
Basics of Graph Theory

1 Basic notions

A simple graphG = (V, E) consists ofV , a nonempty set of vertices, andE, a
set of unordered pairs of distinct elements ofV called edges.

Simple graphs have their limits in modeling the real world. Instead, we use
multigraphs, which consist of vertices and undirected edges between these ver-
tices, with multiple edges between pairs of vertices allowed. AmultigraphG =
(V, E) consists of a setV of vertices, a setE of edges, and a functiong from E
to {{u, v} : u, v ∈ V, u ∈ v}. The edgese1 ande2 are called multiple or parallel
edges iff(e1) = f(e2). Note that simple graphs are all multigraphs.

A computer network may contain a line from a computer to itself (it is called
a loop). How can we model this? We cannot use multigraphs to model this, since
loops, which are edges from a vertex to itself, are not allowed in multigraphs.
Instead we use pseudographs, which are more general than multigraphs.

A pseudographG = (V, E) consists of a setV of vertices, a setE of edges,
and a functiong from E to {{u, v} : u, v ∈ V }. An edge if a loop iff(e) =
{u, u} = {u} for someu ∈ V .

How can we model a water pipe fromA to B, and water can only flow from
A to B. We use directed arrowA → B. In graph theory, we also havedirected
graphs.

A directed graphG = (V, E) consists of a setV of vertices, a setE of edges,
that are ordered pairs of elements ofV .

Similarly, we can have the following definition of directed multigraphs. A
directed multigraphG = (V, E) consists of a setV of vertices, a setE of edges,
and a functionf from E to {(u, v) : u, v ∈ V }. The edgese1 ande2 are multiple
edges iff(e1) = f(e2).

Now we introduce some basic terminology that describes the vertices and
edges of undirected graphs.
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Definition 1.1 Two verticesu andv in an undirected graphG are called adjacent
(or neighbors) inG if {u, v} is an edge ofG. If e = {u, v}, the edgee is called
incident with the verticesu and v. They edgee is also said to connectu andv.
The verticesu andv are called endpoints of the edge{u, v}.

Definition 1.2 The degree of a vertex in an (undirected) graph is the number of
edges incident with it, except that a loop at a vertex contributes two to the degree
of that vertex. The degree of the vertexv is denoted bydeg(v) or d(v).

Definition 1.3 A vertex of degree zero is called an isolated vertex.

What do we get when we add the degrees of all the vertices of a graphG =
(V, E)? The following theorem is due to Euler.

Theorem 1.4 (The Handshaking Theorem) Let G = (V, E) be an undirected
graph withe edges. Then

2e =
∑
v∈V

deg(v).

Question: How many edges are there in a graph with 10 vertices each of which
of degree 6?

Corollary : An undirected graph has an even number of vertices of odd degree.

When (u, v) is an edge of the graphG with directed edges,u is said to be
adjacent tov andv is said to beadjacent fromu. The vertexu is called the initial
vertex of(u, v), andv is called theterminalor endvertex of(u, v).

The initial vertex and terminal vertex of a loop are the same. Since the edges
in graphs with directed edges are ordered pairs, the definition of the degree of a
vertex can be defined to reflect the number of edges with this vertex as the initial
vertex and as the terminal vertex.

Definition 1.5 In a graph with directed edges the in-degree of a vertexv, denoted
bydeg−(v), is the number of edges withv as their terminal vertex. The out-degree
of v, denoted bydeg+(v), is the number of edges withv as their initial vertex.

Note that a loop at a vertex contributes 1 to both the in-degree and the out-
degree of this vertex.
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Theorem 1.6 LetG = (V, E) be a graph with directed edges. Then∑
v∈V

deg−(v) =
∑
v∈V

deg+(v) = |E|

where|E| is the size ofE.

1.1 Complete Graphs

The complete graph ofn vertices, denoted byKn, is the simple graph that contains
exactly one edge between each pair of distinct vertices.

The graphKn for n = 1, 2, 3, 4, 5, 6 are displayed as follows:
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1.2 Cycles

The cycleCn, n ≥ 3, consists ofn verticesv1, v2, · · · , vn and edges

{v1, v2}, {v2, v3}, {v3, v4}, · · · , {vn−1, vn}, and{vn, v1}.

The cyclesCn for n = 3, 4, 5, 6 are displayed as follows:
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1.3 Wheels

We obtain the wheelWn when we add an additional vertex to the cycleCn, for
n ≥ 3, and connect this new vertex to each of then vertices inCn, by new edges.

The wheelsW3, W4, W5 andW6 are displayed as follows:
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1.4 Bipartite graphs

Sometimes a graph has the property that its vertex set can be divided into two
disjoint subsets such that each edge connects a vertex in one of these subsets to a
vertex in the other subset.

Definition 1.7 A simple graphG is called bipartite if its vertex setV can be
partitioned into two disjoint setsV1 and V2 such that every edge in the graph
connects a vertex inV1 and a vertex inV2 (so that no edge inG connects either
two vertices inV1 or two vertices inV2).

Question: Among cyclesC3, C4, C5 andC6, which are bipartite graphs?

Example: Are the following graphs bipartite?
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1.5 Complete bipartite graphs

TheComplete bipartite graphKm,n is the graph that has its vertex set partitioned
into two subsets ofm andn vertices, respectively, and that there is an edge be-
tween two vertices if and only if one vertex is in the first subset and the other
vertex is in the second subset.
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The complete bipartite graphsK2,3, K3,3 andK3,5 are displayed as follows:
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Can you figure outK3,4, K2,6?

1.6 From old to new

Definition 1.8 A subgraph of a graphG = (V, E) is a graphH = (V ′, E ′) with
V ′ ⊆ V andE ′ ⊆ E.

Example: K3 andK4 are subgraphs ofK5. 2

Two or more graphs can be combined in various ways. The new graph that
contains all the vertices and edges of these graphs of these graphs is called the
unionof the graphs.

Definition 1.9 The union of two simple graphsG1 = (V1, E1) andG2 = (V2, E2)
is the simple graph with vertex setV1 ∪ V2 and edge setE1 ∪E2. The union ofG1

andG2 is denoted byG1 ∪G2.
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Example: Find the union of the graphsG1 andG2 displayed as follows:
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1.7 Representation of graphs

There are many ways to represent graphs. One way to represent a graph without
multiple edges is to list all the edges of this graph. Another way is to useadjacency
lists, which specify the vertices that are adjacent to each vertex of the graph.

Example: Use adjacency lists to describe the simple graph given in the fol-
lowing figure:
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The next table lists those vertices adjacent to each of the vertices of the graph.

Vertex Adjacent Vertices
a b, c, e
b a
c a, d, e
d c, e
e a, c, d

Carrying out graph algorithms using the representation of graphs by lists of
edges, or by adjacency lists, can be cumbersome if there are many edges in the
graph. To simplify computation, graphs can be represented using matrices. Two
types of matrices commonly used to represent graphs will be presented here. One
is based on the adjacency of vertices, and the other is based on incidence of ver-
tices and edges.

1.8 Adjacency Matrices

Suppose thatG = (V, E) is a simple graph where|V | = n. Suppose that the
vertices ofG are listed arbitrarily asv1, v2, · · · , vn. Theadjacency matrixA (or
AG) of G, with respect to this listing of the vertices, is then× n zero-one matrix
with 1 as its(i, j)-th entry whenvi andvj are adjacent, and 0 as its(i, j)th entry
whenvi andvj are not adjacent. In other words, if its adjacency matrix isA =
[aij], then

aij =

{
1 if {vi, vj} is an edge ofG,
0 otherwise.

1. Note that an adjacency matrix of a graph is based on the ordering chosen for
the vertices. Hence there are as many asn! different adjacency matrices for
a graph withn vertices, since there aren! different orderings ofn vertices.
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2. The adjacency matrix of a simple graph is symmetric, that is,aij = aji,
since both of these entries are 1 whenvi andvj are adjacent, and both are 0
otherwise. Furthermore, since a simple graph has no loops, each entryaii,
i = 1, · · · , n, is 0.

Example: Use an adjacency matrix to represent the following graph.
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Solution: We order the vertices asa, b, c, d. The matrix representing this graph is:
0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 .

Example: Draw a graph with the adjacency matrix
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


with respect to the ordering of verticesa, b, c, d. 2

Solution: A graph with this adjacency matrix is:
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1.9 Incidence Matrices

Another common way to represent graphs is to useincidence matrices. Let G =
(V, E) be an undirected graph.

Suppose thatv1, v2, · · · , vn are the vertices ande1, e2, · · · , em are the edges
of G. Then the incidence matrix with respect to this ordering ofV andE is the
n×m matrixM = [mij], where

mij =

{
1 when edgeej is incident withvj,
0 otherwise.

Example: Represent the following graph with an incidence matrix:
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Solution: The incidence matrix is


1 1 0 0 0 0
0 0 1 1 0 1
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 1 0

 .

Incidence matrices can also be used to represent multiple edges and loops.
Multiple edges are represented in the incidence matrix using columns with iden-
tical entries, since these edges are incident with the same pair of vertices. Loops
are represented using a column with exactly one entry equal to 1, corresponding
to the vertex that is incident with this loop.
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1.10 Isomorphisms of graphs

Definition 1.10 The simple graphsG1 = (V1, E1) andG2 = (V2, E2) are isomor-
phic if there is a one-to-one and onto functionf from V1 to V2 with the property
that a and b are adjacent inG1 if and only iff(a) andf(b) are adjacent inG2,
for all a andb in V1. Such a function is called an isomorphism.

In other words, when two simple graphs are isomorphic, there is a one-to-one
correspondence between vertices of the two graphs that preserves the adjacency
relationship. Isomorphism of simple graphs is an equivalence relation.

Example: Show that the graphsG = (V, E) andG′ = (V ′, E ′) are isomor-
phic.
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Solution: The functionf with f(u1) = v1, f(u2) = v4, f(u3) = v3, f(u4) = v2

is a one-one correspondence betweenV andV ′.

We leave the verification thatf is a one-one correspondence preserving adja-
cency to you.

Example: We can show that two simple graphs are not isomorphic by show-
ing that they do not share a property that isomorphic simple graphs graphs must
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both have — such a property is called aninvariant with respect to isomorphism
of simple graphs:

1. isomorphic simple graphs must have the same number of vertices

2. isomorphic simple graphs must have the same number of edges

3. the degrees of the vertices in isomorphic simple graphs must be the same.

2

Example:
Show that the following two graphs are not isomorphic.
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Example: Determine whether the following graphsG1 andG2 are isomor-
phic.
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2 Connectivity

Many problems can be modeled with paths formed by traveling along the edges
of graphs. For instance, the problem of determining whether a message can be
sent between two computers using intermediate links can be studied with a graph
model. Problems of efficiently planning routes for mail delivery, diagnostics in
computer networks, etc., can be solved using models that involve paths in graphs.

2.1 Paths

Informally, apath is a sequence of edges that begins at a vertex of a graph and
travels along edges of the graph, always connecting pairs of adjacent vertices.

Definition 2.1 Let n be a nonnegative integer andG be an undirected graph. A
path of lengthn fromu to v in G is a sequence ofn edgese1, e2, · · · , en of G such
thatf(e1) = {x0, x1}, f(e2) = {x1, x2}, · · · , f(en) = {xn−1, xn}, wherex0 = u,
andxn = v. The path is a circuit if it begins and ends at the same vertex, that is,
if u = v, and has length greater than0.

The path or circuit is said to pass through the verticesx1, x2, · · · , xn−1 or
traverse the edgese1, e2, · · · , en.

A simple path or circuit is simple if it does not contain the same edge more
than once.
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Remark: Note that if a graphG is a multigraph, there may be more than one
path that passes through the same sequence of vertices. When it is not necessary
to distinguish between multi edges, we will denote a pathe1, e2, · · · , en where
f(ei) = {xi−1, xi} for i = 1, 2, · · · , n by this vertex sequencex0, x1, x2, · · · , xn.
This notation identifies a path only up to the vertices it passes through. Thus, when
the graphG is simple, we denote this path by its vertex sequencex0, x1, x2, · · · , xn,
because listing these vertices uniquely determines the path.

Example: In the simple graph shown below,a, d, c, f, e is a simple path of
length 4 since{a, d}, {d, c}, {c, f} and{f, e} are all edges. However,d, e, c, a is
not a path, since{e, c} is not an edge.

b, c, f, e, b is a circuit of length 4 since{b, c}, {c, f}, {f, e} and{e, b} are
edges, and this path begins and ends atb.

The patha, b, e, d, a, b is not simple since it contains the edge{a, b} twice.
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The following is the definition of paths and circuits for directed graphs.

Definition 2.2 Letn be a nonnegative integer andG be a directed graph. A path
of lengthn fromu to v in G is a sequence ofn edgese1, e2, · · · , en of G such that
f(e1) = (x0, x1), f(e2) = (x1, x2), · · · , f(en) = (xn−1, xn), wherex0 = u, and
xn = v. The path is a circuit or cycle if it begins and ends at the same vertex, and
has length greater than0.

A simple path or circuit is called simple if it does not contain the same edge
more than once.

Remark: Again, when there are no multi edges in a directed pathe1, e2, · · · , en

wheref(ei) = (xi−1, xi) for i = 1, 2, · · · , n, we can denote this path by its vertex
sequencex0, x1, x2, · · · , xn.
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Example: Find circuits of lengths 3, 4 and 5 in the following directed graph.
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2.2 Connectedness

When does a computer network have the property that every pair of computers
can share information, if messages can be sent through one or more intermediate
computers? When a graph is used to represent this computer network, where
vertices represent the computers and edges represent the communication links,
this question becomes: when is there always a graph between two vertices in the
graph?

Definition 2.3 An undirected graph is called connected if there is a path between
every pair of distinct vertices of the graph.

Thus any two computers in the network can communicate if and only if the
graph of this network is connected.

Example:
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Connected graph:G1
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2

Theorem 2.4 There is a simple path between every pair of distinct vertices of a
connected undirected graph.

Proof: Let u andv be two distinct vertices of the connected undirected graph
G = (V, E). SinceG is connected, there is at least one path betweenu andv.

Let u = v0, v1, · · · , vn = v be the vertex sequence of a path of least length.
This path of least length is simple. To see this, suppose it is simple, thenvi = vj

for somei < j ≤ n. This means that there is a path fromu to v of shorter length
with vertex sequencev0, · · · , vi−1, vj, · · · , xn, obtained by deleting the edges cor-
responding to the vertex sequencevi, · · · , vj−1. �

Definition 2.5 A graph that is not connected is the union of two or more con-
nected subgraphs, each pair of which has no vertex in common. These disjoint
connected subgraphs are called the connected components of the graph.

Example: Find the connected components of the following graph:
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2.3 Euler circuits and Euler paths

Can we travel along the edges of a graph starting at a vertex and returning to it
by traversing each edge of the graph exactly once? Similarly, can we travel along
the edges of a graph starting from a vertex and returning to it while visiting each
vertex of the graph exactly once? Although these questions seem to be similar,
the first question, which asks whether a graph has anEuler circuit, can be an-
swered for all graphs, while the second question, which asks whether a graph has
aHamiltonian circuit, is quite difficult to solve.

Definition 2.6 An Euler circuit in a graphG is a simple circuit containing every
edge ofG. An Euler path inG is a simple path containing every edge ofG.

Example: Which of the following graphs have an Euler circuit?
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There are simple criteria for determining whether a multigraph has an Eu-
ler circuit or an Euler path. Euler discovered them when he solved the famous
K’̈onigsberg bridge problem.

What can we say if a connected multigraph has an Euler circuit? What we can
show is that every vertex must have even degrees.

To show this, first note that an Euler circuit begins with a vertexa and con-
tinues with an edge incident toa, say{a, b}. The edge{a, b} contributes one to
deg(a). Each time the circuit passes through a vertex it contributes two to the
vertex’s degree since the circuit enters via an edge incident with this vertex and
leaves via another such edge. Finally, the circuit terminates where it started, con-
tributing one todeg(a). Therefore,deg(a) is even, because the circuit contributes
one when it begins, one when it ends, and two every time it passes througha (if it
ever does).

A vertex other thana has even degree because the circuit contributes two to its
degrees each time it passes through the vertex.

Thus, we can conclude that if a connected graph has an Euler circuit, then
every vertex must have even degree.

Is this necessary condition for the existence of an Euler circuit also sufficient?
That is, must an Euler circuit exist in a connected multigraph if all vertices have
even degree? The answer is ‘yes’.

Suppose thatG is a connected multigraph and the degree of every vertex ofG
is even. We will form a simple circuit that begins at an arbitrary vertexa of G.
Let v0 = a.
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First, we arbitrarily choose an edge{v0, v1} incident witha. We continue
by building a simple path{v0, v1}, {v1, v2}, · · · , {xn−1, xn} that is as long as
possible. The path terminates since the graph has a finite number of edges. It
begins ata with an edge of the form{a, v1}, and it terminates ata with an edges
of form {u, a}. This follows because each time the path goes through a vertex
with even degree, it uses only one edge to enter this vertex, so that at least one
edge remains for the path to leave the vertex.

This path may use all the edges, or it may not.
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rrr

a ← b

c

f →

↓ ↑

d

e

If all the edges have been used in the construction, then we know that an
Euler circuit is constructed. Otherwise, consider the subgraphH obtained from
G by deleting the edges already used and vertices that are not incident with any
remaining edges.

SinceG is connected, there is at least one vertex in common with the circuit
that has been deleted. Letw be such a vertex.

Note that every vertex inH has even degree (why?). However,H may not be
connected. Beginning withw, construct a simple path inH by choosing edges as
long as possible, as was done inG. This path must terminate atw.

Continue this process, until all edges have been used. (The process must ter-
minates since there are only a finite number of edges inG.) This produces an Euler
circuit. The construction shows that if the vertices of a connected multigraph all
have even degree, then the graph has an Euler circuit.

We summarize these results in the following theorem.

Theorem 2.7 A connected multigraph has an Euler circuit if and only if each of
its vertices has even degree.
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We can now argue why the graphs given in a previous example do not have
Euler circuit. The following is an algorithm for the construction of Euler circuits.

Constructing Euler Circuits

procedureEuler(G: connected multigraph with all vertices of even degree)

circuit:= a circuit inG beginning at an arbitrarily chosen vertex with edges
successively added to form a path that returns to this vertex

H := G with the edges of this circuit removed

while H has edges

begin

subcircuit:= a circuit inH beginning at a vertex inH that also is an
endpoint of an edge of circuit

H := H with edges ofsubcircuitand all isolated vertices removed

circuit := circuit with subcircuitinserted at the appropriate vertex

end{ circuit is an Ruler circuit}

Now we show that a connected multigraph has an Euler path (and not an Euler
circuit) if and only if it has exactly two vertices of odd degree.

First suppose that a connected multigraph does have an Euler path froma to
b, but not an Euler circuit. Then clearly, the first edge of the path contributes one
to the degree ofa, and the last edge in the path contributes one to the degree ofb.
Every time the path goes througha or b there is a contribution of two to the degree
of a or b respectively. Consequently, botha andb had odd degree. Every other
vertex has even degree, since the path contributes two to the degree of a vertex
whenever it passes through it.

Now consider the converse. Suppose that a graph has exactly two vertices of
odd degree, saya andb. Consider the larger graph made up of the original graph
with the addition of an edge{a, b}. Every vertex of this larger graph has even
degree, so that there is an Euler circuit. Then removal of the new edge produces
an Euler path in the original graph.

Theorem 2.8 A connected multigraph has an Euler path but not an Euler circuit
if and only if it has exactly two vertices of odd degree.
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Example: Show that the graphs below have Euler paths.
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2.4 Hamilton paths and circuits

We have developed necessary and sufficient conditions for the existence of paths
and circuits that contain every edge of a multigraph exactly once. Can we do the
same for simple paths and circuits that contain every vertex of the graph exactly
once?

Definition 2.9 A pathv0, v1, · · · , vn in the graphG = (V, E) is called a Hamilton
path if V = {v0, v1, · · · , vn−1, vn and vi 6= xj for 0 ≤ i < j ≤ n. A circuit
v0, v1, · · · , vn−1, vn, v0 (with n > 1) in a graphG = (V, E) is called a Hamilton
circuit if v0, v1, · · · , vn−1, vn is a Hamilton path.
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Example: Which of the following graphs have a Hamilton circuit or, if not,
a Hamilton path?
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Solution: G1 has a Hamilton circuita, b, c, d, e, a. There is no Hamilton circuit in
G2 because any circuit containing every vertex must contain the edge{a, b} twice.
But G2 does have a Hamilton path:a, b, c, d.

G3 has neither a Hamilton circuit nor a Hamilton path, since any path contain-
ing all vertices must contain one of the edges{a, b}, {e, f} and{c, d} more than
once. 2

Is there a simple way to determine whether a graph has a Hamilton circuit or
path? At first, it might seem that there should be an easy way to determine this,
since there is a simple way to answer the similar question of whether a graph has
an Euler circuit. Surprisingly, there are no known simple necessary and sufficient
criteria for the existence of Hamilton circuits. However, there are some theorems
known as giving sufficient conditions for the existence of Hamilton circuits. Also
some properties can be used to show that a graph has no Hamilton circuit. For
instance, a graph with a vertex of degree one cannot have a Hamilton circuit,
since in a Hamilton circuit, each vertex is incident with two edges in the circuit.
Moreover, if a vertex in the graph has degree two, then both edges that are incident
with this vertex must be part of any Hamilton circuit. Also note that when a
Hamilton circuit is being constructed and this circuit has passed through a vertex,
then all remaining edges incident with this vertex, other than the two used in
the circuit, can be removed from consideration. Furthermore, a Hamilton circuit
cannot contain a smaller circuit within it.

Example: Show that the following two graphs do not contain Hamilton
paths?
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Solution: There is no Hamilton circuit inG1 sinceG1 has a vertex of degree one,
namely,e.

Now considerG2. Since the degrees of the verticesa, b, d, e are all two, every
edge incident with these vertices must be part of any Hamilton circuit. It is now
easy to see that no Hamilton circuit can exist inH, for any Hamilton circuit would
have to contain four edges incident withc, which is impossible. 2

Example: Show thatKn has a Hamilton circuit wheneverk ≥ 3.

Solution: We can form a Hamilton circuit inKn beginning at any vertex. Such a
circuit can be built by vertices in any order we choose, as long as the path begins
and ends at the same vertex and visits each other vertex exactly once. This is pos-
sible since there are edges inKn between any two vertices. 2

At the end of this section, we state two sufficient conditions for the existence
of Hamilton circuits. These two conditions were found by Gabriel A. Dirac in
1952 and Oystein Ore in 1960.

Theorem 2.10 (Dirac) If G is a simple graph withn vertices withn ≥ 3, such
that the degree of each vertex is at leastn/2, thenG has a Hamilton circuit.

Theorem 2.11 (Ore) If G is a simple graph withn vertices withn ≥ 3, such that
deg(u) + deg(v) ≥ n for every pair of nonadjacent verticesu andv in G, thenG
has a Hamilton circuit.
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2.5 Shortest-path problems—Dijkstra’s algorithm

Many problems can be modeled using graphs with weights assigned to their edges.
Graphs that have a number assigned to each edge are calledweighted graphs.
Weighted graphs are used to model computer networks. Communications costs
(such as the monthly cost of leasing a telephone line), the response times of the
computers over these lines, or the distance between computers, can all be studied
using weighted graphs.

There are several different algorithms that find a shortest path between two
vertices in a weighted graph. We will present an algorithm discovered by the
Dutch mathematician Edsger Dijkstra in 1959. The version we will describe
solves this problem in undirected weighted graphs where all the weights are posi-
tive. It is easy to adapt it to solve shortest path problems in directed graphs.

Before giving a formal presentation of the algorithm, we will give a motivating
example.

Example:
What is the length of a shortest path betweena andz in the weighted graph

shown in the following graph?

�
�

��

@
@

@
@

@
@

@

@
@

@@

@
@

@@

�
�

��

r r
r

r
r

r
a

ed

b c

z

4

2

2

1

3

3

3

Solution: Although a shortest path is easily found by inspection, we will develop
some ideas useful in understanding Dijkstra’s algorithm. We will solve this prob-
lem by fining the length of a shortest path froma to successive vertices, untilz is
reached.

The only paths starting ata that contain non vertex other thana (until the
terminal vertex is reached) area, b anda, d. Since the lengths ofa, b anda, d are
4 and 2, respectively, it follows thatd is the closest vertex toa.

We can find the next closet vertex by looking at all paths that go through
only a andd (until the terminal vertex is reached). The shortest such path tob

27



is still a, b, with length 4, and the shortest such path toe is a, d, e, with length 5.
Consequently, the next closest vertex toa is b.

To find the third closest vertex toa, we need to examine only paths that go
through onlya, d and b (until the terminal vertex is reached). There is a path
of length 7 toc, namely,a, b, c and a path of length 6 toz, namely,a, d, e, z.
Consequently,z is the next closest vertex toa, and the length of a shortest path to
z is 6.

2

This example illustrates the general principles used in Dijkstra’s algorithm.
Note that a shortest path froma to z could have been found by inspection. How-
ever, inspection is impractical when a large number of edges are involved.

We will now consider the general problem of finding the length of a shortest
path betweena andz in an undirected connected simple weighted graph. Dijk-
stra’s algorithm proceeds buy finding the length of a shortest path froma to a first
vertex, the length of a shortest path froma to a second vertex, and so on, until the
length of a shortest path froma to z is found.

The algorithm relies on a series of iterations. A distinguished set of vertices is
constructed by adding one vertex at each iteration. A labeling procedure is carried
out at each iteration. In this labeling procedure, a vertexw is labeled with the
length of a shortest path froma to w that contains only vertices already in the
distinguished set. The vertex added to the distinguished set is one with a minimal
label among those vertices not already in the set.

We now give the details of Dijkstra’s algorithm. It begins by labelinga with 0
and the other vertices with∞. We use the notationL0(a) = 0 and L0(v) = ∞
for these labels before any iterations have taken place (the subscript 0 stands
for the 0-th iteration). These labels are the lengths of shortest paths froma to
the vertices, where the paths contain only the vertexa. (Since no path froma to
a vertex different froma exists,∞ is the length of a shortest path betweena and
this vertex.

Dijkstra’s algorithm proceeds by forming a distinguished set of vertices. Let
Sk denote this set afterk iterations of the labeling procedure. We begin with
S0 = ∅. The setSk is formed fromSk−1 by adding a vertexu not in Sk−1 with
the smallest label. Onceu is added toSk, we update the labels of all vertices not
in Sk, so thatLk(v), the label of the vertexv at thekth stage, is the length of a
shortest path froma to v that contains vertices only inSk (that is, vertices that
were already in the distinguished set together withu).
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Let v be a vertex not inSk. To update the label ofv, note thatLk(v) is the
length of a shortest path froma to v containing only vertices inSk. The updating
can be carried out efficiently when this observation is used: a shortest path from
a to v containing only elements ofSk is either a shortest path froma to v that
contains only elements ofSk−1 (that is, the distinguished vertices not including
u), or it is a shortest path froma to u at the(k − 1)-st stage with the edge(u, v)
added. In other words,

Lk(a, v) = min{Lk−1(a, v), Lk−1(a, u) + w(u, v)}.

This procedure is iterated by successively adding vertices to the distinguished set
until z is added. Whenz is added to the distinguished set, its label is the length of
a shortest path froma to z.

Dijkstra’s algorithm

ProcedureDijkstra (G: weighted connected simple graph, with all weights
positive)

{G has verticesa = v0, v1, · · · , vn = z and weightsw(vi, vj)

wherew(vi, vj) =∞ if {vi, vj} is not an edge inG}

for i := 1 to n

L(vi) :=∞

L(a) := 0

S := ∅

{ the labels are now initialized so that the label ofa is 0 and all other labels
are∞, andS is the empty set}

while z 6∈ S

begin

u := a vertex not inS with L(u) minimal

S := S ∪ {u}
for all verticesv not inS
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if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)

{ this adds a vertex toS with minimal label and updates the labels of
vertices not inS }

end{ L(z) = length of a shortest path froma to z.

We illustrate Dijkstra’s algorithm in the following example.

Example: Use Dijkstra’s algorithm to find the length of a shortest path be-
tween the verticesa andz in the weighted graph:
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Now we use tan inductive argument to show that Dijkstra’s algorithm produces
the length of a shortest path between two verticesa andz in an undirected con-
nected weighted graph. Take as the induction hypothesis the following assertion:
at thekth iteration

(i) the label of every vertexv in S is the length of a shortest path froma to the
vertex, and

(ii) the label of every vertex not inS is the length of a shortest path froma to
this vertex that contains only (besides the vertex itself) vertices inS.

Whenk = 0, before any iteration are carried out,S = ∅, so the length of a
shortest path froma to a vertex other thana is∞.

Assume that the inductive hypothesis holds for thekth iteration. Letv be the
vertex added toS at the(k + 1)st iteration so thatv is a vertex not inS at the
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end of thekth iteration with the smallest label (in the case of ties, any vertex with
smallest label may be used).

From the inductive hypothesis we see that the vertices inS before the(k+1)st
iteration are labeled with the length of a shortest path froma. Also v must be
labeled with the length of a shortest path to it froma. If this were not the case,
at the end of thekth iteration there would be a path of length less thanLk(v)
containing a vertex not inS (becauseLk(v) is the length of a shortest path froma
to v containing only vertices inS after thekth iteration). Letu be the first vertex
not in S in such a a path. There is a path with length less thanLk(v) from a to u
containing only vertices ofS. This contradicts the choice ofv. Hence(i) is true
at the end of the(k + 1)st iteration.

Let u be a vertex not inS after k + 1 iterations. A shortest path froma
to u containing only elements ofS either containsv or it does not. If it does
not containv, then by the inductive hypothesis, its length isLk(u). If it does
containv, then it must be made up of a path froma to v of shortest possible
length containing elements ofS other thanv, followed by the edge fromv to u. In
this case, its length would beLk(v) + w(v, u). This shows that (ii) is true, since
Lk+1(u) = min{Lk(u), K)k(v) + w(v, u)}.

We have proved the following theorem:

Theorem 2.12 Dijkstra’s algorithm finds the length of a shortest path between
two vertices in a connected simple undirected weighted graph.

The following part is optional. We can now estimate the computational com-
plexity of Dijkstra’s algorithm, in terms of addition and comparisons. The algo-
rithm uses no more thann − 1 iterations, since one vertex is added to the dis-
tinguished set at each iteration. We are done if we can estimate the number of
operations used for each iteration. We can identify the vertex not inS)k with the
smallest label using no more thann − 1 comparisons. Then we use an addition
and a comparison to update the label of each vertex not inSk. It follows that no
more than2(n− 1) operations are used at teach iteration, since there are no more
thann − 1 labels to update at each iteration. Since we use no more thann − 1
iterations, each using no more than2(n − 1) operations we have the following
theorem:

Theorem 2.13 Dijkstra’s algorithm usesO(n2) operations (additions and com-
parisons) to find the length of a shortest path between two vertices in a connected
simple undirected weighted graph withn vertices.
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3 Planar graphs

In this lecture, we will study the question of whether a graph can be drawn in the
plane without edges crossing.

Definition 3.1 A graph is called planar if it can be drawn in the plane without
edges crossing (where a crossing of edges is the intersection of the lines or arcs
representing them at a point other than their common endpoint). Such a drawing
is called a plannar representation of the graph.

A graph may be planar even if it is usually drawn with crossings (e.g.,K4),
since it may be possible to draw it in a different way without crossings.

Example: The following graph is planar. Why?
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We can show that a graph is planar by displaying a planar representation. It is
harder to show that a graph is nonplanar. We will give an example to show how
this can be done in an ad hoc fashion.

Example: Show thatK3,3 is not planar.
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Solution: In any planar representation ofK3,3, the verticesv1 and v2 must be
connected to bothv4 andv5. These four edges form a closed curve that splits the
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plane into two regions,R1 andR2. The vertexv3 is either inR1 or in R2. See
below.
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If v3 is in R2, the inside of the closed curve, the edges betweenv3 andv4 and
betweenv3 andv5 separateR2 into two subregions,R21 andR22.
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Next, note that there is no way to place the final vertexv6 without forcing a
crossing. For ifv6 is in R1, then the edge betweenv6 andv3 cannot be drawn
without a crossing. Ifv6 is in R21, then the edge betweenv6 andv2 cannot be
drawn without a crossing. Ifv6 is in R22, then the edge betweenv6 andv1 cannot
be drawn without a crossing.

A similar argument can be used whenv3 is in R1. We leave the verification of
this case to you. Thus,K3,3 cannot be represented on a plane. 2

Planarity of graphs plays an important role in the design of electronic circuits.
We can model a circuit with a graph by representing components of the circuit
by vertices and connections between them by edges. We can print a circuit on a
single board with no connections crossing if the graph representing the circuit is
planar. When this graph is not planar, we must turn to more expensive options.
For example, we can partition the vertices in the graph representing the circuit
into planar subgraphs. We then construct the circuit using multiple layers. We
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can construct the circuit using insulated wires whenever connections cross. In this
case, drawing the graph with the fewest possible crossings is important.

3.1 Euler’s formula

A planar representation of a graph splits the plane into regions, including an un-
bounded region. For instance, the planar representation of the graph shown in the
following figure splits the plane into six regions. These are labelled in the figure.
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Euler showed that all planar representations of a graph split the plane into the
same number of regions. He accomplished this by finding a relationship among
the number of regions, the number of vertices, and the number of edges of a planar
graph.

Theorem 3.2 (Euler’s Formula) LetG be a connected planar simple withe
edges andv vertices. Letr be the number of regions in a planar representation of
G. Then

r = e− v + 2.

Proof: First, we specify a planar representation ofG. We will prove the theorem
by constructing a sequence of subgraphsG1, G2, · · · , Ge = G successively by
adding an edge at each stage. This is done using the following inductive definition.

• Arbitrarily pick one edge ofG to obtainG1.

• HavingGn−1, we constructGn by arbitrarily adding an edge that is incident
with a vertex already inGn−1, adding the other vertex incident with this
edge if it is not inGn−1.

This construction is possible sinceG is connected.G is obtained aftere edges
are added. Letrn, en andvn represent the number of regions, edges, and vertices
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of the planar representation ofGn induced by the planar representation ofG,
respectively.

The proof will now proceed by induction.
The relationshipr1 = e1 − r1 + 2 is true forG1 sincee1 = 1, v1 = 2 and

r1 = 1.
Now assume thatrn = en− vn +2. Let{an+1, bn+1} be the edge that is added

to Gn to obtainGn+1. There are two possibilities to consider.
In the first case, bothan+1 andbn+1 are already inGn. Then these two vertices

must be on the boundary of a common regionR, or else it would be impossible to
add the edge{an+1, bn+1} to Gn without two edges crossing (andGn+1 is planar).
The addition of this new edge splitsR into two regions.
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As a consequence, in this case,

• rn+1 = rn + 1,

• en+1 = en + 1, and

• vn+1 = vn.

Therefore,rn+1 = en+1 − vn+1 + 2.
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In the second case, one of the two vertices of the new edge is not already in
Gn. Suppose thatan+1 is in Gn but thatbn+1 is not.
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Adding this new edge does not produce any new regions, sincebn+1 must be
in a region that havean+1 on its boundary. Consequently,rn+1 = rn. Moreover,
en+1 = en +1 andvn+1 = vn +1. Each side of the formula relating the number of
regions, edges, and vertices remains the same, so the formula is still true. In other
words,rn+1 = en+1 − vn+1 + 2.

We have completed the induction argument. Hencern = en − vn + 2 is true
for all n. Since the original graph is the graphGe, obtained aftere edges have
been added, the theorem is true. �

Euler’s formula is illustrated in the following example.

Example: Suppose that a connected planar simple graph has 20 vertices,
each of degree 3. Into how many regions does a representation of this planar
graph split the plane? 2

Euler’s formula can be used to establish some inequalities that must be satis-
fied by planar graphs. One such inequality is given in the following corollary.
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Corollary 3.3 If G is connected planar simple graph withe edges andv vertices
wherev ≥ 3, thene ≤ 3v − 6.

Proof: First we define thedegreeof a region as the number of edges on the
boundary of this region. When an edge occurs twice on the boundary (so that it is
traced out twice when the boundary is traced out), it contributes two to the degree.
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Suppose a connected planar simple graph drawn in the plane divides the plane
into r many regions. Then the degree of each region is at least three. (Since
the graphs discussed here are simple graphs, no multi edges that could produce
regions of degree two, or loops that could produces of degree one, are permitted.)
In particular, note that the degree of the unbounded region is at least three since
there are at least three vertices in the graph.

Note that the sum of the degrees of the regions is exactly twice the number of
edges in the graph, because each edge occurs on the boundary of a region exactly
twice (either in two different regions, or twice in the same region). Since each
region has degree greater than or equal to three, it follows that

2e =
∑

all regionsR

deg(R) ≥ 3r.

Hencer ≤ (2e)/3. Usingr = e− r + 2, we have

e− v + 2 ≤ (2/3)e.

Immediately, we havee ≤ 3v − 6. �
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Corollary 3.4 If G is a connected planar simple graph, thenG has a vertex of
degree not exceeding five.

Proof: If G has one or two vertices, the result is true.
If G has at least three vertices, by 3.3,e ≤ 3v − 6 and hence2e ≤ 6v − 12.

If the degree of every vertex were at least six, then since2e =
∑

v∈V deg(v), we
would have2e ≥ 6v. But this contradicts the inequality2e ≤ 6e− 12. If follows
that there must be a vertex with degree no bigger than 5. �

From Corollary 3.5, we know thatK5 is not planar because the inequality
e ≤ 3v − 6 is not satisfied (e = 10, v = 5, 3v − 6 = 9.

We proved before thatK3,3 is not planar. Note however that this graph has 6
vertices and 9 edges, and the inequalitye = 9 < 12 = 3 ·6−6 is satisfied. Hence,
we cannot use the inequality to prove thatK3,3 is not planar. However, we can
have the following improvement.

Corollary 3.5 If G is a connected planar simple graph withe edges andv ver-
tices,v ≥ 3, and no circuit inG can have length 3, thene ≤ 2v − 4.

We leave the proof to you.
SinceK3,3 has no circuits of length 3, we can apply Corollary 3.5. Note that

K3,3 has 6 vertices and 9 edges,e = 9 > 8 = 2v − 4. By Corollary 3.5,K3,3 is
not planar.

3.2 Kuratowski’s Theorem

We can see thatK3,3 andK5 are not planar. Clearly, a graph is not planar if it
contains either of these two graphs as a subgraph. Surprisingly, all nonplanar
graphs must contain a subgraph that can be obtained fromK3,3 or K5 using some
permitted operations.

If a graph is planar, so will be any graph obtained by removing an edge{u, v}
and adding a new vertexw together with edges{u, w} and {w, v}. Such an
operation is called anelementary subdivision. The graphsG1 = (V1, E1) and
G2 = (V2, E2) are calledhomeomorphicif they can be obtained from the same
graph by a sequence of elementary subdivisions.
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The three graphs displayed above are homeomorphic since all can be obtained
from the first one by elementary subdivisions. (Can you figure out these elemen-
tary subdivisions?)

The following characterization of planar graphs using the concept of graph
homeomorphism is due to Kuratowski, a mathematician form Poland.

Theorem 3.6 A graph is nonplanar if and only if it contains a subgraph homeo-
morphic toK3,3 or K5.

It is clear that a graph containing a subgraph homeomorphic toK3,3 or K5 is
nonplanar. However, the proof of the converse, namely that every nonplanar graph
contains a subgraph homeomorphic toK3,3 or K5, is complicated, and will not be
given here.

Example: Determine whether the graph given below is planar.
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Thecrossing numberof a simple graph is the minimum number of crossings
that can occur when this graph is drawn in the plane where no three arcs repre-
senting edges are permitted to cross at the same point. For example,K3,3 has 1 as
its crossing number.

Example: Find the crossing numbers of each of the following nonplanar
graphs.

(a)K5, (b) K6, (c) K7, (d) K3,4, (e)K4,4, (f) K5,5 2
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4 Graph coloring

Problems related to the coloring of maps of regions, such as maps of parts of the
world, have generated many results in graph theory. When a map is colored, two
regions with a common border are customarily assigned different colors. One way
to ensure that two adjacent regions never have the same color is to use a different
color for each region. However, this is inefficient, and on maps with many regions
it would be hard to distinguish similar colors. Instead, a small number of colors
should be used whenever possible. Consider the problem of determining the least
number of colors that can be used to color a may so that adjacent regions never
have the same color.

Each map in the plane can be represented by a graph. To set up this corre-
spondence, each region of the map is represented by a vertex. Edges connect two
vertices if the regions represented by these vertices have a common border. Two
regions that touch at only one point are not considered adjacent. The resulting
graph is called thedual graphof the map. By the way in which dual graphs of
maps are constructed, it is clear that any map in the plane has a planar dual graph.

The problem of coloring the regions of a map is equivalent to the problem
of coloring the vertices of the dual graph so that no two adjacent vertices in this
graph have the same color. We now define a graph coloring.

Definition 4.1 A coloring of a simple graph is the assignment of a color to each
vertex of the graph so that no two adjacent vertices are assigned the same color.

A graph can be colored by assigning a different color to each of its vertices.
However, for most graphs, a coloring can be found that uses fewer colors than the
number of vertices in the graph. What is the least number of colors necessary?

Definition 4.2 The chromatic number of a graph is the least number of colors
needed for a coloring of this graph.

Note that asking for the chromatic number of a planar graph is the same as
asking for the minimum number of colors required to color a planar map so that no
two adjacent regions are assigned the same color. This question has been studied
for more than 100 years, and was finally solved by the American mathematicians
Kenneth Appel and Wolfgang Haken in 1976.

Theorem 4.3 The chromatic number of a planar graph is no greater than 4.
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Example: What are the chromatic numbers of the following graphs:Kn,
Km,n, Cn? 2

Example: What are the chromatic numbers of the following graphs?

@
@

@
@

@
@

@

�
�

��

�
�

�
�

�
�

� �
�

��

@
@

@@

@
@

@@

r
r r

r

r r
r

b e

a d g

c f

@
@

@
@

@
@

@

�
�

��

�
�

�
�

�
�

� �
�

��

@
@

@@

@
@

@@

r
rr r

r

r r
r

b e

a d g

c f

2

5 Trees

We have seen how graphs can be used to model and solve many problems. In this
lecture, we will focus on a particular type of graph called atree, so named because
such graphs resemble trees.

Definition 5.1 A tree is a connected undirected graph with no simple circuits.

Since a tree cannot have a simple circuit, a tree cannot contain multiple edges
or loops. Therefore, any tree must be a simple graph.

Example: Which of the following are trees?
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2

Any connected undirected graph with no simple circuits is a tree. What about
graphs containing no simple circuits that are not necessarily connected? These
graphs are calledforestsand have the property that each of their connected com-
ponents is a tree.

Trees are often defined as undirected graphs with the property that there is a
unique simple path between every pair of vertices. The following theorem shows
that this alternative definition is equivalent to our definition.

Theorem 5.2 An undirected graph is a tree if and only if there is a unique simple
path between any two of its vertices.

Proof: First assume thatT is a tree. ThenT is a connected graph with no simple
circuits. Letx andy be two vertices ofT . SinceT is connected, there is a simple
path betweenx and y (remember that we proved this before). Moreover, this
path must be unique, for if there were a second such path, the path formed by
combining the first path fromx to y followed by the path fromy to x obtained
by reversing the order of the second path fromx to y would form a circuit. This
implies that there is a simple circuit inT . Hence, there is a unique simple path
between any two vertices of a tree.

Now assume that there is a unique simple path between any two vertices of
a graphT . ThenT is connected since there is a path between any two of its
vertices. Furthermore,T can have no simple circuits. To see this, suppose thatT
had a simple circuit that contained the verticesx andy. Then there would be two
simple paths betweenx andy, since the simple circuit is made up of a simple path
from x to y and a second simple path fromy to x. Hence, a graph with a unique
simple path between any two vertices is a tree. �

Theorem 5.3 Any tree that has more than one vertex has at least one vertex of
degree 1.

A constructive way to prove this lemma is to imagine being given a treeT with
more than one vertex. You pick a vertexv arbitrarily and then search outward
along a path fromv looking for a vertex of degree 1. As you reach each new
vertex, you check whether it has degree 1. If it does, you are finished. If it does
not, you exist from the vertex along a different edge from the one you entered on.
BecauseT does not contain a simple circuit, the vertices included in the path never
repeat. And since the number of vertices ofT is finite, the process of building a
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path must eventually terminate. When that happens, the final vertexv′ of the path
must have degree 1.

In many applications of trees, a particular vertex of a tree is designated as the
root. Once we specify a root, we can assign a direction to each edge as follows.
Since there is a unique path from the root to each vertex of the graph (by the
previous theorem), we direct each edge away from the root. Thus a tree together
with its root produces a directed graph called arooted tree.

Definition 5.4 A rooted tree is a tree in which one vertex has been designated as
the root and every edge is directed away from the root.

The terminology for tees has botanical and genealogical origins. Suppose that
T is a rooted tree. Ifv is a vertex inT other than the root, theparentof v is
the unique vertexu such that there is a directed edge fromu to v (can you prove
that such a vertex is unique?). Whenu is the parent ofv, v is called achild of u.
Vertices with the same parent are calledsiblings. Theancestorsof a vertex other
than the root are the vertices in the path from the root to this vertex, excluding
the vertex itself and including the root (that is, its parent, its parent’s parent, and
so on, until the root is reached). Thedescendantsof a vertexv are those vertices
that havev as an ancestor.A vertex of a tree is called aleaf if it has no children.
Vertices that have children are calledinternal vertices. The root is an internal
vertex unless it is the only vertex in the graph, in which case it is a leaf. Thelevel
of a vertex is the number of edges along the unique path between it and the root.
Theheightof a rooted tree is the maximum level to any vertex of the tree.

If a is a vertex in a tree, thesubtreewith a as its root is the subgraph of the tree
consisting ofa and its descendants and all edges incident to these descendants.

Theorem 5.5 A tree withn vertices hasn− 1 edges.

Proof: We will use induction to prove this theorem. Note that for all the trees
here we can choose a root and consider the tree rooted.

Basis step: Whenn = 1, a tree withn = 1 vertex has no edges. It follows that
the theorem is true forn = 1.

Inductive step: The induction hypothesis states that every tree withk vertices has
k− 1 edges, wherek is a positive integer. Suppose that a treeT hask +1 vertices
and thatv is a leaf ofT (which must exist since the tree is finite), and letw be
the parent ofv. Removing fromT the vertexv and the edge connectingw to v
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produces a treeT ′ with k vertices, since the resulting graph is still connected and
has no simple circuits. By the induction hypothesis,T ′ hask−1 edges. It follows
thatT hask-edges since it has one more edge thanT ′, the edge connectingv and
w. This completes induction step. �

Example: A graphG has ten vertices and twelve edges. Is it a tree? 2

Example: Find all nonisomorphic trees with 4 vertices. 2

Theorem 5.6 If G is any connected graph,C is any nontrivial circuit inG, and
one of the edges ofC is removed fromG, then the graph that remains is connected.

Essentially, the main idea behind this theorem is that any two vertices in a
circuit are connected by two distinct paths. It is possible to draw the graph so that
one of these goes “clockwise” and the other goes “counterclockwise” around the
circuit.

Suppose that an edgee is on this circuit, and a path fromx to y containse. Let
v1, v2 be the endpoints ofe. Also suppose thate is removed. It’s easy to see that
x andy are still connected. Why?

The following theorem follows immediately.

Theorem 5.7 If G is any connected graph withn vertices andn−1 edges, where
n is any positive integer, thenG is a tree.

Rooted trees with the property that all of their internal vertices have the same
number of children are used in many different applications, such as searching,
sorting and coding. When every vertex in a rooted tree has at most two children
and each child is designated either the (unique) left child or the (unique) right
child, the result is abinary tree.

Definition 5.8 A binary tree is a rooted tree in which every parent has at most two
children. Each child in a binary tree is designated either the (unique) left child or
the (unique) right child (but not both), and every parent has at most one left child
and one right child.

A full binary tree is a binary tree in which each parent has exactly two children.
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Given any parentv in a binary tree, the left subtree ofv is the binary tree
whose root is the left child ofv, whose vertices consist of the left child ofv and all
its descendants, and whose edges consist of all those edges ofT that connect the
vertices of the left subtree.

The right subtree ofv is defined similarly.

Example: Suppose thatT is a full binary tree withk many internal vertices
wherek is a positive integer. Prove thatT has a total of2k + 1 many vertices and
hask + 1 terminal vertices.

The proof is based on the following facts:

• The set of all vertices ofT can be partitioned into two disjoint subsets: the
set of all vertices that have a parent and the set of all vertices that do not
have a parent.

• There is only one vertex that does not have a parent, namely the root.

• In a full binary tree, every internal vertex has exactly two children. As a
consequence, the number of vertices that have a parent is twice the number
of parents.

2

Example: If T is a binary tree that hast terminal vertices and heighth, then
t ≤ 2h. 2

6 Spanning trees

Definition 6.1 A spanning tree for a graphG is a subgraph ofG that contains
every vertex ofG and is a tree.

Theorem 6.2 Every connected graph has a spanning tree.

Note that any two spanning trees for a graph have the same number of edges.

Example: Find all spanning trees for the following graph.
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Solution: The graph has one circuit of length 4 and removal of any edge of the
circuit gives a tree. Thus,G has four spanning trees. 2

Definition 6.3 Let G be a weighted graph. We define the total weight ofG, de-
noted asw(G), as the sum of the weights of all the edges inG.

A minimum spanning tree for a weighted graph is a spanning tree that has the
least possible total weight compared to all other spanning trees for the graph.

The problem of finding a minimum spanning tree for a graph is certainly solv-
able. One solution is to list all spanning trees of the graph, compute the total
weight of each, and choose one for which this total is a minimum. This solution,
however, is inefficient in this use of computing time because the number of dis-
tinct spanning trees is so large. For instance, a complete graph withn vertices has
nn−2 spanning trees.

Now we introduce two much more efficient algorithms: Kruskal’s algorithm
and Prim’s algorithm.

Kruskal’s algorithm

The algorithm we describe here was discovered by Kruskal in 1956. In this algo-
rithm, the edges of a weighted graph are examined one by one in order of increas-
ing weight. At each stage the edge being examine is added to what will become
the minimum spanning tree, provided that this addition does not create a circuit.
After n−1 edges have been added, wheren is the number of vertices of the graph,
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these edges, together with the vertices of the graph, for a minimum spanning tree
for the graph.

Pseudo code for Kruskal’s algorithm is given below.

procedureKruskal (G : weighted connected undirected graph withn ver-
tices

T := empty graph

for i = 0 to n− 1

begin

e := any edge inG with smallest weight that does not form a simple
circuit when added toT .

T := T with e added.

end{T is a minimum spanning tree ofG}

Example: Apply Kruskal’s algorithm to find a minimum spanning tree of
the following graph.
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Choice Edge Weight
1 {c, d} 1
2 {k, l} 1
3 {b, f} 1
4 {c, g} 2
5 {a, b} 2
6 {j, f} 2
7 {b, c} 3
8 {j, k} 3
9 {h, g} 3
10 {i, j} 3
11 {a, e} 3

24
↑

total

So a spanning tree is

r r r r
r r r r
r r r r

a b c d

i j k l

e h
f g

2

Prim’s algorithm

Prim’s algorithm works differently from Kruskal’s. It builds a minimum spanning
treeT by expanding outward in connected links from some vertex. One edge and
one vertex are added at each stage. The edge added is the one of least weight
that connects the vertices already inT with those not inT , and the vertex is the
endpoint of this edge that is not already inT .

Pseudo code for Prim’s algorithm is given below.
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procedurePrim (G : weighted connected undirected graph withn vertices

T := a minimum weighted edge

for i = 0 to n− 2

begin

e := any edge of minimum weight incident to a vertex inT and not
forming a simple circuit inT if added toT .

T := T with e added.

end{T is a minimum spanning tree ofG}

Example: Apply Prim’s algorithm to find a minimum spanning tree of the
following graph.
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Choice Edge Weight
1 {b, f} 1
2 {a, b} 2
3 {j, f} 2
4 {a, e} 3
5 {i, j} 3
6 {f, g} 3
7 {g, c} 2
8 {d, c} 1
9 {h, g} 3
10 {h, l} 3
11 {k, l} 1

24
↑

total

So a spanning tree obtaining by using Prim’s algorithm is

r r r r
r r r r
r r r r

a b c d

i j k l

e h
f g

2

We can actually prove that Prim’s algorithm produces a minimum spanning
tree. LetG be a connected weighted graph.

suppose that the successive edges chosen y Prim’s algorithm aree1, e2, · · · , en−1.
Let S be the tree withe1, e2, · · · , en−1 as its edges, and letSk be the tree with
e1, e2, · · · , ek as its edges. LetT be a minimum spanning tree ofG containing
the edgese1, e2, · · · , ek, wherek is the maximum integer with the property that
a minimum spanning tree exists containing the firstk edges chosen by Prim’s
algorithm. We need to prove thatS = T and we prove it by contradiction.
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SupposeS 6= T , so thatk < n − 1. Consequently,T containse1, e2, · · · , ek

but notek+1. Consider the graph made up ofT together withek+1. Since this
graph is connected and hasn edges, too many edges to be a tree, it must contain
a simple circuit. This simple circuit must containek+1 since there was no simple
circuit in T . Furthermore, there must be an edge in the simple circuit that does
not belong toSk+1 sinceSk+1 is a tree. By starting at an endpoint ofek+1 that is
also an endpoint of one of the edgese1, e2, · · · , ek, and following the circuit until it
reaches an edge not inSk+1, we can find an edgee not inSk+1 that has an endpoint
that is also an endpoint of one of the edgese1, e2, · · · , ek. By deletinge from T
and addingek+1, we obtain a treeT ′ with n − 1 edges (it is a tree since it has no
simple circuits). Note that the treeT ′ containse1, e2, · · · , ek, ek+1. Furthermore,
sinceek+1 was chosen by Prim’s algorithm at the(k + 1)-st step, ande was also
available at that step, the weight ofek+1 is less than or equal to the weight ofe.
From this observation, it follows thatT ′ is also a minimum spanning tree, since
the sum of the weights of its edges does not exceed the sum of the weights of the
edges ofT . This contradicts the choice ofk as the maximum integer so that a
minimum spanning tree exists containinge1, e2, · · · , ek. Hencek = n − 1 and
S = T . It follows that Prim’s algorithm produces a minimum spanning tree.
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