
Design Verification – An Overview

Dr. Aritra Hazra
Assistant Professor,
Department of Computer Science & Engineering,
Indian Institute of Technology Kharagpur,
Paschim Medinipur, West Bengal, India – 721302.

Testing and Verification of Circuits (CS60089)
Dept. of CSE, IIT Kharagpur

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 2

Design and Verification

specifications

micro-architecture

RTL

gate netlist

layout

design

does it meet the specs?

does it implement the µ-arch?

are they equivalent?

are they equivalent?

property
checking

equivalence
checking

verification

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 3

Functional Verification Challenge

 Is the implementation correct?

■ How do we define correct?

● Classical: Simulation result matches with golden
output

● Formal: Equivalence with respect to a golden model

● Property verification: Correctness properties
(assertions) expressed in a formal language
 Formal: Model checking
 Semi-formal: Assertion-based verification

■ Trade-off between computational complexity and

exhaustiveness

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 4

Simulation

Design

Test Plan Test Bench

Stimulus Generation Simulation

Coverage Metrics Debug Bug Tracking

Advances:
• Test bench languages are richer (such as SystemVerilog)
• Coverage monitors and assertions
• Layered test benches and Transaction Level Modelling

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 5

Advent of Formal Methods in EDA

always @(posedge clk)
begin
 if (!rst) begin a1 <= a2;
 a2 <= ~a1; end;
end

Register Transfer
Level

Gate Level

Transistor Level

Formal Properties

Logical
Equivalence
Checking

Design Intent

Model
Checking

Goal: Exhaustive verification of the design intent within feasible time limits

Philosophy: Extraction of formal models of the design intent and the implementation
and comparing them using mathematical / logical methods

• Temporal Logics
 (Turing Award: Amir Pnueli)
• Adopted by Accelera / IEEE
• Integrated into SystemVerilog
• Tools:
 Academia: NuSMV, VIS
 Industry: Magellan (Synopsys)
 IFV (Cadence)
• 2007: Clarke, Emerson & Sifakis
 get Turing Award

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Why do we need formal specifications?

6

Source: http://lore.ua.ac.be/Teaching/SE3B
AC

/Softw
areSpecC

artoon2.jpg

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 7

Toy Example: Priority Arbiter

r1

r2

g1

g2

• Either g1 or g2 is always
 false (mutual exclusion)

 always[¬g1 ∨ ¬g2]

• Whenever r1 is asserted, g1 is given in the next cycle
 always[r1 ⇒ next g1]

• When r2 is the sole request, g2 comes in the next cycle
 always[(¬r1 ∧ r2) ⇒ next g2]

• When none are requesting, the arbiter parks the grant on g2
 always[(¬r1 ∧ ¬r2) ⇒ next g2]

Violation!!

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 8

Dynamic Property Verification (DPV)

[Source: A Roadmap for Formal Property Verification, Springer, 2006]

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 9

Formal Property Verification (FPV)

always !g1 || !g2

always r2 && !r1  next g2

Formal Properties

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): LTL, CTL

Early Languages: Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)

Current IEEE Standards: SystemVerilog Assertions (SVA),
 Property Specification Language (PSL)

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 10

Assertion Based Verification Flow

Model Checker

Model +
Properties

NO

YES
Indeterminate

Results

Decom
pose, Abstract,

Over Constrain

 YES

PASS
NO

Spurious
cex

YES

NO

Refine the m
odel or assertions

Modify assum
ptions

Stuck ? None of the
Abstractions working

Bug Hunting
(Directed

Simulation
assisted MC)

Closure ?

[Source: Raj Mitra, TI]

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Model Checking Overview

11

Requirements

Formalizing

Property
Specification

System

Modeling

System Model
(Implementation)

Model Checking

Satisfied Insufficient
Memory

Violation +
Counter-Example

Bug/Error
Localization

Simulation

Model checking is an automated technique that, given a
finite-state model of a system and a formal property,
systematically checks whether this property holds for (a
given state in) that model.

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Recognitions and Awards

12

Randal Bryant Edmund Clarke E. Allen Emerson Ken McMillan

For their invention of “symbolic model checking”,
a method of formally checking system designs,

which is widely used in the computer hardware industry
and starts to show significant promise also in

software verification and other areas.

 Paris Kanellakis Theory and Practice Award 1998

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Recognitions and Awards (contd…)

13

Moshe Vardi Pierre Wolper

“For work on model checking with finite automata”

 Gödel Prize 2000

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Recognitions and Awards (contd…)

14

Gerard J. Holzmann SPIN Book

SPIN is a popular open-source software tool, used by
thousands of people worldwide, that can be used for the

formal verication of distributed software systems.

 ACM System Software Award 2001

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Recognitions and Awards (contd…)

15

Edmund Clarke E. Allen Emerson Joseph Sifakis

“For their role in developing Model-Checking into a
highly effective verification technology,

widely adopted in the hardware and software industries.”

 ACM Turing Award 2007

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Model Checking Overview

16

Requirements

Formalizing

Property
Specification

System

Modeling

System Model
(Implementation)

Model Checking

Satisfied Insufficient
Memory

Violation +
Counter-Example

Bug/Error
Localization

Simulation

Model checking is an automated technique that, given a
finite-state model of a system and a formal property,
systematically checks whether this property holds for (a
given state in) that model.

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

What are Models?

17

 Hardware Circuits as Transition Systems?
■ States labelled with basic propositions
■ Transition relation between states
■ Action-labelled transitions to facilitate composition

Mutual Exclusion
Model for Two
Processes

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

What are Properties?

18

 Example Properties

■ Can the system reach a deadlock situation?
■ Can two processes ever be simultaneously in a critical

section?
■ On termination, does a program provide the correct output?

 Temporal Logic

■ Propositional logic
■ Temporal operators such as next, future, always, until
■ Interpreted over state sequences (linear)
■ Or over infinite trees of states (branching)

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 19

Example: Simple Pedestrian Crossing Control

r1
r2

g1
g2

Control
r1

r2

g1

g2

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 20

Example: A Simple Traffic Control
Properties:
1. Request line r1 has higher priority than request line r2.

Whenever r1 goes high, g1 must be asserted for the next two
cycles

 always [r1 ⇒ next g1 ∧ next next g1]

2. When none of the request lines are high, the control parks the

grant on g2 in the next cycle
 always [¬r1 ∧ ¬r2 ⇒ next g2]

3. The grant lines g1 and g2 are mutually
 exclusive
 always [¬g1 ∨ ¬g2]

r1
r2

g1 g2

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 21

Is the specification correct?

1. always [r1 ⇒ next g1 ∧ next next g1]

2. always [¬r1 ∧ ¬r2 ⇒ next g2]

3. always [¬g1 ∨ ¬g2]

 Consider the case when r1 is high at time t and low at time t+1,
and r2 is low at both time steps.
■ The first property forces g1 to be high at time t+2
■ The second property forces g2 to be high at time t+2
■ The third property says g1 and g2 cannot be high together
■ We have a conflict !!
■ Lets go back to the specification

r1
r2

g1 g2

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 22

Pedestrian Crossing: Revised Specs

Properties:
1. Request line r1 has higher priority than
 request line r2. Whenever r1 goes high,
 the grant line g1 must be asserted for
 the next two cycles
 always [r1 ⇒ next g1 ∧ next next g1]
2. When none of the request lines are high, the control parks the

grant on g2 in the next cycle
 always [¬r1 ∧ ¬r2 ⇒ next g2] revised to always [¬g1 ⇒ g2]
3. The grant lines g1 and g2 are mutually exclusive
 always [¬g1 ∨ ¬g2]

r1
r2

g1 g2

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 23

Pedestrian Crossing: Is the specs complete?
1. always [r1 ⇒ next g1 ∧ next next g1]

2. always [¬g1 ⇒ g2]

3. always [¬g1 ∨ ¬g2]

 Observation: We can satisfy the specification by designing a
control which always asserts g1 and never asserts g2!!
■ We need to add either of the following types of properties:

● Ones which specify when g2 should be high, or
● Ones which specify when g1 should be low

■ Lets go back to the specification

r1
r2

g1 g2

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur 24

Pedestrian Crossing: Revised specs
Properties:
1. Request line r1 has higher priority than
 request line r2. Whenever r1 goes high,
 the grant line g1 must be asserted for
 the next two cycles
 always [r1 ⇒ next g1 ∧ next next g1]
2. When none of the request lines are high, the arbiter parks the

grant on g2 in the next cycle
 always [¬g1 ⇒ g2]
3. When r1 is low for consecutive cycles, then g1 should be low in

the next cycle
 always [¬r1 ∧ next ¬r1 ⇒ next next ¬ g1]
4. The grant lines g1 and g2 are mutually exclusive
 always [¬g1 ∨ ¬g2]

New!!

r1
r2

g1 g2

http://www.wpclipart.com/travel/traffic_lights/walk_light_green.png.html
http://www.wpclipart.com/travel/traffic_lights/green_traffic_light.png.html

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

The Model Checking Process

25

Modelling phase
■ model the system under consideration
■ as a first sanity check, perform some simulations
■ formalise the property to be checked

 Running phase
■ run the model checker
■ check the validity of the property in the model

 Analysis phase
■ property satisfied?  check next property (if any)
■ property violated? 

o analyze generated counter-example by simulation
o refine the model, design, or property … and repeat the

entire procedure
■ out of memory?  try to reduce the model and try again

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

The Merits/Demerits of Model Checking

26

 The Pros of Model Checking
■ widely applicable (hardware, software, protocol systems, ...)
■ allows for partial verification (only most relevant properties)
■ potential “push-button” technology (hw/sw-tools)
■ rapidly increasing industrial interest
■ in case of property violation, a counterexample is provided

sound and interesting mathematical foundations
■ not biased to the most possible scenarios (such as testing)

 The Cons of Model Checking

■ main focus on control-intensive applications (less data-oriented)
■ model checking is only as “good” as the system model
■ no guarantee about completeness of results
■ impossible to check generalisations (in general)

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Striking Model Checking Examples

27

 Security: Needham-Schroeder encryption protocol
■ error that remained undiscovered for 17 years unrevealed

 Transportation systems
■ train model containing 10476 states

Model checkers for C, Java and C++
■ used (and developed) by Microsoft, Digital, NASA
■ successful application area: device drivers

 Dutch storm surge barrier in Nieuwe Waterweg

 Software in current/next generation of space missiles
■ NASA's Mars Pathfinder, Deep Space-1, JPL LARS group

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Model Checking Examples (contd…)

28

NASA's Deep Space-1 Spacecraft: (Launched in October 1998)
 Model checking applied to several modules of this spacecraft

© Aritra Hazra, Dept. of Computer Sc. & Engg., IIT Kharagpur

Design Verification Recap …

29

System(S) Property (Ψ)

no

Counter-Example

yes

The System is Correct!

S satisfies Ψ

S satisfies Ψ ?

	Slide Number 1
	Design and Verification
	Functional Verification Challenge
	Simulation
	Advent of Formal Methods in EDA
	Why do we need formal specifications?
	Toy Example: Priority Arbiter
	Dynamic Property Verification (DPV)
	Formal Property Verification (FPV)
	Assertion Based Verification Flow
	Model Checking Overview
	Recognitions and Awards
	Recognitions and Awards (contd…)
	Recognitions and Awards (contd…)
	Recognitions and Awards (contd…)
	Model Checking Overview
	What are Models?
	What are Properties?
	Example: Simple Pedestrian Crossing Control
	Example: A Simple Traffic Control
	Is the specification correct?
	Pedestrian Crossing: Revised Specs
	Pedestrian Crossing: Is the specs complete?
	Pedestrian Crossing: Revised specs
	The Model Checking Process
	The Merits/Demerits of Model Checking
	Striking Model Checking Examples
	Model Checking Examples (contd…)
	Design Verification Recap …

