
Transactional Memory

Anshuman Tripathi∗

07CS3024
Gautam Kumar

07CS1021
Manaal Faruqui

07CS3011
Parin Chheda

07CS3023

Abstract

In this paper we explore a hardware-based technique for lock-free data structures. Such
a solution is as efficient as conventional lock-based techniques in the absence of prior-
ity inversions, convoys and deadlocks but easily surpasses them in the presence of such
problems. We first describe the overview of the architecture and implementation of Trans-
actional Memory using Goodman’s bus-based protocol. We follow by presenting in detail
how Transactional Memory preserves coherence and consistency and illustrate its perfor-
mance improvements. We also describe the Transactional memory design that can be used
to implement transactions whose memory footprint becomes very large even with footprints
nearly as large as virtual memory. We conclude by describing how Transactional Memory
can be exploited for writing parallel programs by presenting some programming constructs
based on underlying TM harware and how some optimizations can be done by exploiting
parallelism

1 Architectural Support for Lock-Free Data Structures

1.1 Introduction
A shared data structure is said to be lock-free if processes operating on it do not require to
hold an exclusive lock to be able to operate on them, or in other words, they do not require
mutual exclusion. Conventional locking mechanisms pose the problems of priority inversion,
convoying and deadlocks in highly concurrent systems and perform quite inefficiently in their
presence. Software techniques to implement lock-free structures do not perform as well as
locking-based techniques in the absence of these problems[1][9]. We explore transactional
memory, a hardware based solution to implement such structures, that is as efficient lock-based
techniques in the absence of priority inversions, convoys and deadlocks, and easily surpass them
in the presence of these problems. The essential idea is to extend the cache-coherence protocols
to be able to define customized read-modify-write operations on words of memory. In the
subsequent sections we explain the notion of transactional memory, the instructions required to
access them and the hardware support required for its implementation using Goodman’s snoopy
protocol for a bus-based architecture [6]. It is interesting to note that an implementation using
Chaiken’s directory protocol[4] is also possible but has not been covered in this artcile.

All the notation and architecural design has been taken from [10]

∗Names of authors are in lexicographic order

1

1.2 Transactional Memory
Shared memory is defined as a set of words of memory that may be simultaneously accessed
by multiple programs to facilitate communication amongs them. A critical section is a part of
code that reads/writes on shared memory and cannot be accessed concurrently by more than
1 process. A traditional method of providing mutual exclusion is by making a process hold
an exclusive lock on the data that exists in it’s critical section and releasing the lock when the
critical section ends. Lock-free structures is a new paradigm which mantains consistency but
does not require such locks, i.e. a process need not wait to acquire a lock to be able to execute.
The basic idea stems from the notion of transactions in database management systems. At a
deeper level, a transaction is a finite sequence of machine instructions that is executed by a
single process satisfying the properties of Serializability, the actual execution sequence should
result in a state than can be attained by one of the possible serial executions of the transactions,
and Atomicity, which states that a transaction can either complete in full or is aborted.

1.2.1 Instructions

Transactional memory provides the following special instructions to access memory instead of
the simple load and store.

LT Load-transactional loads the value of a shared memory location into a
register

LTX Load-transactional-exclusive same as LT but means that the location is likely to be
updated

ST Store-transactional stores the value from the register to the shared mem-
ory location tentatively

A transactions read set is defined as the set of locations loaded using LT, write set as the set
of locations loaded using LTX or stored using ST and data set as the union of the two.

The following instructions are also provided to change the transaction state.

VALIDATE returns true if the present transaction has not been aborted and false
otherwise

COMMIT makes the transaction’s changes permanent, succeeds only if no updates
to it’s data set have been made by other transactions and no other trans-
action has accessed it’s write set.

ABORT all changes to the transaction’s write set are discarded

1.2.2 Transaction Style

Using the above primitives from transactional memory access and changing transaction state, a
short transaction can be implemented in the following way.

1. Read using LT or LTX from a set of locations

2. VALIDATE to check the consistency of the values. If it fails, go to step 1

3. ST to store from register to the memory locations

4. COMMIT to try to make the transaction’s changes permanent. If it fails, go to step 1

2

1.3 Architecure and Implementation
An operation can either be transactional or non-transactional. The design presented in [10]
ensures that non-transactional operations use the regular caches and their respective protocols.
Custom hardware required is only limited to the primary caches and the transactional instruc-
tions mentioned in section 1.2.1. The basic idea is to to leverage access-rights which are a part
of standard multiprocessor cache coherence protocols. A memory location, at any given time,
is in 1 of the following 3 states.

1. not resident in any cache, present in memory only.

2. accessible directly by one or more processors (non-exclusive) and permitting only reads.

3. accessible by exactly 1 processor (exclusive) and permitting reads and writes.

Here’s how these rights are put to use to identify a transaction conflict. Consider that a processor
M wants to read some memory locations. It needs to obtain non-exclusive rights to this location.
When another processor N wants to write to one of these locations, it must acquire exclusive
access and needs to revoke P’s access and a conflict can be determined.

1.3.1 Implementation using Goodman’s “snoopy” protocol

We describe here an architecture that uses Goodman’s “snoopy” protocol for a shared bus [6]
to implement transactional memory. In this architecture, each processor maintains a special
primary cache, apart from a regular cache to be used for non-transactional operations, known
as the transactional cache. These caches are exclusive, all the non-transactional data goes in the
regular cache and all the transactional data goes in the transactional cache. This transactional
cache is small and fully-associative with parallel logic to execute COMMIT and ABORT in a
single cycle.

1.3.2 Augmenting Cache Line States

As Goodman protocol says, each cache line can be in one of the following states.

Name Access IsShared IsModified
INVALID – – –
VALID R True False
DIRTY R, W False True
RESERVED R, W False False

The transactional cache line has an extra state which can be one amongst the following
states.

Name Explanation
EMPTY does not contain any data
NORMAL contains committed data
TC COMMIT to be discarded on commit
TC ABORT to be discarded on abort

Whenever a memory location is read into the cache, two entries are created one marked
TC COMMIT and the other marked TC ABORT. All the modifications are only made to the
TC ABORT entry. On committing the transaction, the entries marked TC COMMIT are marked

3

EMPTY and the entries marked TC ABORT are marked NORMAL. When a transaction is
aborted, the entries marked TC ABORT are marked EMPTY, and TC COMMIT entries are
marked NORMAL.

With the present scheme, whenever a new entry has to be inserted, the transactional cache
first searches for an EMPTY entry, then for a NORMAL entry, and finally for an TC COMMIT
entry. (Note that the TC COMMIT entry needs to be written back to the memory before re-
placement.) Updates made by ST are made to the TC ABORT entry, and thus the old version is
maintained in it’s complementary TC COMMIT entry.

1.3.3 Augmenting Bus Cycles

As per the Goodman’s original protocol, there are three kinds of bus cycles. The READ cycle
acquires shared ownership of a chache line, whereas the RFO (read-for-ownership) acquires
exclusive rights for the same. The WRITE cycle updates the main memory on write-through
and is also used when dirty lines are replaced. Memory snooping is done on the bus and if a dirty
line is read by another processor, the WRITE cycle is executed again and data is written back
to the memory. To integrate the transactional cache in the architecture, three new bus cycles are
added to the protocol. To request entries into the transactional cache, the T READ and T RFO
need to be executed which are simple counterparts of READ and RFO cycles respectively. A
BUSY cycle is also added that is used to refuse entry into the transactional cache. This is done
to prevent transactions from aborting each other too much.

1.3.4 Integration with the Processor

There are two flags that the processor needs to maintain to execute transactions suitably.

TACTIVE indicates if a transaction is presently in progress, implicityly set on execution of
its first transactional operation

TSTATUS if TACTIVE is true, it indicates if the transaction is active or has been aborted

Let us now consider the steps required to execute the various transactional operations issued
by an active transaction (TACTIVE is true and TSTATUS is true).

LT :

1. Probe Transactional Cache for a line marked TC ABORT

2. If not found, but a NORMAL entry is found, change the NORMAL entry to TC ABORT
entry and allocate another entry marked TC COMMIT (to remember the old version)

3. If neither a TC ABORT nor a NORMAL entry is found, a T READ cycle is executed
whose successful completion creates two entries in the transactional cache, one marked
TC COMMIT and the other TC ABORT

4. On receiving a BUSY response, abort the transaction setting TSTATUS to false, mark all
TC ABORT entries as EMPTY and set all TC COMMIT entries to NORMAL

5. Update Goodman’s state in accordance with LOAD operation

LTX :

4

1. Execute the same steps as in LT, however on a miss, issue a T RFO cycle and mark the
cache line RESERVED on its successful completion

2. Update Goodman’s state in accordance with LOAD operation

ST :

1. Proceed like LTX but update TC ABORT entry’s data

2. Update Goodman’s state in accordance with STORE operation

VALIDATE :

1. Get the TSTATUS flag

2. If TSTATUS is false, set TACTIVE to false and TSTATUS to true

ABORT :

1. Discard cache entries marked TC ABORT by marking them EMPTY and mark TC COMMIT
entries NORMAL

2. Set TSATUS to true and TACTIVE to false

COMMIT :

1. Return TSTATUS

2. Set TSTATUS to true and TACTIVE to false

3. Discard all TC COMMIT entries and change all TC ABORT entries to normal

.

1.3.5 Integration with the Processor

Both the regular and the transactional cache snoop on the bus. The regular and the transactional
cache behave differently as explained below.

Behaviour of Regular Cache :

1. On a READ or T READ, return the value if the state is VALID. Else If the state is RE-
SERVED or DIRTY, return the value and reset the state to VALID

2. On a RFO or T RFO, return the data and invalidate the line

Behaviour of Transactional Cache :

1. If TSATUS if false, or if the operation is non-transactional (simple READ or RFO), act
like a regular cache, but ignore entries with tag other than NORMAL

2. On T READ, return the value if the state is valid, and return BUSY for all other transac-
tional operations

5

Either of the cache can issue a write request when a replacement of the cache line is needed.
A sample counting benchmark demonstrating the use of Transactional memory is given below.
shared int counter;

void process (int work) {
int success = 0, backoff = BACKOFF_MIN;
unsigned wait;
while (success < work) {

ST (&counter, LTX (&counter) + 1) ;
if (COMMIT()) {

success++;
backof f = BACKOFF_MIN;

}
else {

wait = randomo \% (01 << backoff) ;
while (wait --) ;
if (backof f < BACKOFF_MAX)

backoff ++;
}

}
}

2 Transactional memory Coherence and Consistency

2.1 Introduction
Transactional memory Coherence and Consistency1 is a model in which instead of single in-
structions the basic unit of parallel work, communication, memory coherence and memory ref-
erence consistency are atomic transactions. A transaction is a sequence of instructions that is
guarunteed to execute and complete only as an atomic unit. This property of atomicity prevents
updates occurring only partially which can often cause more problems than no updates occur-
ring at all. TCC greatly simplifies parallel software by eliminating the need for synchronization
using conventional locks and semaphores.

Most of the parallel processing systems today use one of two basic models to coordinate
synchronization and communication: message passing or shared memnory. However both
of these models have disadvantages - message passing makes software desing difficult, while
shared memory requires complex hardware to make progamming slightly simpler. TCC model
on the other hand presents a shared memory modle to programmers and reduces the need for
extensive hardware support as would be illustrated later in the paper.

The described work and used figures have been taken from [8].

2.2 Overview of the model
Each transaction produces a block of writes called the write state which are committed to shared
memory only as an atomic unit, after the transaction completes execution. When the transaction
is complete, the hardware sends out messages system-wide to get permission to commit the
“writes” associated with it. After getting this permission the processor simply broadcasts all
writes for the entire transaction out as a large packet to the rest of the system. Snooping by other
processors on these packets maintiains coherence in the system, and allows them to detect when

1Denoted by TCC henceforth

6

Figure 1: Sample transaction timeline

they have used a data which has subsequently been changed and must rollback – a dependence
violation. Figure 1 illustrates a sample transaction execution process.

Such kind of combining all writes from a transaction together minimizes the latency sen-
sitivity as fewer interprocessor messages are required. Also, since we only need to control
the sequencing between entire transactions, instead of individual instructions, we leverage the
commit operation to provide innate synchronization and a simplified consistency protocol. The
conventional consistency and coherence models are changed as follows:

• Consistence: TCC imposes a sequential ordering between transaction commits instead of
imposing some sort of ordering rules between individual memory reference instructions.
This reduces the number of latency-sensitive arbitration and synchronization events. A
processor that reads a data that is subsequently updated by other processor’s commit,
before it cancommit itself, is forced to violate and rollback. Interleaving between proces-
sors’ memory references is only allowed at transaction boundaries.

• Coherence: Store operations are buffered and kept within the processor while the trans-
action is still executing in order to maintain atomicity. At the end of each transaction the
broadcast notifies all other processors about what state has changed during the complet-
ing transaction. If they have read any data modified by the committing transaction during
their currently executing transaction, they need to restart and reload the correct data: pre-
venting data dependencies. Also, data antidependencies are handled simply by the fact
that later processors will eventually get their own turn to flush out data to memory.

2.3 Programming with TCC model
Programmers only need to satisfy one requirement for successful transactional execution: in-
sertion of transaction boundaries into their parallel code occasionally keeping in mind that the
transactional breaks should never be inserted in between a load and any subsequent store of a
shared value i.e, during a lock’s critical region. Parallel programming with TCC can be looked
upon as a three step process:

1. Dividing into transactions: This step is similar to conventional parallelization, which
requires programmers to coarsely divide the program into blocks of code that can run

7

concurrently on different processors. But the advantage to note here is this, that the pro-
grammer need not guaruntee that the parallel regions are independent as these violations
will be caught and corrected during the runtime.

2. Specifying order: If required the programmer can specify an ordering between trans-
actions to maintian a program order that must be enforced. This can be achieved by
assigning hardware-managed phase numbers to each transaction. At any instant of time
only the transactions with the least phase numbers are allowed to commit and transac-
tions from other phases are forced to wait. This forces the commits to be in order and is
also deadlock-free as at least one processor is always running the lowest phase-numbered
transactions.

3. Performance Tuning: TCC can be made to give out information regarding where vi-
olations occurred in the program which can direct the programmer to perform further
optimizations like choosing the transactions to maximize parallelism and minimize inter-
transaction data dependencies. Large transactions are preferable but small transactions
should be used when violations are frequent to minimize them, or when the memory-
buffer is often overflowing.

2.4 Speculative buffering of memory references and commit control
Individual processor nodes within a TCC system have some features to support speculative
buffering of memory references and commit control. The required features are as follows:

• Read bit: When a cache line has been read spculatively the read bit is set. These bits are
then snooped by other processors to know whether the line has been specultively read and
thus correct any occurred violation.

• Modified bit: This bit is set for a line when any part of the line has been written specula-
tively. These are used to invalidate all speculatively written lines at once when a violation
is detected.

• Renamed bits: In a cache line these bits are associated with individual words or bytes.
these bits can only be set if the entire word in written by a store and not only some part of
it. When set, any further reads from these words do not need to set read bits, because they
are guarunteed to only be reading locally generated data that cannot cause violations.

Its important to note that cache lines with set read or modified bits should not be flushed
from the local cache hierarchy in mid-transaction. If at all this occurs, the discarded cache
lines must be maintained in a victim buffer or the processor should be stalled temporarily. The
processor must also have a way to checkpoint its register state at each commit point in order
to provide rollback capabilities. This is done either in hardware by flash-copying the register
state to a shadow register file at the beginning of each transaction, or in software, by executing
a small handler to flush out the live register state at the start of each transaction.

Finally the code must have a mechanism for collecting all of its modified cache lines to-
gether into a commit packet. This is implemented either as a write buffer completely separate
from the caches or as an address buffer that maintains a list of line tags that contain data which
needs to be committed.

8

2.5 Further improvements in TCC
2.5.1 Double buffering

Double buffering implements extra write buffers and additional sets of read and modified bits in
every cache line, so that successive transaction can alternate between sets of bits and buffers. As
expected this mechanism allows a processor to continue working on the next transaction even
while the previous one is waiting to commit or is committing. The expense in implementing it
is in replicating the additonal sets of speculative cache control bits and write buffers.

2.5.2 Hardware-controlled transactions

Till now the TCC we have learned uses explicitly marked transaction boundaries by the pro-
grammers, however even hardware could divide program execution into transactions automat-
ically as the speculative buffer overflows. This would lead to optimal transaction size by not
letting transaction get so large that buffering becomes a problem, while letting them be large
enough to minimize committing overhead cost. Thus, the hardware can automatically insert
transaction commits whenever the speculative buffer is filled, thereby breaking up large trans-
actions into smaller perfectly sized ones.

2.5.3 Localization of memory references

So far we have assumed that all loads and sotres must be speculatively buffered and broadcasted
system-wide. However, compilers can actually give programmers hints to reduce the need for
buffering by letting the programmer know that some loads and stores are “local” and thus they
need not be broadcasted.

2.5.4 Input-Output handling

In TCC a transaction cannot violate and rollback after an input has been obtained. The input
is read only after commitpermission is obtained and when the transaction can never roll back.
Outputs that require to write in a specific order can force the writes to propagate out from
the processor immediately as the stores are made. Also, outputs that can accept potentially
reordered writes may simply be updated at commit time, along with normal memory writes,
thereby improving performance.

2.6 Performance Evaluation
2.6.1 Parallelism

The speedups achieved with several benchmarks are close to the optimal linear case as shown
in Figure 2 although there are several reasons why speedups are limited, one of them being
the presence of sequential code in applications which hinders speedup as per Amdahl’s law.
Also the occurence of occasional deadlocks in many applications caused by inter-transaction
dependencies remaining in the programs.

2.6.2 Buffering requirements

It is important that the amount of state read and/or written by an average transaction be small
enough to be buffered on-chip avoiding overflow. Except a few all of our benchmarks worked

9

Figure 2: Speedups for varying number of processors on benchmarks

fine within about 6-12 KB of read state and 4-8 KB of write state which is well within the size
of the smallest cache sizes used today.

2.6.3 Bus Bandwidth

For all the benchmarking applications, the number of addresses per cycle is well below 1, so
a single snoop port on every processor node should be sufficient for designs of upto 32 pro-
cessors, and can probably scale up to about 128 simple processors. This indicates that small
TCC systems using an invalidate protocol would ususally produce less than 0.5 bytes/cycle with
32-bit addresses which is desirable.

3 Unbounded Transactional Memory
Shared memory data structures is one of the most versatile methods to share data across pro-
cesses/threads in a distributed application. With the notion of shared memory the problem of
mutual exclusion immediately pops-up. The problem of mutual exclusion is to enable atomic
access to the shared resource while avoiding process starvation and providing fair resource shar-
ing. Borrowing from theory of transactions in Database Systems, any transaction management
system should satisfy (ACID) properties viz. Atomicity, Concurency, Isolation and Durability.
Lock based mutual exclusion is one of the most commonly used methods in practice but it has
several drawbacks:-

• Progress: There is a possibility of deadlock with lock based protocols. Thus in general
there is to time bound for process to get a resource i.e. progress is not guaranteed.

• Concurrency: To prevent deadlock the locks shall be acquired in some linear order. This
may lead to acquiring unnecessary lock on some resources that are not even used which
will result in reduced concurrency.

• Overheads: For locking based protocols there is always an added overhead of lock acqui-
sition, release and management even when no other process might be using the resource.

10

Similarly there is another approach of non-blocking synchronization [7] but it is unsuitable form
programming and implementation point of view. However it has been verified in literature that
non-blocking synchronization performs better than Lock-based synchronization.

designs have been proposed in past for solving the problem of mutual exclusion and syn-
chronization at the level of memory reads(load instruction) and writes((store) instruction).TMs
may be Hardware (implemented at the hardware level) or Software (implemented at kernel
level). The main motivation being to use the concepts of Database Systems at the level of mem-
ory by considering a critical section execution as a transaction. Most of TM designs are based
on the underlying cache-coherence protocol for guarantying isolation and processor re-order
buffer for handling roll-back. These designs thus put an upper bound on the size of transac-
tion in the terms of number of instructions (bounded by the window size of processor) and also
require presence of cache memory.

Here we describe an approach called that extends the line of TMs by removing the con-
straints of size on the transactions. The UTM model described herein supports memory trans-
actions of unbounded size (bounded only by the total size of virtual memory). Furthermore the
design does n’t depend on presence of cache memory for correctness, but presence of cache can
be advantageous for the speed of implementation. As we shall see UTM requires a lot of hard-
ware support and modification in the architecture processor and memory, thus another design
called has been explained that relaxes the requirement of unbounded transaction to transaction
bounded only by the size of main memory (There are some more relaxations w.r.t the UTM
model as we shall see in the following sections).

3.1 Unbounded Transactional Memory (UTM) design
As described earlier UTM does n’t depend on the presence of cache, thus for the concurrency
management UTM uses in-memory Transaction logs. As described in the following sections,
UTM can support unbounded transactions limited only by the size of total virtual memory
available.

3.1.1 Model Specification

UTM model introduces two new instructions to the processor’s Instruction Set Architecture
(ISA). These new Instructions are:-

XBEGIN pc : Marks the start of a memory transaction. pc is the pc-relative address where a
branch is made in case the transaction fails (aborts). There XBEGIN instructions can also
be nested i.e. there can be multiple sub-transactions inside any transaction in the UTM
model.

XEND : This instruction marks the end of an instruction. It means that all the effects of the
transaction have been successfully committed.

Speaking of semantics of the XBEGIN instruction, it is similar to a conditional branch in-
struction in which if the transaction aborts (the condition) a jump is made to pc (the jump
address). Initially the model treats XBEGIN as an untaken branch (assumes transaction will
be successfully committed), however in case of an abort the transaction is rolled back and after
rolling back the control passes on to instruction at pc. As mentioned earlier the transactions can
be nested in nature, in which case the atomicity domain of any transaction is same as the atomic
domain of the transactions that encapsulates all the transactions (the outer most transaction).

11

Figure 3: Modifications Introduced by UTM model in the processor architecture

Further modifications required in the architecture of memory and processor are (figure 3
shows the modifications required in a schematic diagram):-

1. “S” bit in the register rename file for each physical register. This is used in collecting the
snapshot before graduation of XBEGIN instruction

2. RW bits in each block of the main memory. These bits signify the participation of a
memory block in a transaction.

3. log pointer for each block of the main memory. This pointer points to the log-record (part
of xstate data structure design) that corresponds to the last access of the memory location
by a transaction.

Before describing the complete outline of the working of UTM model, here is the description of
the roll-back mechanism used. The memory and the processor register file can be cumulatively
visualized as a system state and any transaction can be seen as a transition from one state to
another. Thus when we talk of roll-back, we essentially mean to bring the participating parts of
main memory and processor register file to the same state, they were before the graduation of
XBEGIN instruction corresponding to the transaction that aborts. Thus the state can be divided
into two parts:- processor state and memory state. In the following section we see how the UTM
design models both of these states so as to support rollback and concurrency control.

3.1.2 Modeling Processor State

The state of a processor is essentially constituted by values of all the physical registers, thus
a trivial way to collect the processor state is to copy the value of all the physical registers in
a transaction snapshot and in case of failure, just restore the register values form the snapshot.
However in this approach there will be several registers which are independent of the transaction
but still their values will be stored (which is inefficient). To overcome this inefficacy the UTM

12

design assumes that processor has a unified register file and a renaming table (mapping from
architectural registers to physical registers). UTM specification introduces a “S”(saved) bit
associated with each physical address in the register-rename file to distinguish the registers
which are independent of the transaction to those that shall be preserved in case of transaction
failure. When a XBEGIN instruction is decoded, a snapshot is taken of the present processor
state. The snapshot contains the register-rename file and the associated “S” bit vector. After
graduation of a XBEGIN instruction the “S” bit vector defines the set of architecturally active
registers, all the physical registers with “S” bit set are put in a FIFO queue: Reserved Register
List (Lres) (which is the list of physical registers whose corresponding architectural register
may not be used as the target of any write instruction). Those registers whose “S” bit is 0 are
enqueued in the Free Register List (Lfree). Thus Lres

⋃
Lfree =all physical registers.

In case the transaction commits successfully (reckoned by graduation of a XEND instruc-
tion) the registers in the reserved list (Lres) enqueued to the free register list (Lfree)and the
transaction snapshot is deleted. In case the transaction aborts (ascertained by a jump to pc), the
register rename file is restored to the processor and the reserved list(Lres) is drained down to
the free list(Lfree). Note that “S” bit serves the purpose of preserving the contents of the state
registers during the execution of the transaction. Since the state registers are preserved during
the transaction, restoration of the register-rename file suffices to restore the CPU state. Note
that in this design the CPU re-order buffer has no role to play, thus the size of transaction is not
limited by the window size of the processor architecture. Thus snapshot plays the same role as
re-order buffer plays in conventional TM [10] approaches.

It may be noted that the transactional snapshot, nested counter (to keep track of depth of
nesting) and pc (transaction abort handler) constitute the transaction state and are made avail-
able to the operating system as set of register values so that it may be saved/restored while
context-switching along with the Program Control Block (PCB).

3.1.3 Modeling Memory state

UTM approach to transaction memory does n’t depend on the cache-coherence protocols and
coincidence properties to ensure the concurrency control. It does entire bookkeeping of the
memory block using a data structure called xstate. The specification of the xstate structure is as
follows (detailed structure illustrated in figure 4):-

1. xstate data structure contains an entry (called transaction log) for every active transaction
in the main memory.

2. The transaction log consists of a commit record and an array of log entries for each
memory access done by the transaction.

3. The commit record can be either of:- pending or aborted or committed.

4. The log-entry contains the address of the memory location, the type of operation (read-
/write) and the old value stored at the memory location (in case of a write log record).

Note that the old values are stores with the log rather than new values because the common
case is that transaction will commit. So there won’t be any need to restore the memory blocks
to previous values. Another design requirement of the UTM is RW bits in each block of the
memory, these bits denote whether the block has participated in a transaction, and if yes then
what type of operation was performed on the block (store/load). Furthermore each block
has a log-pointer that points to the log entry for the last access on the block.

13

Figure 4: Schematic representation of xstate data structure

Thus for committing an instruction the commit-entry of the xstate data structure is changed
from pending to committed. After that transaction log for that transaction may be deleted. For
rollback action the transaction log is traversed and every memory location is changed to its
previous value, also the RW bits of the corresponding block are set to 00 and the log-pointer is
set to NULL.

3.1.4 Effect of Cache and System issues

Presence of cache greatly improves the performance of UTM design, because if the transaction
fits into the main memory then the UTM model sniffs the cache-coherence protocol traffic to
implement coherence and identify conflicts. The cache protocol gets an exclusive ownership of
a cache line when a transaction attempts to write, thus until there is no request for upgrading
the ownership there is no conflict and the transactions run with the overhead of normal cache
coherence traffic. If the transaction does n’t fit in the cache then the xstate data structure over-
flows into the main memory (or a L2 cache as the case may be with memory hierarchy). The
log pointers to cache blocks are not required to be updated until the cache block is evicted (be-
cause while in cache the concurrency control is done via the help of cache coherence protocol),
the the block pointer in kept clean until the cache block is not evicted. To make the common
case of small transactions fast [3] the new data is always kept in the cache while the old value
for the memory location may be kept in the main memory. Thus if the transaction completes
successfully (most common case) then cache is already upto-date, in the other case when trans-
action fails there is an added overhead of chasing pointers to rollback (thus the common case is
optimized). Furthermore it is not necessary that the xstate data structure in the main memory is
consistent with the in-cache transaction state.

UTM systems also support migration of the transaction from one processor to another (for
long transactions this might be the case). This is archived by making the log-pointer for the
process log in the shared xstate structure as a part of the CPU register which results in the
log-pointer for the process being saved with the PCB.

The transaction size may span beyond the physical memory into the virtual memory which
can be accomplished by using Global virtual address (it is a unique address for the each mem-
ory location in the entire virtual memory space) in the xstate data structure. The transaction log
information is also stored in the main memory with the process control block which enable the

14

Operating System to swap-in and swap-out the process without any modifications to the sched-
uler. The paging of xstate data structure is dependent on the operating system, either the entire
range of memory locations “touched” by the processor may be loaded into the main memory
or the operating system must allow restarting of another load instruction (for swapping in the
page from disk) in middle of a memory transaction (which is also a store/load instruction).
It may me noted that the UTM system does n’t allow I/O in between transactions i.e. there
can’t be any device I/O in the code excerpt between a XBEGIN and the corresponding XEND
instruction.

3.2 Large Transactional Memory (LTM)
The previously discussed UTM system requires a lot of modifications in the computer archi-
tecture and operating system, further a transaction seldom overflows the main memory (and
in modern systems there are humongous main memory sizes so it shall never be a problem).
This motivates to decrease the power of UTM system to allow transactions in only the size
limit of main memory but at a reduced and practical modification of architecture (a compro-
mise between the practicability and programmability). This design of memory called Large
Transactional Memory (LTM) compromises on the following aspects of UTM:-

“Unboundedness” : The LTM design limits the size of the transaction footprint by the size of
the main memory. Thus a transaction can be at most as large as the main memory (well
not as large but almost considering the space requirement of in-memory book keeping).

Time Bounded : In the LTM architecture the memory transaction is bounded by the time slice
OS allocates to the transacting process. Thus the transaction state is no longer a part of
the process state.

No Migration : Unlike UTM processes (or transactions) can’t be migrated from on process to
another. This again follows logically from the previous limitation that the entire transac-
tion state is no longer contained in the process state.

These relaxations on the requirements of UTM system drastically reduces the implementa-
tional complexity of the LTM systems. The LTM systems described herein were the first step
towards creating an “unbounded” system like UTM. LTM shares a lot of concepts of concur-
rency management from UTM is shall be clear from the design specifications.

3.2.1 Model Specification

As described in the UTM model the semantics for the XBEGIN and XEND are same for the
LTM systems also. There are however some design differences that reduce the complexity of
implementation. LTM does n’t use any shared memory data structure like xstate to manage
transaction state, instead the transaction state is maintained partly in the cache and partly in the
operating system reserved memory.

LTM system has some small changes in the cache memory organization. The speculative
transaction state of small transactions is stored directly in the cache memory itself, for large
transactions it is overflowed to a hash table in the main memory. For the purpose of maintaining
transaction state in the cache following cache modifications are proposed:-

“T” bit : Each cache block contain an additional “T” bit that is set to 1 if a cache hit occurs
on the cache line during execution of a transaction (i.e. after graduation of a XBEGIN in-
struction). Thus for any cache line this bit signifies whether the cache line is participating
in any transaction.

15

“O” bit : This additional bit is added per cache set (as in set-associative cache), which is set
to 1 if a cache line in the particular set is evicted because of cache capacity reasons. The
cache line is the available in the overflow data structure.

The main memory always contains the original data while the cache and the overflow hash
table contains the speculative data (based on the speculation that the transaction completes).
Thus when the transaction completes all the “T” bits are cleared from the corresponding cache
blocks and all overflowed data is written back to the main main memory. The atomicity of
transactions is guaranteed using cache-coherence protocols, if there is any cache hit on a cache
line that already has “T” bit set and the cache line does n’t belong to the transaction in question
then it is taken as a conflict and the transaction is aborted.

The overflow hash table acts like an extension to the cache, if there is a cache miss then
processor tries to find the cache line in the overflow hash table within a limited amount of time.
If the cache line is found then the it is swapped with the existing cache line and it is treated by all
means as a cache hit, otherwise if the line could n’t be found in the overflow data structure then
it is taken as a cache miss. The hash table takes uses the higher order of the memory address as
the hash key, hash conflicts are handled by using linear chaining of the hash entries.

3.2.2 Memory and Processor state

As discussed in the case of UTM the transaction state can be divided into memory and processor
state. For the LTM the processor state is saved just like in the UTM by introducing “S” bits in
the processor register-rename file. As far as the main memory state is concerned it is never
changed until the transaction commits, as described above the speculative transaction state of
the system is limited to the cache and the overflow block. The cache state is easily restored by
clearing all the corresponding “T” bits and clearing the entries in the overflow hash table. Thus
for transactions footprints that fit in the cache the case is equivalent to a conventional HTM
system.

3.2.3 Importance of cache

As should be evident from the previous discussion the presence of cache is mandatory for
correctness of the LTM system (compared to the UTM systems where the cache just add a
performance boost to the system). But in most of the commonly available architectures cache
memory is present. The overflow hash table serves as an “in-memory” cache serving just as
an expansion of the present cache system. Thus cache memory ceases to be just a speedup
factor but becomes versatile for the LTM implementation. The overflow hash table is however
maintained by the processor itself (with support for management by operating system itself), so
there is minimal overhead of interrupts.

3.3 Conclusion
To conclude it can be reckoned that UTM system are representative of idealized solutions to
the “unbounded” transaction footprint problem and like most idealized solutions suffers the
drawbacks in practicability, cost and implementational complexity. LTM on the other hand rep-
resents a much more technical approach because the transactions are in general small enough to
fit in the main memory, as a matter of fact study [2] shows that ≈ 99.99% of transactions touch
below 54 cache lines. However UTM is much more generic and provides beter encapsulation
and functionality than the LTM which compromises programmability for complexity.

16

4 Parallel Programming with Transactional Memory

4.1 Introduction
Since the growth of fast uniprocessor has reached saturation the chip manufacturers are turning
to multi-core processors. In order to reduce the total run time by increasing the cores, the
programs have to be parallelized. This is expressed by Amdahl’s law as:

1
(1−P)+P

S

.
Here P is the fraction of the program that can be parallelized and S is the number of execu-

tion units.
The description work and the codes are taken from [5]

4.1.1 Synchronization problems

Implementing parallization is faced by many problems:

• The program should comprise of multiple independent parts which can be written as
seperate programs. Shared memory is usually used to collaborate these multiple pro-
grams.

• Read and write accesses to shared data should be synchronized in order to avoid incon-
sistent states.

• To deal with multiple memory locations, mutex (mutual exclusion) directives are used.
But, it brings new set of problems. If single mutex is used in the whole program then
the portion of program that can be parallelized(P) would be reduced and the program
performance would be affected. Multiple mutexes increases the probability of deadlock
and also the overhead for locking and unlocking mutexes.

4.1.2 Programmer’s dilemma

By increasing the portion of code which can be parallelized (P), the complexity and overhaead
of code increases which introduces new problems. So, an optimum code has to be decided upon
which is not very complex and at the same time sufficiently parallelized.

4.2 Transactional Memory
The problem of consistency exists in computer science especially in databases in which it is
solved using transactions. Transactions can be performed in any order and are committed only
if successful. They are rolled back and aborted if conflict arrises. The same concept can be use
to perform memory operations in which the in-memory data a program keeps corresponds to
the tables in the databases. But this will restrict the programmers to write their programs in a
certain way. Fortunately, the concept of Trancsactional Memory2 has been defined without this
restriction.

The description of the hardware implementation of TM in [10] is generic and has been ex-
plained above. It is not necessary to implement TM in harware and the implementation details
must be transferred to today’s available hardware. ‘Hardware TM3 provides a means to imple-
ment atomic operations operating on more than one memory word’ [5]. For further support in

2Denoted by TM henceforth
3Denoted by HTM henceforth

17

implementing TM, software support is needed. Software TM4-based solutions provide inter-
faces to TM funtionality, which later could be integrated with harware solutions to form hybrid
TM.

4.2.1 Show me the problem

A small example can be shown to highlight the problems that can happen in real code:
long counter1;
long counter2;
time_t timestamp1;
time_t timestamp2;

void f1_1(long *r, time_t *t) {

*t = timestamp1;

*r = counter1++;
}
void f2_2(long *r, time_t *t) {

*t = timestamp2;

*r = counter2++;
}
void w1_2(long *r, time_t *t) {

*r = counter1++;
if (*r & 1)

*t = timestamp2;
}
void w2_1(long *r, time_t *t) {

*r = counter2++;
if (*r & 1)

*t = timestamp1;
}

Our goal is to make this code runnable on multiple threads which can execute any function
concurrently without producing invalid results in which the return counter and timestamp values
dont belong together.

If we use a single mutex in the whole program and assuming that most of the time only the
functions f1 1 and f2 2 are called then the perfomance is reduced unnecessarily since f1 1
and f2 2 are already conflict free.

If we use two locks, the semantics would have to be in the one case when counter1 and
timestamp1 are used and when counter2 and timestamp2 are used, respectively. Although it
will work when f1 1 and f2 2 are called but not for the other two functions where the pairs
counter1/timestamp2 and counter2/timestamp1 are used together. So, then, we would have to
use separate locks for each variables.

In that case the following code could be written (only two functions are mentioned here; the
other two are mirror images):
void f1_1(long *r, time_t *t) {
lock(l_timestamp1);
lock(l_counter1);

*t = timestamp1;

*r = counter1++;
}
void w1_2(long *r, time_t *t) {
lock(l_counter1);

4Denoted by STM henceforth

18

*r = counter1++;
if (*r & 1) {
lock(l_timestamp1);

*t = timestamp2;
unlock(l_timestamp1);
}
unlock(l_counter1);

}

In the code for w1 2 delay in getting the l timestamp1 lock might produce inconsistent
results. The lock has to be accessed at the start:
void w1_2(long *r, time_t *t) {
lock(l_counter1);
lock(l_timestamp1);

*r = counter1++;
if (*r & 1) {

*t = timestamp2;
unlock(l_timestamp1);
unlock(l_counter1);

}

Still, the code has flaws. The order in which the required locks are accessed is different in
w1 2 from that in f1 1. This will bring in the possibility of deadlocks. Hence, we can conclude
that there can be situations when multiple mutex locks become necessary. But the code becomes
too complicated. STM provides a different approach to consistency problem.

4.2.2 Rewriting using TM

In the following example nonstandard extensions to C are used which might appear in a TM-
enabled compiler.
void f1_1(long *r, time_t *t) {
tm_atomic {

*t = timestamp1;

*r = counter1++;
}

}
void f2_2(long *r, time_t *t) {
tm_atomic {

*t = timestamp2;

*r = counter2++;
}

}
void w1_2(long *r, time_t *t) {
tm_atomic {

*r = counter1++;
if (*r & 1)

*t = timestamp2;
}

}
void w2_1(long *r, time_t *t) {
tm_atomic {

*r = counter2++;
if (*r & 1)

*t = timestamp1;
}

}

19

Here, all the instructions in the tm atomic block form a transaction. Functions should have
prior knowlege of the transactions. So, two versions of each function, one with TM fucn-
tionality and one normal, are necessary. The following following steps show how TM can be
implemented [5]:

1. Check whether the same memory location is part of another transaction.

2. If yes, abort the current transaction.

3. If no, record that the current transaction referenced the memory location so that step 2 in
other transactions can find it.

4. Depending on whether it is a read or write access, either

(a) load the value of the memory location if the variable has not yet been modified or
load it from the local storage in case it was already modified, or

(b) write it into a local storage for the variable.

If the transaction already accessed the same memory location previously then step 3 can be
ignored. Transaction can be aborted in lazy/lazy (lazy abort/lazy commit) method or in ea-
ger/eager (eager abort/eager commit) method. In the former, the transaction is executed until
it reaches commit stage even it is aborted beforehand. In the latter, the trasaction is aborted
and stopped as soon as conflict is detected. Eager/eager method is usually followed in database
transactions.

The commitment of a transaction can be described as follows [5]:

1. If the current transaction has been aborted, reset all internal state, delay for some short
period, then retry, executing the whole block.

2. Store all the values of the memory locations modified in the transaction for which the new
values are placed in local storage.

3. Reset the information about the memory locations being part of a transaction.

4.3 Correctness and Fidelity
While discussing about correctness, it is obviously assumed that STM is correctly implemented
without bugs. A transaction is committed only if it remains unaborted and all its atomic blocks
succeed. So, with respect to memory accesses, the thread is the only thread executing and the
new code is as correct as the original code without locks. Also, it is theoretically possible to
show that this TM technology is deadlock-free. It can be explained by stating a similar problem.
In IP-based networking if more than one machine start sending out data concurrently then this
conflict is detected and the sending is postponed until a short interval of time. Practically
IP-based networking is successful and hence a similar result can be expected from the TM
problem. Also, in our example the code for f1 1 and f2 2 will run concurrently since they
refer to disjunct memory locations.

20

4.4 Where is TM today?
TM is still a topic of research today. Few implementations of STM include the VELOX project5

and TinySTM6. Also, first proprietary compilers which support STM are also available 7. These
implementations will help gain experience and find solutions to remaining problems:

1. Recording transactions The state of the atomic block including the memory locations of
the variables used in it have to be recorded before entering the atomic block. Hence, there
would be an overhead of several words for each variable in the cache which is very costly.
Although, in case the memory location is already in the block, it would not have to record
it. But, if in the above example we assume that in the final code all four variables are in
the same atomic block leads to high abort rate. This reduces the perfomance substantially.

2. Handling aborts As described earlier aborts can be handled in lazy/lazy (lazy abort/lazy
commit) method and eager/eager (eager abort/eager commit) method. In both the cases
the old values of the variables have to be stored locally to be restored in case of an abort.
There are many other ways in which aborts can be handled but similar to the above two
methods in efficiency. There is a high dependency on the abort rate of individual transac-
tions.

3. Semantics TM has to be integrated with the established computer languages. Also the
semantics of the atomic block have to be specified. Nested TM and treatment of local
variables are other issues.

4. Performance Performance is the sole reason why TM is a topic of research. The compiler
has to optimize the code. For example, if the TM is not needed (e.g., in a single threaded-
program) then, to prevent the overhead of TM two versions of each function has to be
written.

4.5 Conclusion
TM is attractive and makes parallel programming much efficient. The first implementations are
out but much research has to be done.

References
[1] Juan Alemany and Edward W. Felten. Performance issues in non-blocking synchroniza-

tion on shared-memory multiprocessors. In Proceedings of the eleventh annual ACM sym-
posium on Principles of distributed computing, PODC ’92, pages 125–134, New York,
NY, USA, 1992. ACM.

[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean
Lie. Unbounded transactional memory. In Proceedings of the Eleventh International Sym-
posium on High-Performance Computer Architecture, pages 316–327. ACM, Feb 2005.

[3] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin. Making the
fast case common and the uncommon case simple in unbounded transactional memory.
SIGARCH Comput. Archit. News, 35(2):24–34, 2007.

5http://www.velox-project.eu/
6http://tinystm.org
7http://www.hipeac.net/node/2419

21

[4] David Chaiken, John Kubiatowicz, and Anant Agarwal. Limitless directories: A scalable
cache coherence scheme. SIGPLAN Not., 26:224–234, April 1991.

[5] Ulrich Drepper. Parallel programming with transactional memory. Queue, 6:38–45,
September 2008.

[6] James R. Goodman. Using cache memory to reduce processor-memory traffic. SIGARCH
Comput. Archit. News, 11:124–131, June 1983.

[7] Michael Greenwald and David Cheriton. The synergy between non-blocking synchroniza-
tion and operating system structure. pages 123–136, 1996.

[8] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben
Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun.
Transactional memory coherence and consistency. In Proceedings of the 31st Annual
International Symposium on Computer Architecture, page 102. IEEE Computer Society,
Jun 2004.

[9] M. Herlihy. A methodology for implementing highly concurrent data structures. SIGPLAN
Not., 25:197–206, February 1990.

[10] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 289–300. May 1993.

22

