
Testing and Verification – An Introduction

Dr. Aritra Hazra
Assistant Professor,
Department of Computer Science & Engineering,
Indian Institute of Technology Kharagpur,
Paschim Medinipur, West Bengal, India – 721302.

Testing and Verification of Circuits (CS60089)
Dept. of CSE, IIT Kharagpur

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Course Details
 Class Timings: (Slot: F4)

■ Wednesday: 10:00 AM – 10:55 AM
■ Thursday: 09:00 AM – 09:55 AM
■ Friday: 11:00 AM – 12:55 AM

 Venue: Room No: CSE-120 (Ground Floor, CSE Building)
 Course Credits: 4 (L-T-P: 3-1-0)
 Course Web:

http://cse.iitkgp.ac.in/~aritrah/course/theory/TVC/Autumn2018/CS60089_T
VC_Autumn2018.html

 Examinations:
■ Tutorials (10 x 10 marks = 100 marks): 10%
■ Term-Projects (20+10+20 = 50 marks): 25%
■ Mid-Semester (50 marks): 25%
■ End-Semester (80 marks): 40%

 Attendance: Mandatory (> 80%)
■ failure lead to de-registration from course

2

http://cse.iitkgp.ac.in/~aritrah/course/theory/TVC/Autumn2018/CS60089_TVC_Autumn2018.html
http://cse.iitkgp.ac.in/~aritrah/course/theory/TVC/Autumn2018/CS60089_TVC_Autumn2018.html

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 3

Course Agenda
 Design and Simulation Part

■ Design Verification: Introduction and Overview
■ Design Entry: Verilog Basics
■ Simulators: Working Principle

 Design Verification Part
■ Test Scenarios and Coverage: Test-bench, Simulation Coverage
■ Design Specifications: LTL, CTL, SVA
■ Symbolic Representation of Logic and State Spaces: BDDs, SAT
■ Equivalence Checking
■ Formal Verification: Model Checking, Bounded Model Checking
■ Abstraction-Refinement: CEGAR
■ Formal Verification Coverage

 Circuit Testing Part
■ Test Modeling: Logic and Fault Simulation
■ Testability Measures and Analysis
■ Test Pattern Generation: Combinational + Sequential ATPG
■ Design for Testability: Scan Chain based DFT
■ Built-in-Self-Test (BIST) and Memory Testing

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 4

Related References (Verification)

Hardware Design Verification:
Simulation and Formal Method-Based Approaches
William K Lam
Prentice Hall Modern Semiconductor Design Series

A Roadmap for Formal Property Verification
Pallab Dasgupta

Springer
Logic in Computer Science
Michael Huth and Mark Ryan
Cambridge University Press

Principles of Model Checking
Christel Baier and Joost-Pieter Katoen
The MIT Press

Model Checking
Edmund M. Clarke, Orna Grumberg

and Doron A. Peled
The MIT Press

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 5

Related References (Testing)
Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits
Michael L. Bushnell and Vishwani D. Agrawal
Kluwer Academic Publishers

Testing of Digital Systems
Niraj K. Jha and Sandeep Gupta

Cambridge University Press
Digital Systems Testing and Testable Design
Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman
Wiley-IEEE Press

Built-in Test for VLSI: Pseudorandom Techniques
Paul H. Bardell, William H. McAnney and Jacob Savir
Wiley Interscience

VLSI Test Principles and Architectures
Laung-Terng Wang, Cheng-Wen Wu and Xiaoqing Wen

Morgan Kaufman Publishers

 Fault Tolerant and Fault Testable Hardware Design
Parag K. Lala

Prentice-Hall International

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Why Testing and Verification?

 Therac-25 Radiation Overdosing (1985-1987)
■ Radiation machine for treatment of cancer patients
■ At least 6 cases of overdoses in 1985-1987 (~100-times doses)
■ Three cancer patients died
■ Source: Design error in the control software (race condition)

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Why Testing and Verification?

 Shooting Down Airbus 320 (1988)
■ US Vincennes shot down Airbus 320
■ Mistook Airbus 320 for a F-14
■ 290 people died

Source:
Software Bug – cryptic
and misleading output
displayed by the traking
software

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Why Testing and Verification?

 AT&T Telephone Network Outage (1990)
■ January 1990: problem in New York City leads to 9-hour

outage of large parts of U.S. telephone network
■ Costs: several 100 million US$
■ Source: Software Flaw
 (wrong interpretation of break statement in C)

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Why Testing and Verification?

 Computer-Aided Ambulance Service in London (1992)
■ London Ambulance Service computer aided despatch system

o Area 600sq miles
o Population 6.8million
o 5000 patients per day
o 2000-2500 calls per day
o 1000-1200 emergency calls

■ Costs: 20-30 people estimated
 to have died as a result

■ Source: position of vehicles incorrectly recorded and multiple

vehicles sent to the same location

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Why Testing and Verification?

 Pentium FDIV Bug (1994)
■ FDIV = Floating-point DIVision unit
■ Certain floating-point division

operations performed produced
incorrect results

■ Byte: 1 in 9 billion floating point
divides with random parameters
would produce inaccurate results

■ Loss: 500 million US$ (all awed
processors were replaced) +
enormous image loss of Intel Corp.

■ Source: Flawless realization of

floating-point division

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Why Testing and Verification?

 Ariane 5 Crash (1996)
■ Crash of the European Ariane-5

missile in June 1996
■ Crashed 40 seconds after Launch
■ Costs: more than 500 million US$

■ Source:

o Flaw in the control software
o A data conversion from a 64-bit

floating-point to 16-bit signed
integer

o Efficiency considerations had
led to the disabling of the
software handler (in Ada)

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

Why Testing and Verification?

 Anti-lock Braking Problem in Toyota Prius (2010)
■ Toyota Prius : first mass-produced hybrid vehicle
■ Numerous complaints/accidents
■ Source: Software “glitch” found in anti-lock braking system
■ Costs: Eventually fixed via software update

o in total 625,000 cars recalled
o handling of the incident prompted much criticism, bad

publicity

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur

We must Test and Verify Automatically!

13

Edsger Dijkstra
(1930-2002)

“Testing can only show the presence of errors, not their absence.”

“In their capacity as a tool, computers will be
but a ripple on the surface of our Culture. In
their capacity as intellectual challenge,
computers are without precedent in the
cultural history of mankind.”

To rule out errors must consider all
possible executions
– often not feasible mechanically!

10500,000 states

1070 atoms

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 14

Design, Validation and Testing

Specification

Implementation

Prototyping

Manufacturing

Pre-silicon
Post-silicon

Design synthesis
and validation

Manufacturing
and testing

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 15

Design and Verification

Specification Implementation

Design

Equivalent?

Verification

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 16

Design Verification: the Sooner, the Better!

Analysis Conceptual
Design Programming System

Testing
Unit

Testing Operations

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 17

Design Challenges

Suppose we have to design
a pacemaker

Minimize Delay Delay optimization during synthesis

Minimize Area Area optimization during synthesis

Minimize Power Power optimization during synthesis

Improve Verifiability Verification reliability
and coverage

Improve Reliability Algorithms for
better yield

Improve Testability Test automation and
Design-for-Test

Reduce Cost
Resource optimization

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 18

Gate Level
Boolean Logic
Finite State Machines

Digital Design: Abstraction Levels

Transistor
Level

Formalisms introduced
at the Entry-Level

Schematic

always @(posedge clk)
begin
 if (!rst) begin a1 <= a2;
 a2 <= ~a1; end;
end

Register Transfer Level

Restricted semantics of
Programming Languages,
Communicating Concurrent
State Machines (CSM)

Exponential growth
in circuit size
(Moore’s Law)

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 19

Design Example: 2-bit Gray Counter

Gray Counter: Successive values should differ only in one bit. Reset signal
 resets the counter to zero.

rst

s0
s1

clk

00

10 11

01

!rst

!rst

!rst

!rst

rst

rst

rst

State m/c Representation

rst

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 20

Design Example: 2-bit Gray Counter

rst

s0
s1

clk

(s0s1) rst (n0n1)

00 0 01

00 1 00

01 0 11

01 1 00

10 0 00

10 1 00

11 0 10

11 1 00

00

10 11

01

!rst

!rst

!rst

!rst

rst

rst

rst

State m/c Representation

rst

State Transition Table

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 21

Design Example: 2-bit Gray Counter

(s0s1) rst (n0n1)

00 0 01

00 1 00

01 0 11

01 1 00

10 0 00

10 1 00

11 0 10

11 1 00

State Transition Table State Transition Functions:

n0 = s0′s1r′ + s0s1r′
n1 = s0′s1′r′ + s0′s1r′

After Logic Minimization:

n0 = s1r′
n1 = s0′r′

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 22

module GrayCounter(s0, s1, rst)
input rst;
reg s0, s1;

always @ (posedge clk)
begin
 s0 <= s1 & ~rst;
 s1 <= ~s0 & ~rst;
end
endmodule

Verilog Code (RTL):

Design Example: 2-bit Gray Counter

rst s0

s1

clk

State Transition Functions:

n0 = s1r′
n1 = s0′r′

Synthesis

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 23

Abstractions in Design Flow

Functional Specification

Algorithmic Description

RTL

Gate Netlist

Transistor Netlist

Physical Layout

higher

lower

abstraction

less

more

details

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 24

Design and Verification

specifications

micro-architecture

RTL

gate netlist

layout

design

does it meet the specs?

does it implement the µ-arch?

are they equivalent?

are they equivalent?

property
checking

equivalence
checking

verification

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 25

Design Flows: Digital versus Analog

Design Concept

Design Entry

Behavioral Simulation

Synthesis

Place & Route

Post-Layout Simulation

Full Chip Assembly

Full Chip DRC

Full Chip Simulation

Tape Out

Schematic Entry

Spice Simulation

Custom Layout

DRC

Post-Layout Simulation

Extract netlist

Verilog / VHDL SDL

DRC: Design Rule Checking
SDL: Schematic Driven Layout

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 26

Design Cycle: Intent Creation

Architectural
Specification

Executable
Specs (CSpec)

Is the intent correct?

English

Design intent creation

Component
Specs Document English

C, SystemC, Esterel

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 27

Design Cycle: Implementation

Component
Specs Document

RTL implementation

Gate Level Netlist

Verilog, VHDL

English documents

Transistor Level
(Schematic)

Design integration

Synthesis

Technology mapping

Mask

Layout

Equivalence
checking

Implementation
 validation

(Spec
 vs RTL)

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 28

Verification Dominates Design

Simulation
46%

Design
27%

Structural
12%

Emulation
15%

• Synthesis
• Timing analysis
• Equivalence checking
• DFT

• Behavioral modeling
• Architecture level simulation
• System level simulation

• High-level design
• RTL coding
• Block-level simulation

Source: 0-In Design Automation

© Aritra Hazra, Dept. of Computer Sc & Engg, IIT Kharagpur 29

Pieces of the verification puzzle

Picture source:skulladay.com

Architecture
validation

Microcode
validation

Timing
validation

Power
validation

Protocol
validation

Full-chip
validation

Unit
validation

Cluster
validation

Debugging
validation

	Slide Number 1
	Course Details
	Course Agenda
	Related References (Verification)
	Related References (Testing)
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	We must Test and Verify Automatically!
	Design, Validation and Testing
	Design and Verification
	Slide Number 16
	Design Challenges
	Digital Design: Abstraction Levels
	Design Example: 2-bit Gray Counter
	Design Example: 2-bit Gray Counter
	Design Example: 2-bit Gray Counter
	Design Example: 2-bit Gray Counter
	Abstractions in Design Flow
	Design and Verification
	Design Flows: Digital versus Analog
	Design Cycle: Intent Creation
	Design Cycle: Implementation
	Verification Dominates Design
	Pieces of the verification puzzle

