forms 

community detection 

matrix form 

maximization 

normalization 

values of 

modularity matrix 

eigenvectors 

generalized 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



leading eigenvector 

sparseness 

modularity maximization 

algorithms 

bisection 

computational complexity 

genetic algorithm 

greedy algorithm 

simulated annealing 

spectral algorithm 

vertex moving algorithm 

Molloy-Reed criterion 

moment closure 

configuration model 

SI model 

moments 

and generating function 

divergence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



first 

power-law distribution 

second 

monkeys, social network 

Moreno, Jacob 

motifs 

movie database 

multiedges 

and adjacency list 

and adjacency matrix 

citation networks 

configuration model 

directed networks 

preferential attachment model 

Price model 

scale-free networks 

small-world model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



multigraph 

adjacency matrix for 

connection to weighted networks 

mutualistic network 

MySpace 

 

 

 

 

 



naive population 

name generator 

Napster 

National Longitudinal Study of Adolescent Health 

neighbor degree 

average 

coauthorship network 

configuration model 

Internet 

neighbors 

at given distance 

average degree of 

second neighbors 

Netminer (software package) 

network 

network backbone provider 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



network optimization 

airline networks 

distribution networks 

greedy algorithm 

model of Ferrer i Cancho and Solé 

model of Gastner and Newman 

road networks 

simulated annealing 

transportation networks 

network visualization 

Network Workbench (software package) 

NetworkX (software package) 

neural network 

C. elegans 

empirical measurements 

picture of 

statistics 

neuron 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



neutral fixed point 

news spreading 

nilpotent matrix 

node 

average degree 

centrality 

citation network 

degree 

examples of 

food web 

groups of 

high degree 

highest degree  

importance 

Internet 

metabolic network 

power grid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



removal 

social network 

values on 

World Wide Web 

node-disjoint paths, see node-independent paths 

node-independent paths 

algorithm for 

non-linear preferential attachment 

degree distribution 

empirical measurements 

non-symmetric fixed point 

NP (complexity class) 

 

 

 

 

 

 

 

 

 

 

 

 



occupation probability 

oil pipeline network 

one-mode projection 

film actor network 

rail networks 

weighted networks 

online network 

blogs 

Facebook 

instant messaging 

LinkedIn 

LiveJournal 

MySpace 

social networks 

Usenet 

weblogs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



O notation 

Opte project 

optimization 

airline networks 

distribution networks 

genetic algorithms 

greedy algorithms 

model of Ferrer i Cancho and Solé 

model of Gastner and Newman 

modularity 

relaxation method 

road networks 

simulated annealing 

transportation networks 

orthogonalization 

Gram-Schmidt 

spectral partitioning 

oscillation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



dynamical systems 

predator-prey dynamics 

SIRS model 

synchronization 

oscillator network 

out-component 

and eigenvector centrality 

directed random graphs 

giant 

overlapping 

World Wide Web 

out-degree 

average 

correlation with in-degree 

degree centrality 

distribution 

friendship network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



social network 

World Wide Web 
 

 



package delivery network 

packet, Internet 

packet switched network 

Internet 

telephone network 

PageRank 

extensions of 

Google 

offline calculation 

parameter value 

pair approximation 

Pajek (software package) 

papers 

citation 

coauthorship 

partition function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



patent citation network 

path lengths 

algorithms 

diameter 

directed networks 

random graphs 

shortest 

paths 

augmenting 

directed networks 

disjoint 

edge-disjoint 

edge-independent 

Eulerian 

geodesic 

Hamiltonian 

independent paths 

in trees 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



lengths 

loops 

number of given length 

random walks 

self-avoiding 

shortest 

vertex-disjoint 

vertex-independent 

weighted networks 

P (complexity class) 

Pearson coefficient 

algorithm for 

and assortative mixing 

and community detection 

for degree 

for rows of adjacency matrix 

calculation of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



peer-to-peer network 

bandwidth usage 

breadth-first search 

client nodes 

Gnutella 

LimeWire 

Napster 

search 

statistics 

supernodes 

percolation 

algorithm 

and epidemics 

and robustness 

Bethe lattice 

bootstrap percolation 

breadth-first search 

by degree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



clusters 

coauthorship network 

configuration model 

continuous phase transition 

giant cluster 

immunization 

Internet 

joint site/bond percolation 

non-uniform 

occupation probability 

phase transition 

Poisson random graph 

power grid 

power-law degree distribution 

random graphs 

random removal of vertices 

real-world networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



relabeling algorithm 

road networks 

scale-free networks 

social network 

spanning cluster 

targeted attacks 

threshold 

uniform removal of vertices 

vaccination 

percolation threshold 

and epidemics 

bond percolation 

configuration model 

Poisson random graph 

real-world networks 

sharpness 

site percolation 

periphery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Perron-Frobenius theorem 

personal network 

PGP (software package) 

phase diagram 

phase transition 

configuration model 

continuous 

directed random graph 

exponential random graphs 

first-order 

percolation 

Poisson random graph 

random graphs 

second-order 

Strauss model 

third-order 

two-star model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



physicist coauthorship network 

percolation on 

statistics 

pipeline network 

planar network 

approximately planar 

average degree 

countries 

detection 

Kuratowski’s theorem 

measures of planarity 

river networks 

road networks 

trees 

plant root network 

point mutation 

Poisson degree distribution 

generating functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



random graph 

small-world model 

Poisson distribution 

generating function 

Poisson random graph 

and exponential random graph 

average component size 

average degree 

clustering coefficient 

community structure 

components 

degree distribution 

diameter 

divergence of component sizes 

ensemble 

epidemic transition on 

extensive components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



fixed number of edges 

generating functions 

giant component 

G (n, m) 

G (n, p) 

graphical solution 

large size limit 

largest component 

number of edges 

path lengths 

percolation on 

phase transition 

problems with 

robustness 

simple graph 

SIR model 

small components 

small-world effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



transitivity 

tree-like components 

Pólyaʹs urn 

polylogarithm function 

polymers 

power failures 

power grid 

degree distribution 

percolation on 

power failures 

statistics 

power-law degree distribution 

and giant component 

and multiedges 

and percolation 

and robustness 

Barabási-Albert model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



citation networks 

clustering coefficient 

configuration model 

cumulative distribution 

detection 

diverging second moment 

exponent 

generating functions 

immunization 

Internet 

Lorenz curves 

metabolic networks 

non-power-law distributions 

peer-to-peer network 

preferential attachment models 

Price model 

robustness of networks 

site percolation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vaccination 

vertex copying model 

visualization 

World Wide Web 

power-law distribution 

beta function 

betweenness centrality 

centrality measures 

cumulative distribution 

cut off 

degrees 

detection 

diverging second moment 

eigenvector centrality 

exponent 

first moment 

generating functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hill estimator 

histograms 

Lorenz curves 

maximum likelihood estimator 

mean 

moments 

normalization 

power failures 

properties 

pure form 

second moment 

simple graph 

tail 

visualization 

power method 

computational complexity 

convergence 

for second eigenvalue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



spectral partitioning 

predator-prey interactions 

preferential attachment 

addition of extra edges 

and vertex copying 

average degree 

Barabási-Albert model 

Bianconi-Barabási model 

citation networks 

computer simulation 

cumulative degree distribution 

degree as a function of time 

empirical evidence for 

exponent 

extensions 

models 

multiedges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



non-linear 

power-law degree distribution 

Price model 

removal of edges 

removal of vertices 

sublinear 

superlinear 

vertex fitness 

Yule process 

preflow-push algorithm 

prey protein 

Price, Derek de Solla 

Price model 

acyclic networks 

average degree 

citation networks 

components 

computer simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



cumulative degree distribution 

degree distribution 

degrees as a function of time 

drawbacks 

exponent 

extensions 

in-components 

master equation 

multiedges 

power-law degree distribution 

relation to Barabási-Albert model 

relation to vertex copying model 

World Wide Web 

probability generating function, see generating function 

projection, one-mode, see one-mode projection 

protein 

bait protein 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



complexes 

interaction networks 

prey protein 

protein-protein interaction network 

affinity purification 

bipartite representation 

co-immunoprecipitation 

databases 

models of 

mutations 

picture of 

S. cerevisiae 

statistics 

tandem affinity purification 

two-hybrid screen 

vertex copying 

yeast 

yeast two-hybrid screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



protocols, Internet 

p-star model 

public-key cryptography 

 

 

 

 



QL algorithm 

questionnaires 

queue 

 

 

 

 



race, assortative mixing by 

radix sort 

rail network 

bipartite representation 

one-mode projection 

random-field Ising model 

random graph 

assortative 

average component size 

average degree 

average number of edges 

binomial degree distribution 

bipartite 

clustering 

clustering coefficient 

community structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



components 

condition for giant component 

continuous phase transition 

degree correlations 

degree distribution 

diameter 

disassortative 

divergence of component size 

edge probability 

ensemble 

extensive components 

fixed degree distribution 

fixed degree sequence 

fixed expected degrees 

fixed number of edges 

geodesic distances 

giant component 

G(n, m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



G(n, p) 

graphical solution 

Hamiltonian for 

large size limit 

largest component 

number of edges 

path lengths 

percolation on 

phase transition 

Poisson degree distribution 

Poisson random graph 

self-edges 

shortest paths 

simple graph 

small components 

small-world effect 

transitivity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



tree-like components 

triangles in 

randomized tree 

random walk 

absorbing 

and Laplacian 

and vertex degree 

search strategy 

self-avoiding 

random-walk betweenness 

random-walk sampling 

random-walk search 

rank/frequency plot 

ratio cut partitioning 

reciprocated edges 

reciprocity 

calculation of 

email network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



exponential random graph model 

model of 

World Wide Web 

reciprocity model 

recommender network 

bipartite representation 

collaborative filtering 

weighted network 

recommender system 

record dynamics 

recovered state 

recovery from disease 

exponential distribution of 

reduced adjacency matrix 

reduced Laplacian 

redundancy 

REGE algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



regional ISP 

regular equivalence 

and community detection 

Katz similarity 

measures of 

REGE algorithm 

regular graph 

circle model 

dynamical system on 

eigenvector centrality 

Katz centrality 

SI model on 

regulatory network, genetic 

reinfection 

relaxation method 

removed state 

Rényi, Alfred 

reorthogonalization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gram-Schmidt orthogonalization 

spectral partitioning 

repeated bisection 

community detection 

graph partitioning 

problems with 

repelling fixed point 

residual graph 

resilience, see robustness 

resistor network 

and Laplacian 

respondent-driven sampling 

reverse small-world experiment 

Rey, Fernando 

rich-get-richer effect 

Riemann zeta function 

generalized 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



incomplete 

right eigenvector 

river network 

picture of 

planarity 

tree-like 

RNA 

messenger RNA 

transfer RNA 

RNA polymerase 

road network 

edge lengths 

model of 

optimization model 

percolation on 

planarity 

robots.txt 

robustness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



and connectivity 

and cut sets 

and epidemics 

and k-components 

configuration model 

exponential degree distribution 

independent paths 

Internet 

percolation 

Poisson random graph 

power-law degree distribution 

real-world networks 

scale-free networks 

social networks 

targeted attacks 

vertex removal 

Roget’s Thesaurus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



rooted tree 

root node 

roots 

formula for lengths 

router 

failure 

routing tables 

router table 

Routeviews project 

routing table 

rumor spreading 

running time 

adjacency list operations 

adjacency matrix operations 

augmenting path algorithm 

betweenness centrality algorithm 

breadth-first search 

Dijkstra’s algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



hierarchical clustering 

Kernighan-Lin algorithm 

modularity maximization 

on sparse networks 

power method 

spectral partitioning 

worst-case 

 

 

 

 

 

 

 

 



Saccharomyces cerevisiae 

saddle point 

Salton cosine similarity, see cosine similarity 

scale-free network 

average geodesic distances 

Barabási-Albert model 

citation networks 

clustering coefficient 

configuration model 

core 

cumulative degree distribution 

diameter 

exponent 

geodesic distances 

giant component 

giant percolation cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



immunization 

Internet 

Lorenz curves 

metabolic networks 

multiedges 

non-uniform percolation 

peer-to-peer networks 

percolation 

preferential attachment models 

Price model 

robustness 

shortest paths 

SIR model on 

site percolation 

vaccination 

vertex copying model 

World Wide Web 

scaling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



allometric scaling 

in biology 

small-world model 

scaling parameter, see exponent 

S. cerevisiae 

Schur decomposition 

Science Citation Index 

scientific citation network 

scientific coauthorship network 

average neighbor degree 

biologists 

clustering coefficient 

funneling effect 

mathematicians 

percolation on 

physicists 

statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



triadic closure in 

scientific papers 

citation 

coauthorship 

Scopus 

search 

engine 

filesharing network 

peer-to-peer network 

random-walk search 

small-world experiment 

web search 

search engine 

Alta Vista 

Ask.com 

Google 

Teoma 

second neighbors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



second-order phase transition 

self-avoiding path 

geodesic path 

Hamiltonian path 

random walk 

shortest path 

self-avoiding walk 

self-edge 

acyclic network 

and adjacency list 

and adjacency matrix 

cocitation networks 

computer representation 

configuration model 

directed networks 

random graphs 

self-loop, see self-edge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



sewerage network 

sexual contact network 

sexually transmitted disease 

shortcut 

shortest augmenting path algorithm 

shortest distance, see geodesic distance 

shortest path 

absence of loops in 

algorithm 

diameter of network 

Dijkstra’s algorithm 

infinite 

longest 

overlapping 

self-avoiding 

small-world effect 

uniqueness 

weighted networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



shortest path tree 

betweenness centrality 

breadth-first search 

Dijkstra’s algorithm 

weighted networks 

signed edges 

signed network 

similarity 

and community detection 

between groups of vertices 

cosine similarity 

Euclidean distance 

Katz similarity 

non-network measures 

Pearson coefficient 

regular equivalence 

structural equivalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



similarity transformation 

SI model 

and configuration model 

as a dynamical system 

degree-based approximation 

early-time behavior 

equations 

fixed points 

fully mixed 

initial conditions 

late-time behavior 

logistic growth 

moment closure method 

on a regular graph 

short-time behavior 

solution 

symmetric fixed point 

time-dependent properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Simon, Herbert 

simple graph 

disassortative mixing 

exponential random graph model 

maximum number of edges 

Poisson random graph 

random graph 

with power-law degree distribution 

simple network, see simple graph 

simulated annealing 

community detection 

modularity maximization 

network optimization 

single-linkage clustering 

implementation 

singular value decomposition 

sink food web 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SIR model 

and bond percolation 

and configuration model 

and eigenvector centrality 

basic reproduction number 

degree-based approximation 

early-time behavior 

epidemic outbreaks 

epidemic threshold 

fully mixed 

initial conditions 

late-time behavior 

Poisson random graph 

power-law networks 

random graphs 

scale-free networks 

short-time behavior 

size of outbreaks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



small outbreaks 

time-dependent properties 

transmission probability 

SIRS model 

and endemic disease 

as a dynamical system 

equations 

oscillations in 

SIS model 

and eigenvector centrality 

and endemic disease 
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degree-based approximation 

early-time behavior 
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initial conditions 

late-time behavior 

logistic growth 

short-time behavior 

solution 

time-dependent properties 
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site percolation 
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Bethe lattice 
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by degree 
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configuration model 
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Internet 
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phase transition 
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targeted attacks 
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small components 
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adjacency matrix 

Laplacian 

small-world effect 

Internet 

message passing experiments 

models of 

Poisson random graph 

random graph 
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and network search 
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email version 

failure of 
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response rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



reverse small-world experiment 

small-world model 

average path length 

clustering coefficient 

d-dimensional 

degree distribution 

geodesic distance 

Kleinberg variant 

mean-field theory 

message passing model 

multiedges 

numerical simulation 

Poisson degree distribution 

scaling theory 

small-world effect 

transitivity 

triangles in 

two-dimensional 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



variants 

SMTP (Simple Mail Transfer Protocol) 

snowball sampling 

and eigenvector centrality 

biases 

network reconstruction from 

social network 

actors 

AddHealth study 

animals 

animosity 

archival data 

assortative mixing 

average degree 

biases in 

bipartite 

blogs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



brokers 

clustering coefficient 

community structure 

degree 

degree distribution 

directed networks 

direct observation 

disassortative mixing 

disease spread 

edges 

email network 

empirical measurements of 

Facebook 

film actor network 

friendship network 

geodesic distances 

groups in 
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instant messaging 

intermarriage network 

karate club network 

LinkedIn 

LiveJournal 

mean degree 

medical doctors 

MySpace 

online 
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out-degree 

percolation on 

personal networks 

questionnaires 

respondent-driven sampling 

rumor spreading 

schoolchildren 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



shortest distances 

Southern Women Study 

sparse networks 

third-party records 

time-resolved 

triads in 

Usenet 

weblogs 

social network analysis 

Social Science Citation Index 

sociogram 

sociometric network studies 

sociometric superstars 

sociometry 

software call graph 

software class network 

software packages 

Graphviz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GTL 

igraph 

InFlow 

JUNG 

LEDA/AGD 

Mathematica 

Matlab 

Netminer 

network of 

Network Workbench 

NetworkX 

Pajek 

UCINET 

Visone 

web crawlers 

yEd 

source food web 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Southern Women Study 

affiliation network 

bipartite network 

picture of 

spanning percolation cluster 

spanning tree 

sparse network 

adjacency matrix of 

algorithms on 

breadth-first search on 

eigenvectors of 

exponential random graphs 

friendship networks 

Internet 

running time of algorithms 

social networks 

World Wide Web 

spectral gap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



spectral partitioning 

algebraic connectivity 

community detection 

examples 

Laplacian 

modularity matrix 

running time 

spectrum 
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spontaneous symmetry breaking 

stability analysis 

stability condition 

stability function 

star graph 

betweenness centrality 

transportation network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



static web 

Stirling’s approximation 

stratified network 

Strauss model 

stretched exponential 

strongly connected component 

acyclic networks 

citation networks 

cycles in 

directed random graphs 

giant 

largest 

small 

World Wide Web 

structural balance 

structural equivalence 

structural holes 

subnet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



class A and B 

class C 

Internet representation 

superhub 

supernode 

superpeer 

surveys 

design of 

fixed choice 

free choice 

General Social Survey 

name generators 

respondent-driven sampling 

telephone surveys 

susceptible-infected model, see SI model 

susceptible-infected-recovered model, see SIR model 

susceptible-infected-susceptible model, see SIS model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



susceptible state 

symmetric fixed point 

symmetry breaking 
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tandem affinity purification 

TCP (Transmission Control Protocol) 

technological networks 

airline network 

assortative mixing 

disassortative mixing 

distribution networks 

empirical measurements of 

gas pipelines 

Internet 

oil pipelines 

power grid 

rail network 

road network 

statistics 

telephone network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



transportation networks 

telephone call graph 

telephone company 

telephone exchange 

local 

long distance 

telephone network 

circuit switched 

geography 

long-distance offices 

packet switched 

schematic representation 

toll-switching offices 

telephone surveys 

Teoma 

thesaurus network 

third-order phase transition 

threshold 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



appearance of giant component 

epidemic 

percolation 

tie 

time complexity 

time-resolved social network 

toll-switching office 
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train network, see rail network 

transcription factor 

transfer RNA 

transitivity 

cliques 

directed networks 

exponential random graphs 
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Internet 
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perfect 
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random graphs 

small-world model 
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Strauss model 

World Wide Web 
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transmission rate 
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airline network 

maintenance costs 
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star graph 
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trapezium rule, see trapezoidal rule 

trapezoidal rule 

tree 

absence of loops in 

adjacency tree 

and configuration model 

and random graph 

AVL tree 

Bethe lattice 

betweenness centrality 

Cayley tree 

clustering coefficient 

data structure 
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hierarchical network model 

in-components 

leaf nodes 
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number of edges 
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planarity 

randomized 

river networks 

rooted 

root node 
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AVL tree 
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binary heap 
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depth 
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Euler tour 

finding an element in 

leaf node 

parent node 

pivot 

rebalancing 

root node 

triad 

closed 

signed networks 

social networks 

stable 

unstable 

triadic closure 

triangles 

and clustering coefficient 

random graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



small-world model 

Strauss model 

triangular lattice 

triangular lattice 

triangular matrix 

tricomponent 

non-contiguous 

tripartite network 

trophic level 

trophic species 

trust network 

two-hybrid screen 

two-mode network 

two-star 

two-star model 

coexistence region 

continuous phase transition 

edge probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hamiltonian 

mean-field theory 

phase diagram 

phase transition 

problems with 
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UCINET (software package) 

UDP (User Datagram Protocol) 

undirected network 

adjacency list 

adjacency matrix 

average degree 

betweenness centrality 

clustering coefficient 

components 

connectivity 

degree 

degree distribution 

degree sequence 
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transitivity 

URL 
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vaccination 

acquaintance immunization 

non-uniform 

percolation theory 

scale-free network 

targeted 

valued network, see weighted network 

vertex connectivity 

vertex copying 

biological networks 

citation networks 

gene duplication 

metabolic networks 

model 

protein-protein interaction networks 

vertex copying model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



citation networks 

connection to Price model 

exponent 

master equation 

power-law degree distribution 

vertex cut set 

vertex-disjoint paths, see vertex-independent paths 

vertex-independent paths 

algorithm for 

vertex percolation, see site percolation 

vertices 

age of 

centrality 

copying 

cut set 

examples of 

food webs 

groups of 
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highest degree 

importance of 

Internet 

metabolic networks 

percolation on 
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similarity 

social networks 

values on 

World Wide Web 

virus, computer 

Visone (software package) 

visualization 

acyclic networks 

software 
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Watts-Strogatz model 

weakly connected component 

directed random graph 
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largest 

web crawler 
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for citations 

operation of 

robots.txt 

software 

web search 

web link, see hyperlink 
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web search 
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bibliographic coupling networks 
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food webs 

geodesic paths 

max-flow/min-cut theorem 

maximum flow 

minimum cut 

one-mode projections 

recommender networks 

shortest paths on 

shortest path trees 

Westlaw 

W-function 
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World Wide Web 

as distributed database 

assortative mixing 

Barabási-Albert model 

blogs 
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clustering coefficient 

co-links 

community structure 

components 

cumulative degree distribution 

degree distribution 

directed network 

disappearance of edges 
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edges 
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in-components 
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in-degree distribution 
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number of 

out-components 
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out-degree distribution 

power-law degree distribution 
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scale-free network 

search engine 

sparse network 

statistics 

strongly connected components 

transitivity 

vertices 
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web search 

 

 

 

 

 

 

 

 

 



yeast protein-protein interaction network 

yeast two-hybrid screen 

yEd (software package) 

Yule process 

Yule, Udny 

 

 

 

 

 

 



Zachary, Wayne 

zeta function 

generalized 

incomplete 

z-transform 

 

 

 

 

 

 



Plate I: The network structure of the Internet. The vertices in this representation of the Internet 

 



are “class C subnets”—groups of computers with similar Internet addresses that are usually under 
the management of a single organization—and the connections between them represent the routes 
taken by Internet data packets as they hop between subnets. The geometric positions of the vertices 
in the picture have no special meaning they are chosen simply to give a pleasing layout and are not 
related, for instance, to geographic position of the vertices. The structure of the Internet is 
discussed in detail in Section 2.1. Figure created by the Opte Project www.opte.org. Reproduced 
with permission. 
  

Plate II The food web of ittle ock ake Wisconsin. This elegant picture summarizes the known 
predatory interactions between species in a freshwater lake in the northern United States. The 
vertices represent the species and the edges run between predator-prey species pairs. The vertical 
position of the vertices represents, roughly speaking, the trophic level of the corresponding 
species. The figure was created by Richard Williams and Neo Martinez [210]. 
  

 

 

 



Plate III The structure of the Internet at the level of autonomous systems. The vertices in this 
network representation of the Internet are autonomous systems and the edges show the routes 
taken by data traveling between them. This figure is different from Plate I, which shows the 
network at the level of class C subnets. The picture was created by al Burch and Bill Cheswick. 
Patent(s) pending and Copyright Lumeta Corporation 2009. Reproduced with permission. 
  

 

 



 



Plate I metabolic network. A wallchart showing the network formed by the major metabolic 
pathways. Created by Donald Nicholson. Copyright of the International Union of Biochemistry 
and Molecular Biology. Reproduced with permission. 
  
 



1 

Singular: vertex. 
2 

An example appears as Fig. 5.2 on page 83. 
3 

One must be careful when there are vertex pairs in the network that are connected by no path at all. 
Such issues are dealt with in Section 8.2. 

4 

Most of the well-known communications protocols of the Internet are themselves built on top of 
TCP, including HTTP (the World Wide Web), SMTP (email), and FTP (file transfer). Thus 
communication is a three-layer process with a user-level protocol running on top of TCP, which in 
turn runs on top of IP, and the user protocols automatically benefit from the error-checking 
features and guaranteed transmission offered by TCP. (There are lower-level transport protocols as 
well, such as Ethernet, PPP, and ATM, but these will not concern us.) There are however also 
some applications of Internet technology that do not require guaranteed transmission. Most of the 
common examples are streaming media, such as audio and video transmissions, voice and 
teleconferencing, and online games. An alternative protocol to TCP called User Datagram 
Protocol (UDP), which provides no transmission guarantees, is used in such cases. 

5 

We are assuming that each packet takes the same route to the destination. It is possible, but 
relatively rare, for different packets to take different routes, in which case the set of IP addresses 
returned by the traceroute procedure will not give a correct path through the network. This can 
happen, for instance, if congestion patterns along the route vary significantly while the procedure 
is being performed, causing the network to reroute packets along less congested connections. 
Serious Internet mapping experiments perform repeated traceroute measurements to minimize the 
errors introduced by effects such as these. 

6 

See www.netdimes.org. 
7 

If there were a unique best path to every vertex, then the set of paths would be precisely a tree, i.e., 
it would contain no loops. Because of the way routing algorithms work, however, this is not in 
practice always the case—two routes that originate at the same point and pass through the same 
vertex on the way to their final destination can still take different routes to get to that vertex, so 
that the set of paths can contain loops. 

8 

See www.routeviews.org. 
9 

Social networks are perhaps the main exception—in many cases people or groups of people can be 
considered to have reasonably well-defined geographic locations. Relatively little work has been 
done however on the effects of geographic distribution, perhaps because most social network 
studies have concentrated on populations in local neighborhoods, rather than ones spread out over 
significant geographic areas. 

10 

For most of its existence, the telephone network has connected together stationary telephones in 
fixed locations such as houses and offices using landlines. In the last twenty years or so fixed 
telephones have started to be replaced by wireless phones (“mobile phones” or “cell phones”), but 



it is important to realize that even calls made on wireless phones are still primarily carried over the 
traditional landline telephone network. The signal from a wireless phone makes the first step of its 
journey wirelessly to a nearby transmission tower, but from there it travels over ordinary phone 
lines. Thus, while the advent of wireless phones has had an extraordinary impact on society, it has 
had rather less impact on the nature of the telephone network. 

11 

A junior high school in the United States is a school for children aged approximately 12 to 14 
years. 

12 

One can, by asking both, make some estimate of the accuracy of the survey. If individuals’ 
responses disagree too often, it is a clear sign that the reliability of the responses is poor. 

13 

See www.cpc.unc.edu/projects/addhealth. 
14 

Such networks are also called egocentric networks, although this term, which has its origins in 
social science and psychology, has taken on a different lay meaning which prompts us to avoid its 
use here. 

15 

This can be done, for example, by random-digit dialing, the practice of calling random telephone 
numbers in the target area and surveying those who answer. 

16 

Some care must be taken in the selection of the names, since the frequency of occurrence of names 
varies considerably, both from name to name, and geographically and culturally. 

17 

In American universities a “fraternity” is a semi-independent boarding house for male students. 
18 

Technically, the public key can be used to decrypt the message, but the calculation involved is 
extraordinarily complex and would take years or even centuries of effort on the fastest modern 
computers. For practical purposes, therefore, one can only decrypt the message if one has the 
private key. 

19 

In practice it is a little more complicated than this. Asymmetric cyphers are computationally 
demanding to implement, far more so than the traditional (but less secure) symmetric cyphers in 
which the same key is used by both parties. To reduce demands on computer time, therefore, one 
usually uses the asymmetric cypher only to transmit from one party to the other a key for use in a 
symmetric cypher, and then the symmetric cypher, with that key, is used for all subsequent 
communications. In this way one benefits from the security of public-key cryptography without the 
computational overhead. For our purposes in this section, however, this is just a technical detail. 

20 

Again, this is not completely true. One can encode a message using the public key that will decode 
with the same key, but again the calculations necessary to do this are extraordinarily lengthy, much 
lengthier than those using the private key, and hence for practical purposes only the person with 
the private key could have created the encrypted message. 

21 

Milgram was particularly influenced in his work by a mathematical paper by Pool and Kochen 



[270] that dealt with the small-world phenomenon and had circulated in preprint form in the social 
science community for some years when Milgram started thinking about the problem, although the 
paper was not officially published until many years later. 

22 

In fact Milgram conducted several sets of small-world experiments. The one described here is the 
first and most famous, but there were others [186, 311]. 

23 

The phrase “six degrees of separation” did not appear in Milgram’s writing. It is more recent and 
comes from the title of a popular Broadway play by John Guare [149], later made into a film, in 
which the lead character discusses Milgram’s work. 

24 

Furthermore, it appears that some of the initial recipients may have been selected not at random 
but by advertising for volunteers in the local newspaper [181], a procedure unlikely to produce a 
truly random sample of the population. 

25 

Also sometimes called ʺINDEXʺ experiments, which is an abbreviation for “informantdefined 
experiment.” 

26 

In snowball sampling the sample size grows exponentially with the number of sampling waves and 
hence one typically only performs a logarithmic number of waves, which is not enough for the 
sampling process to reach equilibrium. In random walk sampling the sample size grows only 
linearly. 

27 

This is only the number of reachable static pages. The number of unreachable pages is difficult to 
estimate, and dynamic pages (see later) are essentially infinite in number, although this may not be 
a very meaningful statement since these pages don’t exist until someone asks for them. 

28 

Which web pages a crawler finds does depend on where the crawl starts. A crawler can find a web 
page with no incoming links, for instance, if (and only if) it starts at that page. In practice, 
however, the starting point has remarkably little effect on what a crawler finds, since most of what 
is found consists of the giant out-component mentioned above, whose content does not depend on 
the starting point. 

29 

Indeed, academic studies of the Web within the information sciences sometimes refer to hyperlinks 
as “citations,” a nomenclature that emphasizes the close similarities. 

30 

On rare occasions it occurs that an author or authors will publish two papers simultaneously in the 
same volume of a journal and, with the help of the printers, arrange for each paper to cite the other, 
creating a cycle of length two in the network. Thus, the citation network is not strictly acyclic, 
having a small number of short cycles scattered about it. 

31 

And it’s been cited one more time now. 
32 

Westlaw is owned and operated by Thomson Reuters, the same company that owns the Science 



Citation Index. 
33 

The Napster name was later bought up by the recording industry and is now the name of a 
legitimate online music service, although one that does not make use of peer-to-peer technology. 

34 

The metabolic network is the only example of a directed bipartite network appearing in this book, 
and indeed the only naturally occurring example of such a network the author has come across, 
although no doubt there are others to be discovered if one looks hard enough. 

35 

Also the only such network in the book. 
36 

Also called a yeast two-hybrid screen or Y2HS for short, in recognition of the fact that the 
technique is usually implemented inside yeast cells, as discussed later. 

37 

Technically, DNA is a double-stranded polymer, having two parallel chains of nucleotides forming 
the famous double helix shape. However, the two strands contain essentially the same sequence of 
nucleotides and so for our purposes the fact that there are two is not important (although it is very 
important in other circumstances, such as in the reproduction of a cell by cellular division and in 
the repair of damaged DNA). 

38 

“Assay” is biological jargon for an experimental test. 
39 

Neurons do sometimes have direct connections between them without synapses. These direct 
connections are called gap junctions, a confusing name, since it sounds like it might be a 
description of a synapse but is in reality quite different. In our brief treatment of neural networks, 
however, we will ignore gap junctions. 

40 

In common parlance, one refers to a food chain, meaning a chain of predator-prey relations 
between organisms starting with some lowly organism at the bottom of the chain, such as a 
microbe of some kind, and working all the way up to some ultimate predator at the top, such as a 
lion or a human being. Only a moment’s reflection, however, is enough to convince us that real 
ecosystems cannot be represented by single chains, and a complete network of interactions is 
needed in most cases. 

41 

In Fig. 5.8, for example, there are edges in both directions between the fish and squid vertices, 
which makes it impossible to draw the network with all edges running in the same direction. 

42 

One is reminded of the schoolhouse rhyme by Augustus de Morgan:

Great fleas have little fleas upon their backs to bite ’em, 
And little fleas have lesser fleas, and so ad infinitum. 

43 

This use of the word “actor” sometimes leads to confusion: an actor need not be a person who 
actually acts, and need not even be a person. In a social network of business relationships between 

 



companies, for instance, the actors are the companies (and the ties are the business relationships).
44 

There does not seem to be a special name given to networks with self-edges. They are just called 
“networks with self-edges.” 

45 

As discussed in the next section, this is not the case for directed networks. In directed networks, 
self-edges are represented by a 1 in the corresponding diagonal element of the adjacency matrix. 

46 

The values on edges also sometimes represent lengths of some kind. On a road or airline network, 
for instance, edge values could represent the number of kilometers or miles the edges cover, or 
they could represent travel time along the edges, which can be regarded as a kind of length—one 
denominated in units of time rather than distance. Edge lengths are, in a sense, the inverse of edge 
weights, since two vertices that are strongly connected can be regarded as “close” to one another 
and two that are weakly connected can be regarded as far apart. Thus one could convert between 
weights and lengths by taking reciprocals, although this should be regarded as only an approximate 
procedure; in most cases there is no formal sense in which edge weights and lengths are 
equivalent. 

47 

The diagonal elements are a special case, since they are equal to 0 or 2 in an undirected network 
even when there are no multiedges or weighted edges. 

48 

Indeed, one can understand the appearance of the 2 in the undirected case as a consequence of the 
equivalence between undirected and directed networks mentioned above: an undirected self-edge 
can be thought of as two directed self-edges at the same vertex, each of which contributes 1 to the 
corresponding element of the adjacency matrix. 

49 

In the mathematical literature one often sees the abbreviation DAG, which is short for directed 
acyclic graph. 

50 

As discussed in Section 4.2, there are in real citation networks rare instances in which two papers 
both cite each other, forming a cycle of length two in the citation network, for instance if an author 
publishes two related papers in the same issue of a journal. Citation networks are, nonetheless, 
acyclic to a good approximation. 

51 

We could just use ordinary edges joining vertex pairs to represent our family ties, placing an edge 
between any two vertices that correspond to individuals in the same family. This, however, doesn’t 
explicitly tell us when two edges correspond to ties within the same family, and there is no single 
object in the network that corresponds to a family the way a hyperedge does in the hypergraph. In 
a number of ways, therefore, the hypergraph is more convenient. 

52 

In countries such as Spain or Canada, where same-sex marriages are permitted, the network would 
not be truly bipartite because there would be some edges between like kinds of vertex. 

53 

In principle, one could put directions on the edges of a tree and make it a directed network, but the 
definition of a tree as a loopless network ignores directions if there are any. This means that a tree 
is not the same thing as a directed acyclic graph (Section 6.4.2). A directed tree is always a 



directed acyclic graph, but the reverse is not also true, since the definition of a loop in a directed 
acyclic graph takes the directions of the edges into account. A directed acyclic graph may well 
have loops if we ignore directions (see for example Fig. 6.3). 

54 

Such parts are called “components”—see Section 6.11. 
55 

This is a slightly odd way of drawing trees, with the root at the top and the leaves at the bottom. 
The more familiar trees of the wooden kind are, of course, the other way up. The upsidedown 
orientation has, however, become conventional in mathematics and computer science, and we here 
bow to this convention. 

56 

A plane is a flat surface with open boundaries. One can define a generalization of a planar network 
for other types of two-dimensional surface, such as the torus, which wraps around on itself. A 
standard planar network, however, does not wrap around. 

57 

The theorem only applies for a map on a surface with topological genus zero, such as a flat plane 
or a sphere. A map on a torus (which has genus 1) can require as many as seven colors. 

58 

Appel and Haken’s proof is an interesting one and was controversial at the time of its publication 
because it made extensive use of a computer to check large numbers of special cases. On the one 
hand, the proof was revolutionary for being the first proof of a major mathematical result 
generated in this fashion. On the other hand a number of people questioned whether it could really 
be considered a proof at all, given that it was far too large for a human being to check its 
correctness by hand. 

59 

In graph theory Kn denotes the complete graph with n vertices, i.e., the graph of n vertices with all 

 possible single edges present. UG stands for ʺutility graph.ʺ UG is the complete bipartite graph 
on two groups of three vertices. 

60 

See Kennedy et al. [170] for an interesting history of the theorem and references to the original 
papers. 

61 

Notice that this expression still gives the correct result if there are self-edges in the graph, provided 
each such edge is represented by a diagonal element Aii = 2 as discussed earlier, and not 1. 

62 

Occasionally connectance is defined as ρ = m/n2, which for large networks differs from Eq. (6.24) 
by about a factor of 2. With that definition . 

63 

For a rigorous proof we can use induction. If there are  paths of length r − 1 from i to k, then 
by arguments similar to those above there are Akj paths of length r from i to j, or in 

matrix notation N(r)N(r−1)A, where N(r) is the matrix with elements . This implies that if N(r−1) = 
Ar−1 then N(r) = Ar and with the initial case N(1) = A we have N(r) = Ar for all r. Taking the ijth 
element of both sides then gives Eq. (6.31). 

64 



If we wish to count each loop only once, we should roughly speaking divide by r, but this does not 
allow for paths that have symmetries under a change of starting points, such as paths that consist of 
the same subloop traversed repeatedly. Counting such symmetric paths properly is a complex 
problem that can be solved exactly in only a few cases. 

65 

Such matrices have multiple or “degenerate” eigenvalues and technically have a non-zero nilpotent 
part in their Jordan decomposition. 

66 

Indeed, any mapping A → Q−1AQ of a matrix preserves its eigenvalues. Such mappings are called 
similarity transformations. 

67 

No cheating: you’re not allowed to swim or use a boat. 
68 

The word “connectivity” is occasionally also used in the networks literature as a synonym for 
“degree.” Given that the word also has the older meaning discussed here, however, this seems an 
imprudent thing to do, and we avoid it in this book. 

69 

For a first principles proof that is not based on Menger’s theorem see, for instance, Ahuja et al. [8]. 
70 

Another interesting and slightly surprising computational use of the max-flow/min-cut theorem is 
in the polynomial-time algorithm for finding ground states of the thermal random-field Ising 
model [257], an interesting cross-fertilization between network theory and physics: it is relatively 
common for physics ideas to find application in network theory, but the reverse has been 
considerably rarer. 

71 

In fact, the graph Laplacian matrix for undirected networks defined in this section does not have a 
clean generalization for directed networks, although several possible candidates have been 
suggested. Most of the results in the remaining sections of this chapter do not generalize easily to 
the directed case. 

72 

In fact the graph Laplacian doesn’t occupy quite the same position as ∇2 does in the normal 
diffusion equation—there is a plus sign in Eq. (6.42) where a minus sign appears in the normal 
equation. We could easily get rid of this discrepancy by reversing the sign of the definition in Eq. 
(6.41), but the definition as given has become the standard one and so for consistency we will stick 
with it. 

73 

This is clearly the right answer from a physical point of view, since the fluid in our diffusion 
process is conserved—there is a fixed, finite amount of it—so it is impossible for the amount on 
any vertex to become infinite. 

74 

It is not a properly normalized eigenvector. The properly normalized vector would be (1,1,1,...)/√n. 
75 

Occasionally λ2 is also called the spectral gap.
 

76 



One might think that this equation could be simplified by reordering the terms so that most of them 
cancel out, but this is not allowed. The sum viewed as individual terms is not absolutely 
convergent and hence does not have a unique limit. Only the complete sum over t as written is 
meaningful and a reordering of the terms will give the wrong answer. 

77 

For those interested in traditional social network analysis, introductions can be found in the books 
by Scott [293] and by Wasserman and Faust [320]. 

78 

Technically, there could be more than one eigenvector with eigenvalue κ1, only one of which need 
have all elements non-negative. It turns out, however, that this cannot happen: the adjacency 
matrix has only one eigenvector of eigenvalue κ1. See footnote 2 on page 346 for a proof. 

79 

This is not entirely true, as we will see in Section 7.5. Web pages that point to many others are 
often directories of one sort or another and can be useful as starting points for web surfing. This is 
a different kind of importance, however, from that highlighted by the eigenvector centrality and a 
different, complementary centrality measure is needed to quantify it. 

80 

For the left eigenvector it would be the in-component. 
81 

The eigenvalues being defined by Av = κv, we see that (A - κI)v = 0, which has non-zero solutions 
for v only if (A - κI) cannot be inverted, i.e., if det (A - κI) = 0, and hence this equation gives the 
eigenvalues κ. 

82 

Formally one recovers finite values again when one moves past 1/κ1 to higher α, but in practice 
these values are meaningless. The method returns good results only for α < 1/κ1. 

83 

It is easy to confirm that this vector is indeed an eigenvector with eigenvalue 1. That there is no 
eigenvalue larger than 1 is less obvious. It follows from a standard result in linear algebra, the 
Perron-Frobenius theorem, which states that the largest eigenvalue of a matrix such as AD-1 that 
has all elements non-negative is unique—there is only one eigenvector with this eigenvalue—that 
the eigenvector also has all elements non-negative, and that it is the only eigenvector with all 
elements non-negative. Combining these results, it is clear that the eigenvalue 1 above must be the 
largest eigenvalue of the matrix AD-1. For a discussion of the Perron-Frobenius theorem see Ref. 
[217] and the two footnotes on page 346 of this book. 

84 

This statement is only approximately correct since, as discussed in Section 6.4.1, the cocitation 
matrix is not precisely equal to the adjacency matrix of the cocitation network, having non-zero 
elements along its diagonal where the adjacency matrix has none. 

85 

Recall that geodesic paths need not be unique—vertices can be joined by several shortest paths of 
the same length. The length dij however is always well defined, being the length of any one of 
these paths. 

86 

www.imdb.com 



87 

Perhaps most famous for his role as the evil wizard Saruman in the film version of The Lord of the 
Rings. 

88 

Much of sociological literature concerns power or “social capital.” It may seem ruthless to think of 
individuals exploiting their control over other people’s information to gain the upper hand on 
them, but it may also be realistic. At least in situations where there is a significant pay-off to 
having such an upper hand (like business relationships, for example), it is reasonable to suppose 
that notions of power derived from network structure really do play into people’s manipulations of 
the world around them. 

89 

It is perhaps no coincidence that the highest betweenness belongs to an actor who appeared in both 
European and American films, played roles in several different languages, and worked extensively 
in both film and television, as well as on stage. Rey was the archetypal “broker,” with a career that 
made him a central figure in several different arms of the entertainment business that otherwise 
overlap relatively little. 

90 

This score is shared by many actors. It is the minimum possible score of 2n - 1 as described bove. 
91 

Another possibility, proposed by Freeman [128] in his original paper on betweenness, is to divide 
by the maximum possible value that betweenness can take on any network of size n, which, as 
mentioned above, occurs for the central vertex in a star graph. The resulting expression for 
between is then

 

We, however, prefer Eq. (7.38), which we find easier to interpret, although the difference between 
the two becomes small anyway in the limit of large n. 

92 

All paths, that is, that terminate at the target vertex t the first time they reach it. Since we use an 
absorbing random walk, paths that visit the target, move away again, and then return are not 
included in the random-walk betweenness. 

93 

This definition is slightly awkward to remember, since the members of a k-plex are allowed to be 
unconnected to k - 1 other members and not k. It would perhaps have been more sensible to define 
k such that a 0-plex was equivalent to a normal clique, but for better or worse we are stuck with the 
definition we have. 

94 

Note that for the purposes of this latter definition, an edge between two vertices A and B within 
the group counts as two connections, one from A to B and one from B to A. 

95 

We have to be careful about the meaning of the word “maximal” here. It is possible to have a 
group of vertices such that each is connected to at least k others and no single vertex can be added 

 



while retaining this property, but it may be possible to add more than one vertex. Such groups, 
however, are not considered to be k-cores. A group is only a k-core if it is not a subset of any 
larger group that is a k-core. 

96 

A closely related process, bootstrap percolation, has also been studied in statistical physics, 
principally on regular lattices. 

97 

To see this suppose we have a component that is perfectly transitive but not a clique, i.e., there is 
at least one pair of vertices u, w in the component that are not directly connected by an edge. Since 
u and w are in the same component they must therefore be connected by some path of length 
greater than one, u, v1, v2, v3, ... , w. Consider the first two links in this path. Since u is connected 
by an edge to v1 and v1 to v2 it follows that u must be connected to v2 if the network is perfectly 
transitive. Then consider the next two links. Since u is connected to v2 and v2 to v3 it follows that u 
must be connected to v3. Repeating the argument all the way along the path, we can then see that u 
must be connected by an edge to w. But this violates the hypothesis that u and w are not directly 
connected. Hence no perfectly transitive components exist that are not cliques. 

98 

It′s not entirely clear why the clustering coefficient has the name it has. The name doesn’t appear 
to be connected with the earlier use of the word clustering in social network analysis to describe 
groups or clusters of vertices (see Section 11.11.2). The reader should be careful to avoid 
confusing these two uses of the word. 

99 

In fact, we could count each path just in one direction, provided we did it for both the numerator 
and denominator of Eq. (7.39). Doing so would decrease both counts by a factor of two, but the 
factors would cancel and the end result would be the same. In most cases, and particularly when 
writing computer programs, it is easier to count paths in both directions—it avoids having to 
remember which paths you have counted before. 

100 

The notation Ci is used for both the local clustering coefficient and the closeness centrality and we 
should be careful not to confuse the two. 

101 

As an example, in Section 11.11.1 we study methods for partitioning networks into clusters or 
communities and we will see that effective computer algorithms for this task can be created based 
on betweenness measures, but that almost equally effective and much faster algorithms can be 
created based on local clustering. 

102 

Actually, the local clustering coefficient hadn’t yet been invented. It was first proposed to this 
author’s knowledge by Watts [321] a few years later. 

103 

As discussed in Section 8.6.1, vertices with low degree tend to have high values of Ci in most 
networks and this means that CWS is usually larger than the value given by Eq. (7.41), sometimes 
much larger. 

104 

This figure is an unusually high one among directed networks, but there are reasons for it. One is 
that many of the links between web pages are between pages on the same website, and it is 



common for such pages to link to each other. If you exclude links between pages on the same site 
the value of the reciprocity is lower. 

105 

This is similar in spirit to the concept of “frustration” that arises in the physics of magnetic spin 
systems. 

106 

The proof we give is not Harary’s proof, which was quite different and not constructive. 
107 

As an interesting historical note, we observe that while Harary’s proof of his theorem is perfectly 
correct, his interpretation of it was, in this author’s opinion, erroneous. In his 1953 paper [154], he 
describes the meaning of the theorem in the following words: “A psychological interpretation of 
Theorem 1 is that a ‘balanced group’ consists of two highly cohesive cliques which dislike each 
other.” (Harary is using the word “clique” in a non-technical sense here to mean a closed group of 
people, rather than in the graph theoretical sense of Section 7.8.1.) However, just because it is 
possible to color the network in two colors as described above does not mean the network forms 
two groups. Since the vertices of a single color are not necessarily contiguous, there are in general 
many groups of each color, and it seems unreasonable to describe these groups as forming a single 
“highly cohesive clique” when in fact they have no contact at all. Moreover, it is neither possible 
nor correct to conclude that the members of two groups of opposite colors dislike each other unless 
there is at least one edge connecting the two. If two groups of opposite colors never actually have 
any contact then it might be that they would get along just fine if they met. It’s straightforward to 
prove that such an occurrence would lead to an unbalanced network, but Harary’s statement says 
that the present balanced network implies dislike, and this is untrue. Only if the network were to 
remain balanced upon addition of one or more edges between groups of unlike colors would his 
conclusion be accurate. 

108 

This is actually a bad name for it—it should be called Hamming distance, since it is essentially the 
same as the Hamming distance of computer science and has nothing to do with Euclid. 

109 

This definition is not obviously symmetric with respect to i and j but, as we see, does in fact give 
rise to an expression for the similarity that is symmetric. 

110 

It is interesting to note that when we expand this measure in powers of the adjacency matrix, as we 
did in Eq. (7.63), the second-order (i.e., path-length two) term is the same as the structural 
equivalence measure of Eq. (7.53), which perhaps lends further credence to both expressions as 
natural measures of similarity. 

111 

The study used a “name generator”—students were asked to list the names of others they 
considered to be their friends. This results in a directed network, but we have neglected the edge 
directions in the figure. In our representation there is an undirected edge between vertices i and j if 
either of the pair considers the other to be their friend (or both). 

112 

Ignoring, for the purposes of argument, dogs, cats, imaginary friends, and so forth. 
113 

Technically, we are making connections at random while preserving the vertex degrees. We could 
in principle ignore vertex degrees and make connections truly at random, but in practice this is 
found to give much poorer results. 



114 

An alternative measure of assortativity has been proposed by Gupta et al. [152]. That measure 
however gives equal weight to each group of vertices, rather than to each edge as the modularity 
does. With this measure if one had a million vertices of each of two types, which mixed with one 
another entirely randomly, and ten more vertices of a third type that connected only among 
themselves, one would end up with a score of about 0.5 [239], which appears to imply strong 
assortativity when in fact almost all of the network mixes randomly. For most purposes therefore, 
the measure of Eq. (7.69) gives results more in line with our intuitions. 

115 

Of course, one could make up some measure of national differences, based say on geographic 
distance, but if the question we are asked is, “Are these two people of the same nationality?” then 
under normal circumstances the only answers are “yes” and “no.” There is nothing in between. 

116 

In the US school system there are 12 grades of one year each and to begin grade g students 
normally must be at least of age g + 5. Thus the 9th grade corresponds to children of age 14 and 
15. 

117 

There could be non-linear correlations in such a network and we could still have r = 0; the 
correlation coefficient detects only linear correlations. For instance, we could have vertices with 
high and low values of xi connected predominantly to vertices with intermediate values. This is 
neither assortative nor disassortative by the conventional definition and would give a small value 
of r, but might nonetheless be of interest. Such non-linear correlations could be discovered by 
examining a plot such as Fig. 7.11 or by using alternative measures of correlation such as 
information theoretic measures. Thus it is perhaps wise not to rely solely on the value of r in 
investigating assortative mixing. 

118 

For the Internet there are no vertices of degree zero, since a vertex is not considered part of the 
Internet unless it is connected to at least one other. 

119 

We used the word hub in a different and more technical sense in Section 7.5 to describe vertices in 
directed networks that point to many “authorities.” Both senses are common in the networks 
literature, and in many cases the reader must deduce from the context which is being used. In this 
book we will mostly use the word in the less technical sense introduced here, of a vertex with 
unusually high degree. When we use it in the other sense of Section 7.5 we will say so explicitly. 

120 

Such plots are also sometimes called rank/frequency plots because one of their earliest uses was to 
detect power-law behavior in the frequency of occurrence of words in natural languages. If the 
data you are measuring are frequencies, then the cumulative distribution graph is a plot of rank 
against frequency. Since then such plots have been used to detect power-law behavior in many 
quantities other than frequencies, but the name “rank/frequency plot” is still often used. 

121 

In fact, this formula is only an approximation to the full formula for the exponent. The full 
formula, unfortunately, does not give a closed-form solution for α and is therefore hard to use. 
Equation (8.6) works well provided kmin is greater than about 6, which is true for many networks. 
In cases where it is not, however, the full formula must be used—see Ref. [72]. 

122 



Using the data of Broder et al. [56]. 
123 

Using the data of Redner [280]. 
124 

For the AS-level data of Fig. 8.3. 
125 

It is sometimes claimed that essentially all networks show clustering higher than expected [12, 
323], which is at odds with the results given here. There seem to be two reasons for the 
disagreement. First, the claims are based primarily on comparisons of measured clustering 
coefficients against values calculated on the Poisson random graph, a simple model network with a 
Poisson degree distribution, which we study in Chapter 12.1. Many networks, however, have right-
skewed degree distributions which are very far from Poissonian, and hence the random graph is a 
poor model against which to compare measurements and probably gives misleading results. 
Second, the clustering coefficients in these comparisons are mostly calculated as an average of the 
local clustering, following Eq. (7.44). On networks with highly skewed degree distributions this 
definition can give very different results from the definition, Eq. (7.41), used in our calculations. 
Usually Eq. (7.44) gives much larger numbers than Eq. (7.41), which could explain the 
discrepancies in the findings. 

126 

An alternative and more complex proposal is that the behavior of the local clustering coefficient 
arises through hierarchical structure in a network—that not only are there groups, but that the 
groups are divided into smaller groups, and those into still smaller ones, and so on. See Refs. [95, 
278, 309]. 

127 

If we wish to say that the running time is exactly proportional to n, we can use the notation Θ(n). 
128 

There are occasional instances where this is not true, so it is worth just bearing in mind the 
possibility of sub-leading terms. 

129 

There are whole subfields in computer science devoted to the development of algorithms that run 
quickly even when part of the data is stored on a slow disk. Usually such algorithms work by 
reordering operations so that many operations can be performed on the same data, stored in the 
main memory, before swapping those data for others on the disk. 

130 

For directed networks, which are represented by asymmetric adjacency matrices, this issue does 
not arise—the full matrix, both the upper and lower triangles, is used to store the structure of the 
network. 

131 

Of course we could equally well store the edges in the lower triangle of the matrix and neglect the 
upper triangle. Either choice works fine. 

132 

One advantage of the adjacency matrix is that the amount of space it consumes is independent of 
the number of edges in the network. (It still depends on the number of vertices, of course.) As we 
will see in Section 9.4, other data formats such as the adjacency list use varying amounts of 
memory, even for networks with the same number of vertices, depending on how many edges 



there are. In calculations where edges are frequently added or removed it may be convenient—and 
increase the speed of our algorithms—to have the size of our data structures remain constant, 
although this advantage must be weighed against the substantial space savings of using the 
adjacency list or other memory-efficient formats. 

133 

Note that the number of entries in the list of neighbors for a vertex varies from one vertex to 
another, and may even be zero, being equal to the degree of the corresponding vertex. Most 
modern computer languages, including C and its derivatives and JAVA, allow the creation of two-
dimensional matrices with rows having varying numbers of elements in this fashion. Some older 
languages, like FORTRAN 77, do not allow this, making it more difficult to store adjacency lists 
in a memory-efficient way. 

134 

Note that the amount of memory used is now a function of m rather than than n. For algorithms in 
which edges are added or removed from a network during the course of a calculation this means 
that the size of the adjacency list can change, which can complicate the programming and 
potentially slow down the calculation. Normally, however, this added complication is not enough 
to outweigh the considerable benefits of the adjacency list format. 

135 

Indeed, the adjacency list for an undirected network such as that given above could be viewed as a 
special case of the directed adjacency list for a network in which each undirected edge is replaced 
by two directed ones, one in each direction. It takes only a moment to convince oneself that this 
results precisely in the sort of double representation of each edge that we saw in the undirected 
case. 

136 

The answers are essentially the same in the directed case. The demonstration is left as an exercise. 
137 

We are thus calculating a sort of “average worst-case” behavior, allowing for the worst case in 
which we have to look through the entire list, but then averaging that worst case over many 
different lists. This is a reasonable (and standard) approach because almost all of the algorithms we 
will be considering do many successive “find” operations during a single run, but it does mean that 
we are technically not computing the complexity of the absolute worst case situation. 

138 

This is not a standard name. As far as the present author is aware, this data structure doesn’t have a 
standard name, since it is not used very often. Moreover, the name isn’t even entirely accurate. The 
structure is technically not a tree but a forest, i.e., a collection of many trees. Still, “adjacency tree” 
is simple and descriptive, and analogous to “adjacency list,” which is also, technically, not a single 
list but a collection of lists. 

139 

The word ʺtreeʺ has a different meaning here from the one it had in Section 6.7, although the two 
are related. There a tree meant a network with no loops in it. Here it refers to a data structure, 
although as we will see, the tree data structure can also be regarded as a network with no loops. In 
effect we are using a network to store information about another network, which is a nice touch. 

140 

As pointed out in a previous footnote on page 127, it is slightly odd to put the ʺrootʺ the top of the 
tree. Most of us are more familiar with trees that have their roots at the bottom. We could of course 
draw the tree the other way up—it would have the same meaning—but it has become conventional 
to draw the root at the top of the picture, and we bow to that convention here. 



141 

A “pointer” in computer programming is a special variable that holds the address in memory of 
another variable. 

142 

The proof is as follows. 
Consider the set of “empty nodes,” meaning the missing children immediately below current 

nodes in the tree (gray boxes in the figure on the right). Suppose that when there are k nodes in 
total in the tree there are ck such empty nodes and that their average depth, measured from the root, 
is dk. When we add one new value to the tree at random it will occupy one of these empty nodes 
thereby decreasing their number by one. At the same time two new empty nodes will appear, the 
children of the newly added node. Overall therefore ck+1 = ck + 1. Noting that c1 = 2, this 
immediately implies that ck = k + 1. 

 

At the same time the sum of the lengths of all paths from the root to an empty node, which by 
definition is equal to ckdk, decreases (on average) by dk when a new random node is added and 
increases by 2(dk + 1) for the two new ones, so that ck+1dk+1 = ckdk + dk + 2. Eliminating ck, we then 
find that dk+1 = dk + 2/(k + 2). Noting that d1 = 2, this implies

 

where γ = 0.5772 ... is Euler’s constant. 
Thus the average depth of the empty nodes is O(log k). Since the find and addition operations on 

the tree both involve searching the tree until an empty node is encountered, it immediately follows 
that both operations have average complexity O(log k) on our randomized tree, just as they do on 
the optimally packed tree. 

Note that this is only a statement about the average behavior of the tree and not about the worst-
case behavior. If we are unlucky the depth of the tree could be much larger than the average, up to 
the maximum depth k. The randomized tree only provides a guarantee of average performance, 
meaning performance averaged over many possible runs of an algorithm. Individual runs will vary 
around the mean. 

143 

It does place some overhead on the edge addition and deletion operations, meaning the complexity 
is still O(1) but the operations take a constant factor longer to complete, since we have to update 
both adjacency matrix and list, where normally we would only have to update one or the other. 
Whether this makes an significant difference to the running of a program will depend on the 
particular algorithm under consideration. 

144 

Or an adjacency tree—see Section 9.5. 

 



145 

For integers, such as vertex degrees, it is under certain conditions possible to sort faster, in time O
(n), using the so-called radix sort algorithm. See, for example, Cormen et al. [81]. 

146 

An equivalent to the clustering coefficient can be defined for a directed network (see Section 7.9) 
but we limit ourselves here to the much commoner undirected case. 

147 

Note that this calculation automatically accounts for the factor of three appearing in the numerator 
of Eq. (10.3), since each triangle is counted three times, once each from the point of view of the 
three vertices it connects. 

148 

Other possible ways to improve the algorithm are to use the adjacency tree structure of Section 9.5, 
or to use the adjacency list but always test for the presence of an edge between two vertices by 
searching the neighbors of the lower-degree vertex to see if the higher is among them (rather than 
the algorithm described above, which chooses which one to search at random). 

149 

In physics, breadth-first search is sometimes called the “burning algorithm.” 
150 

In many cases we may find the result we want before calculating all distances, in which case we 
can save ourselves the effort of calculating the rest, but in the worst case we will have to calculate 
them all. See Section 10.3.4 for more discussion. 

151 

On the other hand, for a dense network where m ∝ n2, we have a running time of O(n2).
 

152 

Note that this actually counts each path twice (since the path between i and j is counted once when 
i is considered the source vertex and once when j is), except for the path from each vertex to itself, 
which is counted only once (when that vertex is the source). This, however, is correct: the 
betweenness centrality, as defined in Eq. (7.36), indeed counts each path twice, except for the path 
from a vertex to itself. As discussed in Section 7.7, some researchers define betweenness 
differently, counting paths only once, but that merely reduces all values by a factor of two. 

153 

In this case we are considering the first and last vertices on a path to be members of that path. As 
discussed in Section 7.7, the first and last vertices are sometimes excluded from the calculation, 
which means that the betweenness score of each vertex is smaller by an additive constant equal to 
twice the number of vertices in the component. If we wish to calculate betweenness according to 
this alternative definition, the simplest approach is to use the algorithm described here and then 
subtract the additive constant from each vertex’s score at the end. 

154 

As discussed in footnote 9, these scores give the betweenness as defined in Eq. (7.36). To get true 
path counts one would have to divide by two and add a half (or equivalently add one then divide 
by two) to correct for the double counting of paths between distinct vertices. 

155 

We assume that the lengths are all non-negative. If lengths can be negative, which happens in 
some cases, then the problem is much harder, falling in the class of “NP-complete” computational 
problems, for which even the best known algorithms take an amount of time exponential in n to 



finish, in the worst case [8]. Indeed, if edges are allowed to have negative lengths, there may not 
be any shortest path between a pair of vertices, since one can have a loop in the network that has 
negative length, so that one can reduce the length of a path arbitrarily by going around the loop 
repeatedly. 

156 

In theory one can achieve a slightly better running time of O(m + n log n) using a data structure 
known as a Fibonacci heap [81], but in practice the operation of the Fibonacci heap is so 
complicated that the calculation usually ends up running slower. 

157 

The augmenting path algorithm is not the only algorithm for calculating maximum flows. It is, 
however, the simplest and its average performance is about as good as any other, so it is a good 
choice for everyday calculations. It’s worth noting, however, that the worst-case performance of 
the algorithm is quite poor: for pathological networks, the algorithm can take a very long time to 
run. Another algorithm, the preflow-push algorithm [8], has much better worst-case performance 
and comparable average-case performance, but is considerably more complicated to implement. 

158 

See Ahuja et al. [8] or Cormen et al. [81] for details of the general case. 
159 

Technically, the augmenting path algorithm doesn’t specify how paths are to be found. Here we 
study the particular version in which paths are found using breadth-first search, which is known to 
be one of the better-performing variants. Sometimes this variant is called the shortest augmenting 
path algorithm or the Edmonds-Karp algorithm. 

160 

On networks with directed edges, we allow either the same flow in both directions along an edge 
(i.e., zero net flow) or one more unit in the forward direction than in the backward direction, but 
not vice versa. 

161 

Note, however, that the independent paths are not necessarily unique: there can be more than one 
choice of paths and some of them may not be found by this algorithm. Furthermore, there can be 
points in the network where paths come together at a vertex and then part ways again. If such 
points exist, you will have to make a choice about which way to go at the parting point. It doesn’t 
matter what choice you make in the sense that all choices lead to a correct set of paths, but 
different choices will give different sets of paths. 

162 

Technically the power method finds the eigenvector corresponding to the eigenvalue of largest 
absolute magnitude and hence the method would fail to find the eigenvector we want if the largest 
absolute magnitude belongs to a negative eigenvalue. For a matrix with all elements non-negative, 
however, such as the adjacency matrix, it turns out this can never happen. Here is a proof of this 
result for an undirected network where A is symmetric; the general case is covered, for example, in 
Ref. [217]. Let μ be the most negative eigenvalue of a real symmetric matrix A and let w be the 
corresponding eigenvector, with elements wi. Then, given that ,

 

where x is the vector with components |wi|. The inequality here follows from the so-called triangle 
inequality |a + b| ≤ |a| + |b|, which is true for all real numbers a, b. Rearranging, we now find that



 

where we have made use of xTx = ∑i |wi|
2 = wTw. Now we write x as a linear combination of the 

normalized eigenvectors vi of A thus: x = ∑icivi, where the ci are real coefficients whose exact 
values are not important for this proof. Then, if κi is the eigenvalue corresponding to vi and κ1 is 
the most positive eigenvalue, we have

 

where we have made use of the orthogonality property . (The inequality is an exact 
equality if and only if x is an eigenvector with eigenvalue κ1.) Putting these results together, we 
find that |μ| ≤ κ1 and hence the most negative eigenvalue never has a magnitude greater than that of 
the most positive eigenvalue (although if we are unlucky the two magnitudes could be equal). The 
result proved here is one part of the Perron-Frobenius theorem. The other part, that the leading 
eigenvector has all elements non-negative, is proved in the following footnote. 
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This result, like that in footnote 1, is a part of the Perron-Frobenius theorem. To prove it—at least 
for the case of symmetric A—let κ1 be the most positive eigenvalue of A and let v be a 
corresponding eigenvector. (We will allow, for the moment, the possibility that there is more than 
one eigenvector with eigenvalue k1, though we show below that in fact this cannot happen in a 
connected network.) Note that κ1 ≥ 0 since the sum of the eigenvalues of A is given by Tr A ≥ 0, 
and hence at least one eigenvalue must be non-negative. Then, given that  and all 
elements of A are non-negative, we have

 

where x is the vector with elements |vi|. Rearranging this result, we find

 

where we have made use of xTx = ∑i |vi|
2 = vTv. As demonstrated in footnote 1 on page 346, for 

any vector x we have

 

with the equality being achieved only when x is an eigenvector corresponding to eigenvalue κ1. 
The only way to reconcile the two inequalities above is if they are in fact equalities in this case, 
implying that x must indeed be an eigenvector with eigenvalue κ1. But x has all elements non-
negative, and hence there exists an eigenvector with eigenvalue κ1 and all elements non-negative. 

It is still possible that there might be more than one eigenvector with eigenvalue κ1, and that one 



of the others might have negative elements. This, however, we can rule out as follows. Recall 
that eigenvectors with same eigenvalue can always be chosen orthogonal, and any eigenvector v 
that is orthogonal to the eigenvector with all elements non-negative would have to have both 
positive and negative elements in order that the product of the two vectors equal zero. Thus there is 
only one eigenvector with all elements non-negative. 

Then, for eigenvector v, by the results above, the vector x with elements |vi| is necessarily equal 
to the unique eigenvector with all elements non-negative. Thus if vi is one of the positive elements 
of v then vi = xi and

 

or, equivalently, ∑jAij(|vj| – vj) = 0. But |vj| – vj ≥ 0 so this last result can only be true if for all j 
we have either Aij = 0 or vj- |vj| = 0, meaning that vj = |vj| ≥ 0. Thus if vi > 0 then vj > 0 whenever Aij 
≠ 0. In network terms, if vi > 0 then vj > 0 for every neighbor of i. But then we can start at i and 
work outwards, moving from neighbor to neighbor and so demonstrate that vj > 0 for every vertex 
and hence v = x and the leading eigenvector is unique. 

The only exception to this last result is when the network has more than component, so that 
some vertices are not reachable from an initial vertex i. In that case, it is possible for the elements 
of the leading eigenvector corresponding to vertices in different components to have different 
signs. This, however, causes no problems for any of the results presented here. 
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In fact, this estimate usually errs on the pessimistic side, since the spacing of the highest 
eigenvalues tends to be wider than the mean spacing, so that in practice the algorithm may be 
faster than the estimate would suggest. 
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If we wish to be more sophisticated, we can note that it is sufficient to shift the eigenvalues by any 
amount greater than or equal to λn. Anderson and Morley [18] have shown that λn ≤ 2kmax where 
kmax is the largest degree in the network, which we can find in time O(n), considerably faster than 
we can find λn itself. Thus a quicker way to find the smallest eigenvalue would be to find the 
largest eigenvalue of 2kmaxI – L. 
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Community detection is sometimes also called “clustering,” although we largely avoid this term to 
prevent confusion with the other, and quite different, use of the word clustering introduced in 
Section 7.9. 
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The problem is somewhat similar to the minimum cut problem of Section 6.12, but we are now 
searching for the minimum cut over all possible bisections of a network, rather than just between a 
given pair of vertices. 
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Technically, this statement has not actually been proved. Its truth hinges on the assumption that 
two fundamental classes of computational problem, called P and NP, are not the same. Although 
this assumption is universally believed to be true—the world would pretty much fall apart if it 
weren’t—no one has yet proved it, nor even has any idea about where to start. Readers interested 
in the fascinating branch of theoretical computer science that deals with problems of this kind are 
encouraged to look, for example, at the book by Moore and Mertens [227]. 

169 



Some readers may be familiar with Kernighan’s name. He was one of the authors of the original 
book describing the C programming language [172]. “Kernighan” is pronounced “Kernihan”—the 
“g” is silent. 
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One might imagine that an equivalent procedure would be to go on swapping vertex pairs until no 
swap can be found that decreases the cut size. This, however, turns out to be wrong. It is perfectly 
possible for the cut size to decrease for a few steps of the algorithm, then increase, then decrease 
again. If we halt the algorithm the first time we see the cut size increasing, we run the risk of 
missing a later state with smaller cut size. Thus the correct algorithm is the one described here, 
with two separate processes, one of vertex swapping, and one of checking the states so generated 
to see which is optimal. 
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If the network is stored in adjacency matrix form then the total run time can be improved further to 
O(n2), although for the common case of a sparse network this makes relatively little difference, and 
the adjacency matrix is costly in terms of memory space. 
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Note, however, that the vertex moving algorithm takes time O(n2) for each round of the algorithm, 
but we have not calculated, and do not in fact know, how many rounds are needed in general. As 
with the Kernighan-Lin algorithm, it is reasonable to suppose that the number of rounds needed 
might increase, at least slowly, with network size, which would make the time complexity of the 
vertex moving algorithm poorer than that of the spectral algorithm. 
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The word “clustering” as used here just refers to community detection. We have mostly stayed 
away from using this word in this chapter, to avoid confusion with the other use of the word 
clustering introduced in Section 7.9 (see footnote 5 on page 354), but the name “hierarchical 
clustering” is a well established and traditional one, and we use it here in deference to convention. 
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The heap must be modified slightly from the one described in Section 9.7. First, the partial 
ordering must be inverted so that the largest, not the smallest, element of the heap is at its root. 
Second, we need to be able to remove arbitrary items from the heap, not just the root item, which 
we do by deleting the relevant item and then moving the last item in the heap to fill the vacated 
space. Then we have to sift the moved item both up and down the heap, since it might be either too 
large or too small for the position in which it finds itself. 
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For the special case of single-linkage clustering, there is a slightly faster way to implement the 
algorithm that makes use of a so-called union/find technique and runs in time O(n2). In practice the 
performance difference is not very large but the union/find method is considerably simpler to 
program. It is perhaps for this reason that single-linkage is more often used than complete–or 
average-linkage clustering. 
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It would in theory be perfectly possible, however, to create a variant of the model with multiedges 
or self-edges, or both. 
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We need to be a little careful here: u here should really be the probability that j is not connected to 
the giant component via any of its connections other than the connection to i. However, it turns out 
that in the limit of large system size this probability is just equal to u. For large n the probability of 
not being connected to the giant component via any of the n– 2 vertices other than i is not 



significantly smaller than the probability for all n– 1 vertices.
178 

One can write a closed-form solution in terms of the Lambert W-function, which is defined as the 
solution to the equation W(z)eW(z) = z. In terms of this function the size of the giant component is

 

where we take the principal branch of the W-function. This expression may have some utility for 
numerical calculations and series expansions, but it is not widely used. Alternatively, although we 
cannot write a simple solution for S as a function of c, we can write a solution for c as a function of 
S. Rearranging Eq. (12.15) for c gives

 

which can be useful, for instance, for plotting purposes. (We can make a plot of S as a function of 
c by first making a plot of c as a function of S and then swapping the axes.) 
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In the statistical physics literature, this trick of removing a vertex is called a cavity method. Cavity 
methods are used widely in the solution of all kinds of physics problems and are a powerful 
method for many calculations on lattices and in low-dimensional spaces as well as on networks 
[218]. 
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The formula derived here is not the most general form of the Lagrange inversion formula. It is 
adequate for the particular problem we are interested in solving, but the full Lagrange inversion 
formula is even more powerful, and can solve a broader range of problems. For details, see Wilf 
[329]. 
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The situation gets complicated if z(ƒ) is many-valued for some ƒ, i.e., if ƒ (z) is nonmonotonic. In 
our case, however, where the coefficients in the expansion of ƒ (z) are necessarily all non-negative 
because they are probabilities, ƒ (z) is monotonically increasing and no such problems arise. 
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There are still some holes in our argument. In particular, we have assumed that the product of the 
numbers of vertices on the surface of our two neighborhoods is cs+t when in practice this is only the 
average value and there will in general be some variation. Also the calculation should really be 
confined to the giant component, since the longest path always falls in the giant component in the 
limit of large n. For a careful treatment of these issues see, for instance, Fernholz and 
Ramachandran [114]. 
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This appears to be a reasonable figure. Bernard et al. [36] estimated the typical number of 
acquaintances for people in the United States to be about 2000—see Section 3.2.1. 
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This disagreement, highlighted particularly by Watts and Strogatz [323], was one of the 
observations that prompted the current wave of interest in the properties of networks in the 
mathematical sciences, starting in the late 1990s. 
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Professor Wilf has generously made his book available for free in electronic form. You can 
download it from www.math.upenn.edu/~wilf/DownldGF.html. 
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No, really. I’m not making this up. 
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Even for finite-sized networks the difference between the properties of a configuration model 
network and a similar network without self-edges and multiedges would only result in a correction 
of order 1/n into our results. For the large networks that are the focus of most modern network 
studies this means that the error introduced by allowing self-edges and multiedges is small. 
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For networks with power-law degree distributions �k2� diverges, as described in Section 8.4.2, 

and in that case the density of multiedges may not vanish or may do so more slowly than 1/n. 
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As before, pij should really be regarded as the expected number of edges between i and j rather 
than the probability and in fact the proper formulation of the model is that we place a Poisson-
distributed number of edges with mean pij between each pair of vertices i, j. Thus the model can in 
principle have multiedges as well as self-edges, just as in the configuration model. In the limit of 
large m and constant ci, however, the probability and the expected number again become equal, 
and the density of multiedges tends to zero, so the distinction is unimportant. 
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Another way of putting this is that the average value �Aij� of an element of the adjacency matrix 

is simply �Aij� = cicj /2m for all i,j—recall that the diagonal element Aii of the adjacency matrix is 

defined to be twice the number of self-edges at vertex i, and this compensates for the extra factor 
of two in Eq. (13.38). 
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The probabilities of edges between vertex i and each other vertex are independent, which 
immediately implies that the degree has a Poisson distribution. This may be obvious to you—if 
you’re a statistician, for example—but if not, here is a proof, which makes use of generating 
functions. 

The probability that there are edges connecting vertex i to any specific set of vertices, including 
itself, is given by a product of factors pij for each edge present and (1 – pij ) for each edge not 
present. This product can conveniently be written in the form

 

where Aij is the standard adjacency matrix and we adopt the convention that 00 = 1 for any cases 
where pij = 0. Note that it is important to separate out the term for pii as shown, since it takes a 
slightly different form from the others. Recall that a self-edge is represented by a diagonal element 
Aii = 2 in the adjacency matrix (see Section 6.2) and we must allow for this with the factors of two 
above. 

The probability  that vertex i has degree exactly k is the sum of these probabilities over all 
cases where there the ith row of the adjacency matrix adds up to k (including the 2s that appear for 
self-edges, since a self-edge contributes +2 to the degree). We can write this sum as



 

where δ(a, b) is the Kronecker delta. It is tricky to evaluate this sum directly because of the 
constraint imposed by the delta function, but we can do it using a generating function. Multiplying 
both sides of the equation by zk, summing over all k, and defining the generating function 

, we get

 

Taking logs of both sides and going to the limit of large size, where m → ∞ (with the ci 
remaining finite), we then get

 

where we have made use of Eq. (13.39) in the second-to-last line. For large m, the second term 
in the square brackets becomes negligible compared to the first and, taking exponentials again,

 

Now we can derive the probability distribution of the degree of vertex i by differentiating:

 

which is indeed a Poisson distribution, with mean ci, as promised.
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It is easy to see that there are some degree distributions that the model cannot reproduce at all—
any distribution for which pk is exactly zero for any k, for instance, since there is always a non-zero 

 

 



probability that any vertex can have any degree.
193 

On the other hand, if we pick a random edge in a network and follow it to one of its ends, then the 
degree of the vertex we reach is distributed according to (13.42), regardless of whether degrees are 
correlated or not. 
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The ratio �k2�/�k� that appears in Eq. (13.43) crops up repeatedly in the study of networks. It 

appeared previously in Section 13.2.1 and it will come up in many later calculations. 
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There is no reason in principle why the configuration model should always overestimate the 
average degree of a neighbor. In some cases it could underestimate too. 
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In fact, the general derivative in this case can be expressed in terms of the so-called Bell numbers. 
No closed-form solution exists for third-nearest neighbors or higher, however, nor for most other 
choices of degree distribution. 
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This expression has an interesting history. In the 1940s Flory [123] considered a model of 
branching polymers in which elemental units with a fixed number of “legs”—vertices with 
uniform degree, in effect—joined together to form connected clumps. He showed that, if the 
system was restricted to forming only trees, then there was a transition at which the polymer 
“gelled” to create a clump of joined units which corresponds to our giant cluster and found the 
size of the gel. In effect, Flory’s results were a special case of the solution given here for the 
uniform degree distribution, although they were not expressed in the language of networks. It was 
not until much later that Molloy and Reed, who were, as far as I know, unaware of Flory’s work, 
gave the full solution for general degree distribution. 
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The only exception is when �k� = 2 at the transition point. 
199 

Traditionally ζ(x) is actually defined to have finite values below x = 1 by analytic continuation. But 
in our case we are really interested in the value of the sum , which diverges for all x ≤ 1. 
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The numerical solution is simple: we just choose a suitable starting value (  works fine) and 
iterate Eq. (13.141) until it converges. Fifty iterations are easily enough to give a highly accurate 
result. 

201 

Given the joint degree distribution we can still, if we wish, calculate the distributions of in–or out-
degrees alone. They are given by
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Strictly we have not shown that a giant component actually appears if the condition (13.161) is 
satisfied. We have only shown that (13.161) is a necessary condition for a giant component to 

 



appear. However, we can go through an argument similar to the one we made for the undirected 
case in Section 13.6 to convince ourselves that there must be a giant component when the 
condition is satisfied. 
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For a discussion see, for instance, Refs. [222] and [244]. 
204 

Simon himself called the mechanism the Yule process, in recognition of the statistician Udny Yule, 
who had studied a simple version many years earlier [333]. 
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The main condition on the distribution is that it should have finite variance. This rules out, for 
example, cases in which bibliographies have a power-law distribution of sizes with exponent less 
than three. Empirical evidence suggests that real bibliographies have an unexceptionable 
distribution of sizes with a modest and finite variance, so the assumptions of Price’s model are 
met. 
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The two fractions are in fact a/(c + a) and c/(c + a), respectively, as shown in Section 14.1.1. 
207 

There is nothing in the definition of Price’s model to prevent a paper from listing the same other 
paper twice in its bibliography, something that doesn’t happen in real citation networks. In the 
language of graph theory, such double citations would correspond to directed multiedges in the 
citation network (see Section 6.1) while true citation networks are simple graphs having no 
multiedges. However, as with random graph models, the probability of generating a multiedge 
vanishes in the limit of large network size and so the predictions of the model in this limit are not 
altered by allowing them, and doing so makes the mathematical treatment of the model much 
simpler. 

208 

In theory, it also increases by one if a vertex of in-degree q − 2 receives two new citations, and 
similarly for larger numbers of citations. This, however, would create a multiedge, and multiedges, 
as we have said, are vanishingly improbable in the limit of large network size, so we can ignore 
this possibility. 
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Strictly we should first prove that the degree distribution has an asymptotic form in the limit of 
large n and doesn’t go on changing forever, but for the purposes of the present discussion let us 
assume that there is an asymptotic form. 
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The proof of this result is simple, making use of integration by parts:

 

where the boundary term [...] disappears at both limits. 
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The integral form can be derived by making use of the definition of B(x,y) in terms of gamma 
functions and the integral form of the gamma function, Eq. (14.15):



 

We change variables to u = s/(s + t), ν = s + t (which implies s = uν, t = (1 − u)ν and a Jacobian of 
ν), giving

 

The first integral, however, is equal to Γ(x + y) by Eq. (14.15) and hence we recover Eq. (14.33). 
212 

See for instance [99] or [189]. 
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It may not be immediately obvious that π0(1) must equal 1. There is one vertex in the time interval 
between τ = 1 and τ = 1 − 1/n and it always has in-degree zero. One vertex is a fraction 1/n of the 
whole network, so there is 1/n of the network in an interval of width 1/n, which corresponds to a 
density π0(1) = 1. 
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To prove this we set x = 1 in Eq. (14.17) to get Γ(n + 1)/Γ(1) = n(n − 1) ... 1 = n! and from Eq. 
(14.15) we have . 
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Hint: you will probably need Eq. (14.33). 
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Actually, the peak only exists for small values of τ and disappears once τ becomes large enough. 
There are no peaks in the degree distribution for the τ = 0.5 and τ = 0.9 curves in Fig. 14.3b. 
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Salganik et al. did find a weak effect of song quality—songs that had proved popular when the 
download numbers were reported faithfully continued to do better than expected even when the 
download numbers were misreported. 

218 

In fact, Moore et al. give a solution for a model in which vertices rather than edges are deleted, but 
the two can be treated by virtually the same means. The calculation given here is adapted from 
their work with only minor changes. 
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Also called the trapezium rule in British English. 
220 

Explicit expressions are known for the correction terms (the terms in ƒʹ(a) and ƒʹ(b))—they are 
given in terms of the Bernoulli numbers by the so-called Euler-Maclaurin formula [2]—but they’re 
not necessary in our application because the correction terms vanish anyway. 
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Although, confusingly, people often still call it a stretched exponential even when the exponent is 
greater than one. This case should really be called a “squeezed exponential.” 

222 

The most general form of linear kernel would be ak (η ) = ƒ (η ) k where ƒ (η ) is an increasing 
function of η. However, this form can be turned into the one above by a simple change of variables 
to η’ = ƒ (η), so in fact we are not losing any generality by assuming ak (η) = ηk. 
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The calculation is essentially the same as the one leading to Eq. (14.34). 
224 

Bianconi and Barabási, who are physicists, solved their model initially by showing that it can be 
mapped onto the standard physics problem of “Bose-Einstein condensation” in an ensemble of 
non-interacting bosons. For a physicist already familiar with Bose-Einstein condensation, this 
provides a quick and elegant way of deriving a solution. For non-physicists, on the other hand, the 
mapping is probably not very illuminating. 
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The model is, in this respect, reminiscent of the much simpler and older model of a growing 
system called Pólyaʹs urn. In this model an urn (i.e., a large pot) initially contains two balls, one 
green and one red. Repeatedly we draw one ball at random from the urn and replace it with two of 
the same color. In the limit where the number of balls becomes large, the fraction of green (or red) 
balls tends to a constant, but the value of that constant is entirely unpredictable—it depends on the 
details of the fluctuations in the numbers of balls at the early stages of the growth process and all 
values of the constant are equally likely in the n → ∞ limit. 
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The statistics of these leader changes are themselves non-trivial. They obey a so-called record 
dynamics, an interesting non-stationary process that has been studied in its own right, for example 
by Sibani and Littlewood [296]. 
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We use the word “copying” figuratively here, but in fact there is evidence to suggest that some 
people really do just copy citations from other papers, possibly without even looking at the cited 
paper. Simkin and Roychowdhury [297,298] have noted that there is a statistically surprising 
regularity to the typographical errors people make in citing papers. For instance, many different 
authors will use the same wrong page number in citing a particular paper, which suggests that 
rather than copying the citation from the paper itself, they have copied it from an erroneous entry 
in another bibliography. This does not prove that they did not read the paper in question, but it 
makes it more likely—if they had actually looked up the paper, there is a good chance they would 
have noticed that they had the page number wrong. 

228 

Kleinberg et al. themselves proposed a different model of the copying process in their paper, but 
their model is quite complex and doesn’t lend itself easily to analysis. The model described here is 
a simplified realization that possesses the important features of the process while remaining 
relatively tractable. We note also that Kleinberg et al. were not in fact concerned with citation 
networks in their paper. Their focus was the World Wide Web. We use the language of citation 
networks here to emphasize the parallels with Price’s model, but the discussion could equally have 
been framed in the language of the Web. 
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In simply adding together our probabilities we are technically writing down an expression for the 
expected number of new edges the vertex receives, rather than the probability of receiving a new 
edge. However, in the limit of large n the two become the same. 
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This is a relatively recent development, at least in the United States, where industry regulations 
made the hub-and-spoke system impractical until 1978. After regulations were lifted the hub-and-
spoke system was rapidly adopted by most of the major airlines. Hub-and-spoke systems were also 
adopted by the package delivery industry around the same time. 
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The derivation of this result is as follows. If λ is sufficiently large then, as we have shown, the 
optimal network is the star graph. If we now reduce λ slowly then at some point we enter a regime 
in which the cost of adding an edge is sufficiently offset by the corresponding reduction in the 
mean geodesic distance that it becomes worthwhile to add edges between the “spoke” vertices in 
the star graph. To calculate the point at which such additions become beneficial let us take our star 
graph and add to it some number r of extra edges. Necessarily these edges fall between the spoke 
vertices, since there is nowhere else for them fall, and in doing so they form paths of length one 
between pairs of vertices whose previous shortest path was of length two. The shortest paths 
between no other vertices are affected by the addition. Thus the total number of vertex pairs 
connected by paths of length 1 is n - 1 + r and all the rest have paths of length two. Then the mean 
geodesic distance, as defined in Eq. (7.31) is

 

(The leading factor of two comes from the fact that the sum over i, j counts each pair of vertices 
twice.) 

Substituting this expression, along with m = n - 1 + r, into Eq. (14.148) then gives

 

This will decrease with growing r only if the quantity in square brackets [...] is negative, i.e., if

 

If this condition is satisfied then it becomes advantageous to add edges between the spoke vertices, 
and to keep on doing so until the network becomes a complete graph, with every vertex connected 
to every other. Thus there is a discontinuous transition between two behaviors—the star graph and 
the complete graph—at the point λ = 2/(n2 + 2). Real distribution and transportation networks 
appear to be in the star-graph regime. 
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Strictly it’s ⌈2m / c⌉, where ⌈x⌉ is the smallest integer not less than x. 
233 

In fact, in the original small-world model, as defined by Watts and Strogatz, only one end of each 

 

 



edge—say the more clockwise end—was rewired and the other left where it was. This, however, 
results in a model that never becomes a true random graph even when all edges are rewired, as one 
can easily see, since each vertex is still attached to half of its original edges and hence would have 
degree at least . In a true random graph there is no such constraint on degrees; vertices can have 
degrees of any value between zero and n − 1. The original model also imposed some other 
constraints, such as the constraint that no two edges may connect the same vertex pair. This 
constraint could be imposed in the version we discuss here, although it makes little difference in 
practice, since the number of such multiedges is of order 1/n in the limit of large n and therefore 
the multiedges make a small contribution to any results if the network is large. 
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Equivalently, one could just say that the number of shortcuts added is drawn from a Poisson 
distribution with mean . 
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We consider all edges, including the shortcuts, to be the same length, even though the shortcuts are 
drawn as being longer in figures like Fig. 15.3. We are regarding the network as a purely 
topological object, not a spatial one. 
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Note that the number of shortcuts can be large even when the density of shortcuts remains small, 
as it must for the scaling form (15.12) to be valid at all. 
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In the sociology literature exponential random graphs are also called p-star models (sometimes 
written “p*”). 
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One can also define exponential random graphs models for sets that include non-simple graphs, 
but the case considered here of simple graphs is the most commonly studied one. 
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Sometimes the graph Hamiltonian is defined to be minus this quantity and a corresponding minus 
sign is introduced in Eq. (15.26). This is by analogy with similar quantities in statistical physics, 
where the Hamiltonian is an energy function and lower energies correspond to higher probabilities. 
In studies of networks, however, the definitions are most commonly as given here. 
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Those familiar with free energy in its original thermodynamic context may find this expression 
odd because it varies with network size as n2 to leading order. In thermodynamic systems, by 
contrast, free energy is always directly proportional to system size. However the degrees of 
freedom or “particles” in our network are really the edges (or absence of edges) between vertex 
pairs, not the vertices themselves, and there are  vertex pairs, which is why Eq. (15.40) is 
proportional to . 
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We encountered continuous phase transitions previously in Chapters 12 and 13—the point at 
which the giant component first appears in a random graph is a continuous phase transition, 
although admittedly it is not obvious that there is a connection between the behavior of the giant 
component and that seen in Fig. 15.7. The study of phase transitions is an intriguing and beautiful 
branch of physics that has important implications in areas as diverse as superconductivity, 
elementary particles, and the origin of the universe. Readers interested in learning more are 
encouraged to consult, for example, the book by Yeomans [331]. 
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If you’re interested in the study of percolation in physics the book by Stauffer and Aharony [304] 



contains a lot of interesting material on the subject, although most of it is not directly relevant to 
percolation on networks. 
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In most of the physics literature on percolation the occupation probability is denoted p, but we use 
φ because the letter p is used for many other things in the theory of networks and could cause 
confusion. 
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In most of the literature on percolation theory, the giant cluster is called the spanning cluster. The 
reason is that most work on percolation has considered low-dimensional lattices such as the square 
lattice. On such lattices the giant cluster is distinguished by being the only cluster that spans the 
lattice from one side to the other in the limit of large n. There is no equivalent phenomenon for 
percolation on general networks, however, since networks don’t have “sides,” so the concept of 
spanning is not a useful one. 
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This solution of the percolation problem has a history stretching back some years. In 1961, Fisher 
and Essam [120] derived a solution for percolation on regular trees (called Cayley trees or Bethe 
lattices in physics), which is equivalent to the solution given here for the case where every vertex 
has the same degree. The developments for general degree distributions, however, were not given 
till some decades later [62,74]. 
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From Eq. (13.101) we know that a configuration model network has a giant component if and only 
if , and thus loses its giant component at the point where gʹ1 (1) = 1. Substituting from Eq. 

(16.13), our network loses its giant component when 2/(eλ − 1) = 1, i.e., when λ = ln 3. See also 
Problem 13.3 on page 484 for another derivation of this result. 
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A phase transition is continuous if the quantity of interest, also called the order parameter (S in 
this case), is zero on one side of the transition and non-zero on the other, but its value is 
continuous at the transition itself. The alternative to a continuous phase transition is a first-order 
phase transition, in which the order parameter jumps discontinuously as it crosses the transition 
point. 
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This excludes the power-law case shown in Fig. 16.3, which is discussed separately below. 
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To be more precise, the transition is a second-order transition—one where the order parameter is 
continuous at the transition but its derivative is not. 
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If we want to be more careful and keep track of the correction terms we can make use of Eq. 
(13.51) and integrate Eq. (16.26) to show that g0 (u) = 1 − �k� (1 − u) + c(1 − u)β+1 /(β + 1). The 

last term vanishes faster than those before it as u → 1 because β > 0 and hence g0(u)  1 − �k� (1 

− u). This is at first slightly surprising—one would imagine that the correction term ought to be O
(1 − u)2—but this type of behavior is common with power-law distributions. 
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To the extent that one can regard a power-law network as having a percolation transition at φ = 0 it 
is interesting to ask what the order of this transition is. The answer is unclear since Eq. (16.29) 
doesn’t perfectly fit the standard forms for continuous phase transitions. If we define a transition to 



be second-order if the order parameter is continuous at the transition and third-order if its 
derivative is continuous, then the transition is third-order in this case. But one could also argue that 
the transition is of fractional order between two and three since it varies from zero as a fractional 
power of the occupation probability φ. 
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If you look at the epidemiology literature you will sometimes see the infected state referred to as 
“infective.” There’s no difference between the two terms; they are synonymous. You may also 
see the word “infectious” used, but this may mean something slightly different. As discussed later 
in the chapter, more sophisticated models of disease distinguish between a state in which an 
individual has a disease but it has not yet developed to the point where the individual can pass it 
on, and a state where they can pass it on. This latter stage is sometimes called the “infectious” 
stage, a name chosen to emphasize that the disease can be communicated. (The former state is 
usually called the “exposed” state.) In the present simple two-state model, however, there is no 
difference between infected and infectious; all individuals who are one are also the other. 
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It might be more logical to use I(t) for the number infected, and many authors do so, but we use X 
instead to avoid later confusion with the index i used to label vertices. 
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For convenience we will usually drop the explicit t-dependence of S(t) and X(t) and, as here, just 
write S and X. 
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There aren’t many diseases that really saturate their population like this. Most real diseases that 
don’t kill their victims are eventually defeated by the immune system. In addition, for many 
diseases some fraction of the population has a natural immunity that prevents them from being 
infected (meaning that when exposed to the pathogen their immune system sees it off so quickly 
that they never become infectious). And some diseases spread so slowly that a large fraction of the 
population never catches them because they die of other causes first. None of these phenomena is 
represented in this model. 
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This is only approximately true. If people really do have a certain average number of contacts per 
unit time and assuming those contacts are with living people, then the presence of living but 
recovered people in the population reduces the number of contacts between infected and 
susceptible individuals. If, on the other hand, people die rather than recover from the disease then 
only susceptible and infected individuals are alive and the number of contacts between them will 
be correspondingly greater. In effect, a person whose acquaintance dies from the disease will (on 
average) gain one new acquaintance from among the living to replace them, and that new 
acquaintance might be infected, or might become infected, thereby increasing the chance of 
transmission of the disease. This effect can easily be incorporated into the model, but we don’t do 
so here. 
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Note that when γ = 0, as in the SI model, Eq. (17.16) implies that R0 → ∞. This is because an 
infected individual remains infected indefinitely in the SI model and hence can infect an arbitrary 
number of others, so that R0 is formally infinite. In any population of finite size, however, the 
empirical value of R0 will be finite. 
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The solution can be written in closed form using the Lambert W-function, which is defined to be 
the solution of the equation W (z)eW(z) = z. In terms of this function, the size of the epidemic is 
given by



 

Alternatively, we can rearrange Eq. (17.33) to give φ as a function of S rather than the other way 
around:

 

This expression can be useful for making plots of S. 
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The differences in parameters arise because we are considering a slightly different disease process 
(one in which each individual is infectious for the same amount of time, rather than the exponential 
distribution used in the fully mixed model), and also because in the network model β is the 
transmission rate per edge, rather than the rate for the whole network—this is what gives us the 
factor of c in the exponent of Eq. (17.33). 
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On a finite network with n vertices the equations will in fact close once we get all the way up to 
combinations of n variables, but this limit is not useful in practice as the equations will become 
unmanageably numerous and complicated long before we reach it. 
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The network was generated using the clustered network model of Ref. [240]. 
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This equation will diverge if . However, since we are performing the calculation on the 
giant component of the network, and since the giant component only exists if  (1) > 1—see 
Section 13.8—we can safely rule out this possibility. 
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This contrasts with the approach we took in Section 17.8 where all vertices remained infected for 
the same amount of time and then recovered. Thus the model studied in this section is not exactly 
the same as that of Section 17.8, being more similar to the traditional SIR model of Section 17.3. 
We will see some minor consequences of this difference shortly. 
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We can see that the approach of this section cannot be exactly correct from the behavior of Eq. 
(17.79) on very sparse networks. On a vanishingly sparse network, with only a very few edges and 
no giant component, κ1 becomes very small, though still non-zero. On such a network Eq. (17.79) 
implies that we could, nonetheless, have an epidemic if β is very large or γ very small. Clearly this 
is nonsense—there can be no epidemic in a network with no giant component. Thus the equation 
cannot be exactly correct. 
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We observe that

 



where we’ve used Eq. (17.82) in the second equality. Integrating and using Eqs. (17.81) and 
(17.88), we then have

 

and rk = 1 − sk − xk .
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And like Eq. (17.79) it is also clearly wrong on sparse networks for the same reasons—see 
footnote 13 on page 664. 
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There are also a couple of other rarer possibilities. A fixed point with λ = 0 can be neutral, 
meaning it neither attracts nor repels. Points near a neutral fixed point stay exactly where they are, 
meaning that they are fixed points too. For example, the choice ƒ(x) = 0 for all x has a neutral fixed 
point at every value of x. Another less trivial possibility is that a fixed point with λ = 0 may be of 
mixed type, meaning that it attracts on one side and repels on the other. An example is ƒ(x) = x2 
which has a fixed point at x = 0 that is attracting for x < 0 and repelling for x > 0. 
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The model we use is a somewhat simplified version of Kleinberg’s. His model, for instance, used a 
two-dimensional lattice instead of a one-dimensional ring as the underlying structure on which the 
model was built. The calculations, however, work just as well in either case. Our model also places 
shortcuts at random, where Kleinberg’s fixed the number attached to each vertex to be constant 
and also made them directed rather than undirected. 
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The maximum length of a shortcut is  if n is odd and  if n is even. We will assume that n is 
odd in this case, which avoids some small annoyances in the derivations. 
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Note that both the numerator and denominator of the fraction in Eq. (19.3) vanish at α = 1, so one 
must use lʹHopitalʹs rule to extract the limiting value. The same goes for Eq. (19.8). 
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In fact, since Kleinberg was studying a two-dimensional version of the small-world model, his 
result was for α = 2, not α = 1. In general, on a small-world network built on a d-dimensional 
lattice, the greedy algorithm succeeds in finding the target in time O(log2n) only when α = d and 
for all other values takes time increasing at least as a power of n. 
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A similar model was also proposed independently by Kleinberg [179]. 
273 

Watts et al. actually wrote the expression as Ce-βm, but the difference is only in the value of β and 
we find the definition (19.9) more convenient.


	Networks An Introduction
	PREFACE
	Table of Contents
	CHAPTER 1: INTRODUCTION
	WHY ARE WE INTERESTED IN NETWORKS?
	SOME EXAMPLES OF NETWORKS
	PROPERTIES OF NETWORKS
	OUTLINE OF THIS BOOK

	PART I: THE EMPIRICAL STUDY OF NETWORKS
	CHAPTER 2:  TECHNOLOGICAL NETWORKS
	2.1 THE INTERNET
	2.2 THE TELEPHONE NETWORK
	2.3 POWER GRIDS
	2.4 TRANSPORTATION NETWORKS
	2.5 DELIVERY AND DISTRIBUTION NETWORKS

	CHAPTER 3: SOCIAL NETWORKS
	3.1 THE EMPIRICAL STUDY OF SOCIAL NETWORKS
	3.2 INTERVIEWS AND QUESTIONNAIRES
	3.3 DIRECT OBSERVATION
	3.4 DATA FROM ARCHIVAL OR THIRD-PARTY RECORDS
	3.5 AFFILIATION NETWORKS
	3.6 THE SMALL-WORLD EXPERIMENT
	3.7 SNOWBALL SAMPLING, CONTACT TRACING, AND RANDOM WALKS

	CHAPTER 4: NETWORKS OF INFORMATION
	4.1 THE WORLD WIDE WEB
	4.2 CITATION NETWORKS
	4.3 OTHER INFORMATION NETWORKS

	CHAPTER 5: BIOLOGICAL NETWORKS
	5.1 BIOCHEMICAL NETWORKS
	5.2 NEURAL NETWORKS
	5.3 ECOLOGICAL NETWORKS


	PART II: FUNDAMENTALS OF NETWORK THEORY
	CHAPTER 6: MATHEMATICS OF NETWORKS
	6.1 NETWORKS AND THEIR REPRESENTATION
	6.2 THE ADJACENCY MATRIX
	6.3 WEIGHTED NETWORKS
	6.4 DIRECTED NETWORKS
	6.5 HYPERGRAPHS
	6.6 BIPARTITE NETWORKS
	6.7 TREES
	6.8 PLANAR NETWORKS
	6.9 DEGREE
	6.10 PATHS
	6.11 COMPONENTS
	6.12 INDEPENDENT PATHS, CONNECTIVITY, AND CUT SETS
	6.13 THE GRAPH LAPLACIAN
	6.14 RANDOM WALKS
	PROBLEMS

	CHAPTER 7: MEASURES AND METRICS
	7.1 DEGREE CENTRALITY
	7.2 EIGENVECTOR CENTRALITY
	7.3 KATZ CENTRALITY
	7.4 PAGERANK
	7.5 HUBS AND AUTHORITIES
	7.6 CLOSENESS CENTRALITY
	7.7 BETWEENNESS CENTRALITY
	7.8 GROUPS OF VERTICES
	7.9 TRANSITIVITY
	7.10 RECIPROCITY
	7.11 SIGNED EDGES AND STRUCTURAL BALANCE
	7.12 SIMILARITY
	7.13 HOMOPHILY AND ASSORTATIVE MIXING
	PROBLEMS

	CHAPTER 8THE LARGE-SCALE STRUCTURE OF NETWORKS
	8.1 COMPONENTS
	8.2 SHORTEST PATHS AND THE SMALL-WORLD EFFECT
	8.3 DEGREE DISTRIBUTIONS
	8.4 POWER LAWS AND SCALE-FREE NETWORKS
	8.5 DISTRIBUTIONS OF OTHER CENTRALITY MEASURES
	8.6 CLUSTERING COEFFICIENTS
	8.7 ASSORTATIVE MIXING
	PROBLEMS


	PART III:  COMPUTER ALGORITHMS
	CHAPTER 9: BASIC CONCEPTS OF ALGORITHMS
	9.1 RUNNING TIME AND COMPUTATIONAL COMPLEXITY
	9.2 STORING NETWORK DATA
	9.3 THE ADJACENCY MATRIX
	9.4 THE ADJACENCY LIST
	9.5 TREES
	9.6 OTHER NETWORK REPRESENTATIONS
	9.7 HEAPS
	PROBLEMS

	CHAPTER 10:  FUNDAMENTAL NETWORK ALGORITHMS
	10.1 ALGORITHMS FOR DEGREES AND DEGREE DISTRIBUTIONS
	10.2 CLUSTERING COEFFICIENTS
	10.3 SHORTEST PATHS AND BREADTH-FIRST SEARCH
	10.4 SHORTEST PATHS IN NETWORKS WITH VARYING EDGE LENGTHS
	10.5 MAXIMUM FLOWS AND MINIMUM CUTS
	PROBLEMS

	CHAPTER 11: MATRIX ALGORITHMS AND GRAPH PARTITIONING
	11.1 LEADING EIGENVECTORS AND EIGENVECTOR CENTRALITY
	11.2 DIVIDING NETWORKS INTO CLUSTERS
	11.3 GRAPH PARTITIONING
	11.4 THE KERNIGHAN-LIN ALGORITHM
	11.5 SPECTRAL PARTITIONING
	11.6 COMMUNITY DETECTION
	11.7 SIMPLE MODULARITY MAXIMIZATION
	11.8 SPECTRAL MODULARITY MAXIMIZATION
	11.9 DIVISION INTO MORE THAN TWO GROUPS
	11.10 OTHER MODULARITY MAXIMIZATION METHODS
	11.11 OTHER ALGORITHMS FOR COMMUNITY DETECTION
	PROBLEMS


	PART IV: NETWORK MODELS
	CHAPTER 12: RANDOM GRAPHS
	12.1 RANDOM GRAPHS
	12.2 MEAN NUMBER OF EDGES AND MEAN DEGREE
	12.3 DEGREE DISTRIBUTION
	12.4 CLUSTERING COEFFICIENT
	12.5 GIANT COMPONENT
	12.6 SMALL COMPONENTS
	12.7 PATH LENGTHS
	12.8 PROBLEMS WITH THE RANDOM GRAPH
	PROBLEMS

	CHAPTER 13: RANDOM GRAPHS WITH GENERAL DEGREE DISTRIBUTIONS
	13.1 GENERATING FUNCTIONS
	13.2 THE CONFIGURATION MODEL
	13.3 EXCESS DEGREE DISTRIBUTION
	13.4 CLUSTERING COEFFICIENT
	13.5 GENERATING FUNCTIONS FOR DEGREE DISTRIBUTIONS
	13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX
	13.7 GENERATING FUNCTIONS FOR THE SMALL COMPONENTS
	13.8 GIANT COMPONENT
	13.9 SIZE DISTRIBUTION FOR SMALL COMPONENTS
	13.10 POWER-LAW DEGREE DISTRIBUTIONSAs
	13.11 DIRECTED RANDOM GRAPHS
	PROBLEMS

	CHAPTER 14: MODELS OF NETWORK FORMATION
	14.1 PREFERENTIAL ATTACHMENT
	14.2 THE MODEL OF BARABÁSI AND ALBERT
	14.3 FURTHER PROPERTIES OF PREFERENTIAL ATTACHMENT MODELS
	14.4 EXTENSIONS OF PREFERENTIAL ATTACHMENT MODELS
	14.5 VERTEX COPYING MODELS
	14.6 NETWORK OPTIMIZATION MODELSIn
	PROBLEMS14.1

	CHAPTER 15: OTHER NETWORK MODELS
	15.1 THE SMALL-WORLD MODEL
	15.2 EXPONENTIAL RANDOM GRAPHS
	PROBLEMS


	PART V: PROCESSES ON NETWORKS
	CHAPTER 16:  PERCOLATION AND NETWORK RESILIENCE
	16.1 PERCOLATION
	16.2 UNIFORM RANDOM REMOVAL OF VERTICES
	16.3 NON-UNIFORM REMOVAL OF VERTICES
	16.4 PERCOLATION IN REAL-WORLD NETWORKS
	16.5 COMPUTER ALGORITHMS FOR PERCOLATION
	PROBLEMS

	CHAPTER 17:  EPIDEMICS ON NETWORKS
	17.1 MODELS OF THE SPREAD OF DISEASE
	17.2 THE SI MODEL
	17.3 THE SIR MODEL
	17.4 THE SIS MODEL
	17.5 THE SIRS MODEL
	17.6 EPIDEMIC MODELS ON NETWORKS
	17.7 LATE-TIME PROPERTIES OF EPIDEMICS ON NETWORKS
	17.8 LATE-TIME PROPERTIES OF THE SIR MODEL
	17.9 TIME-DEPENDENT PROPERTIES OF EPIDEMICS ON NETWORKS
	17.10 TIME-DEPENDENT PROPERTIES OF THE SI MODEL
	17.11 TIME-DEPENDENT PROPERTIES OF THE SIR MODEL
	17.12 TIME-DEPENDENT PROPERTIES OF THE SIS MODEL
	PROBLEMS

	CHAPTER 18: DYNAMICAL SYSTEMS ON NETWORKS
	18.1 DYNAMICAL SYSTEMS
	18.2 DYNAMICS ON NETWORKS
	18.3 DYNAMICS WITH MORE THAN ONE VARIABLE PER VERTEX
	18.4 SYNCHRONIZATION
	PROBLEMS

	CHAPTER 19: NETWORK SEARCH
	19.1 WEB SEARCH
	19.2 SEARCHING DISTRIBUTED DATABASES
	19.3 MESSAGE PASSING
	PROBLEMS

	REFERENCES
	INDEX



