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Design and Verification 

specifications 

micro-architecture 

RTL 

gate netlist 

layout 

design 

does it meet the specs? 

does it implement the µ-arch? 

are they equivalent? 

are they equivalent? 

property 
checking 

equivalence 
checking 

verification 
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Functional Verification Challenge 

 Is the implementation correct? 
 

■ How do we define correct? 
 

● Classical: Simulation result matches with golden 
output 
 

● Formal: Equivalence with respect to a golden model 
 

● Property verification: Correctness properties 
(assertions) expressed in a formal language 
 Formal: Model checking 
 Semi-formal: Assertion-based verification 

 
■ Trade-off between computational complexity and 

exhaustiveness 
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Simulation  

Design 

Test Plan Test Bench 

Stimulus Generation Simulation 

Coverage Metrics Debug Bug Tracking 

Advances: 
• Test bench languages are richer (such as SystemVerilog) 
• Coverage monitors and assertions 
• Layered test benches and Transaction Level Modelling 
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Advent of Formal Methods in EDA 

always @( posedge clk ) 
begin 
 if (!rst) begin a1 <= a2; 
      a2 <=  ~a1; end; 
end 

Register Transfer  
Level 

Gate Level 

Transistor Level 

Formal Properties 

Logical 
Equivalence 
Checking 

Design Intent 

Model 
Checking 

Goal: Exhaustive verification of the design intent within feasible time limits 
 

Philosophy: Extraction of formal models of the design intent and the implementation 
and comparing them using mathematical / logical methods  

• Temporal Logics 
     (Turing Award: Amir Pnueli) 
• Adopted by Accelera / IEEE 
• Integrated into SystemVerilog 
• Tools:  
    Academia: NuSMV, VIS 
    Industry:  Magellan (Synopsys) 
                     IFV (Cadence) 
• 2007: Clarke, Emerson & Sifakis 
 get Turing Award 
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Why do we need formal specifications? 

6 

Source: http://lore.ua.ac.be/Teaching/SE3B
AC

/Softw
areSpecC

artoon2.jpg 
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Toy Example: Priority Arbiter 

r1 

r2 

g1 

g2 

• Either g1 or g2 is always 
    false (mutual exclusion) 
 
    always[¬g1 ∨ ¬g2] 

• Whenever r1 is asserted, g1 is given in the next cycle 
  always[ r1 ⇒ next g1 ]  
 
• When r2 is the sole request, g2 comes in the next cycle 
        always[ (¬r1 ∧ r2) ⇒ next g2 ] 
 
• When none are requesting, the arbiter parks the grant on g2  
      always[ (¬r1 ∧ ¬r2) ⇒ next g2 ] 

Violation!! 
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Dynamic Property Verification (DPV) 

[Source: A Roadmap for Formal Property Verification, Springer, 2006] 
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Formal Property Verification (FPV) 

always !g1 || !g2 

always r2 && !r1  next g2  

Formal Properties 

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): LTL, CTL 
 

Early Languages: Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys) 
 

Current IEEE Standards: SystemVerilog Assertions (SVA),  
                           Property Specification Language (PSL) 
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Assertion Based Verification Flow 

Model Checker 

Model + 
Properties 

NO 

YES 
Indeterminate  

Results 

Decom
pose, Abstract,  

Over Constrain 

 YES 

PASS 
NO 

Spurious  
cex 

YES 

NO 

Refine the m
odel or assertions 

Modify assum
ptions 

Stuck ? None of the  
Abstractions working 

Bug Hunting  
(Directed 

Simulation 
assisted MC) 

Closure ? 

[Source: Raj Mitra, TI] 



© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 

Model Checking Overview 

11 

Requirements 

Formalizing 

Property 
Specification 

System 

Modeling 

System Model 
(Implementation) 

Model Checking 

Satisfied Insufficient 
Memory 

Violation + 
Counter-Example 

Bug/Error 
Localization 

Simulation 

Model checking is an automated technique that, given a 
finite-state model of a system and a formal property, 
systematically checks whether this property holds for (a 
given state in) that model. 
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Recognitions and Awards 

12 

Randal Bryant        Edmund Clarke      E. Allen Emerson       Ken McMillan 

For their invention of “symbolic model checking”, 
a method of formally checking system designs, 

which is widely used in the computer hardware industry 
and starts to show significant promise also in 

software verification and other areas. 

  Paris Kanellakis Theory and Practice Award 1998 
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Recognitions and Awards (contd…)  
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Moshe Vardi   Pierre Wolper 

“For work on model checking with finite automata” 

  Gödel Prize 2000 
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Recognitions and Awards (contd…) 
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Gerard J. Holzmann   SPIN Book 

SPIN is a popular open-source software tool, used by 
thousands of people worldwide, that can be used for the 

formal verication of distributed software systems. 

  ACM System Software Award 2001 
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Recognitions and Awards (contd…) 
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Edmund Clarke E. Allen Emerson Joseph Sifakis 

“For their role in developing Model-Checking into a 
highly effective verification technology, 

widely adopted in the hardware and software industries.” 

  ACM Turing Award 2007 
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Model Checking Overview 

16 

Requirements 

Formalizing 

Property 
Specification 

System 

Modeling 

System Model 
(Implementation) 

Model Checking 

Satisfied Insufficient 
Memory 

Violation + 
Counter-Example 

Bug/Error 
Localization 

Simulation 

Model checking is an automated technique that, given a 
finite-state model of a system and a formal property, 
systematically checks whether this property holds for (a 
given state in) that model. 
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What are Models? 

17 

 Hardware Circuits as Transition Systems? 
■ States labelled with basic propositions 
■ Transition relation between states 
■ Action-labelled transitions to facilitate composition 

Mutual Exclusion 
Model for Two 
Processes 
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What are Properties? 

18 

 
 Example Properties 

■ Can the system reach a deadlock situation? 
■ Can two processes ever be simultaneously in a critical 

section? 
■ On termination, does a program provide the correct output? 

 
 Temporal Logic 

■ Propositional logic 
■ Temporal operators such as next, future, always, until 
■ Interpreted over state sequences (linear) 
■ Or over infinite trees of states (branching) 
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Example: Simple Pedestrian Crossing Control 

r1 
r2 

g1 
g2 

Control 
r1 

r2 

g1 

g2 

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html
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Example: A Simple Traffic Control 
Properties: 
1. Request line r1 has higher priority than request line r2. 

Whenever r1 goes high, g1 must be asserted for the next two 
cycles 

  always [ r1 ⇒ next g1 ∧ next next g1 ] 
 
2. When none of the request lines are high, the control parks the 

grant on g2 in the next cycle 
  always [ ¬r1 ∧ ¬r2 ⇒ next g2 ] 
 
3. The grant lines g1 and g2 are mutually 
 exclusive 
  always [ ¬g1 ∨ ¬g2 ] 

r1 
r2 

g1 g2 

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html


© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 21 

Is the specification correct? 

 

1. always [ r1 ⇒ next g1 ∧ next next g1 ] 

2. always [ ¬r1 ∧ ¬r2 ⇒ next g2 ] 

3. always [ ¬g1 ∨ ¬g2 ] 

 

 

 Consider the case when r1 is high at time t and low at time t+1, 
and r2 is low at both time steps. 
■ The first property forces g1 to be high at time t+2 
■ The second property forces g2 to be high at time t+2 
■ The third property says g1 and g2 cannot be high together 
■ We have a conflict !! 
■ Lets go back to the specification 

r1 
r2 

g1 g2 

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html
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Pedestrian Crossing: Revised Specs 
 
Properties: 
1. Request line r1 has higher priority than  
 request line r2. Whenever r1 goes high,  
 the grant line g1 must be asserted for  
 the next two cycles 
  always [ r1 ⇒ next g1 ∧ next next g1 ] 
2. When none of the request lines are high, the control parks the 

grant on g2 in the next cycle 
  always [ ¬r1 ∧ ¬r2 ⇒ next g2 ] revised to  always [ ¬g1 ⇒ g2 ] 
3. The grant lines g1 and g2 are mutually exclusive 
  always [ ¬g1 ∨ ¬g2 ] 

r1 
r2 

g1 g2 

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html
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Pedestrian Crossing: Is the specs complete? 
1. always [ r1 ⇒ next g1 ∧ next next g1 ] 

2. always [ ¬g1 ⇒ g2 ] 

3. always [ ¬g1 ∨ ¬g2 ] 

 

 

 

 Observation: We can satisfy the specification by designing a 
control which always asserts g1 and never asserts g2!! 
■ We need to add either of the following types of properties: 

● Ones which specify when g2 should be high, or 
● Ones which specify when g1 should be low 

■ Lets go back to the specification 

r1 
r2 

g1 g2 

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html
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Pedestrian Crossing: Revised specs 
Properties: 
1. Request line r1 has higher priority than  
 request line r2. Whenever r1 goes high,  
 the grant line g1 must be asserted for  
 the next two cycles 
  always [ r1 ⇒ next g1 ∧ next next g1 ] 
2. When none of the request lines are high, the arbiter parks the 

grant on g2 in the next cycle 
  always [ ¬g1 ⇒ g2 ] 
3. When r1 is low for consecutive cycles, then g1 should be low in 

the next cycle 
  always [ ¬r1 ∧ next ¬r1 ⇒ next next ¬ g1 ]  
4. The grant lines g1 and g2 are mutually exclusive 
  always [ ¬g1 ∨ ¬g2 ] 

New!! 

r1 
r2 

g1 g2 

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html
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The Model Checking Process 

25 

Modelling phase 
■ model the system under consideration 
■ as a first sanity check, perform some simulations 
■ formalise the property to be checked 

 

 Running phase 
■ run the model checker 
■ check the validity of the property in the model 

 

 Analysis phase 
■ property satisfied?  check next property (if any) 
■ property violated?  

o analyze generated counter-example by simulation 
o refine the model, design, or property … and repeat the 

entire procedure 
■ out of memory?  try to reduce the model and try again 
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The Merits/Demerits of Model Checking 

26 

 The Pros of Model Checking 
■ widely applicable (hardware, software, protocol systems, ...) 
■ allows for partial verification (only most relevant properties) 
■ potential “push-button” technology (hw/sw-tools) 
■ rapidly increasing industrial interest 
■ in case of property violation, a counterexample is provided 

sound and interesting mathematical foundations 
■ not biased to the most possible scenarios (such as testing) 

 
 The Cons of Model Checking 

■ main focus on control-intensive applications (less data-oriented) 
■ model checking is only as “good” as the system model 
■ no guarantee about completeness of results 
■ impossible to check generalisations (in general) 
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Striking Model Checking Examples 

27 

 Security: Needham-Schroeder encryption protocol 
■ error that remained undiscovered for 17 years unrevealed 

 

 Transportation systems 
■ train model containing 10476 states 

 

Model checkers for C, Java and C++ 
■ used (and developed) by Microsoft, Digital, NASA 
■ successful application area: device drivers 

 

 Dutch storm surge barrier in Nieuwe Waterweg 
 

 Software in current/next generation of space missiles 
■ NASA's Mars Pathfinder, Deep Space-1, JPL LARS group 
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Model Checking Examples (contd…) 

28 

NASA's Deep Space-1 Spacecraft: (Launched in October 1998) 
     Model checking applied to several modules of this spacecraft 
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Design Verification Recap … 

29 

System(S) Property (Ψ) 

no 

Counter-Example 

yes 

The System is Correct! 

S satisfies Ψ 

S satisfies Ψ ? 
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