

By :-

Anshuman Tripathi (07CS3024)

Gautam Kumar (07CS1021)

Parin Chheda (07CS3023)

(under guidance of Animesh Shrivastav and Prof Niloy Ganguly)

PROJECT GOAL

- Collect Network data from real world networks like World Wide Web, Facebook, Twitter ... etc
- Compute spectral properties of the graphs
 - Laplace spectrum
 - Adjacency spectrum
 - Degree distribution
 - Assortativity ... etc
- Study these spectral properties under certain type of network attacks to conclude resilience of these networks

Real – World Networks

- Autonomous System Graph
 - Every AS router is viewed as a node in the graph
 - A trace route from a router to another router denotes an edge
- Facebook
 - Every individual is a node
 - Friendship denotes an undirected edge
- Twitter
 - Followers (who follow 'x') and Friends (who 'x' follows) define directed edges adjacent to 'x'

WORK FLOW

COLLECTING DATA (AS)

- The network data for AS router network was downloaded from
 - http://snap.stanford.edu/data/as-skitter.html
- The Data organized in for of edge-list
- Undirected Graph

Statistics:

Number of nodes (V)	$1696415 \sim 1.7M$
Number of Edges (E)	11095298 ~ 11.1M
Highest Degree	1008
Assortativity	0.04
Clustering Coef.	0.2963

COLLECTING DATA (FACEBOOK & TWITTER)

- Designed python based crawlers
 - Facebook
 - Used cloudlight python module
 - The friend list dynamically fetched from Facebook server
 - Used mobile version of Facebook (http://m.facebook.com) to browse friends (10 friends per page)
 - Crawled ~2000 nodes in 3 days
 - Twitter
 - OAuth2 authentication
 - Used Twitter API for python (twython)
 (https://github.com/ryanmcgrath/twython)
 - Crawling limited by number of api-calls per hour from a client (350 calls/hour)
 - Crawled ~1900 nodes in 1 day

COLLECTING DATA (FACEBOOK & TWITTER)

- Facebook data downloaded from
- Twitter data downloaded from Statistics

	Facebook	Twitter
Number of nodes (V)	$258912 \sim 2.5M$	40103281 ~ 40M
Number of Edges (E)	60022032 ~ 60M	1468365182 ~ 1.5B
diameter	6.5	5.9

PRUNING OF NETWORKS

- Data collected too huge for performing spectral computations
- Entire data is not necessary for studying statistical properties
- Prune the data obtained w.r.t degree of node
- Selecting Threshold
 - Should conserve the degree distribution of the original network
 - Should reduce number of nodes to computationally feasible levels ~ 10K

STATISTICS OF PRUNED NETWORKS

Metric	AS	Facebook	Twitter
Number of nodes	9881 ~ 10K	10707 ~ 10K	1030869 ~ 1M
Number of edges	403474 ~ 403K	$328926 \sim 329 \text{K}$	$55921630 \sim 55M$
Threshold	>175	>800	>100 and < 500
Assortativity	0.0398	0.3589	N/A^2
Clustering Coef.	0.3095	0.3143	N/A ²
${ m Diameter^1}$	9	13	10
Size of Big Component	99.78%	99.75%	99.99%
Number of components	11	7	4

¹ Diameter of the big component

² unable to compute => graph too big

PRUNING (AS)

 \circ Threshold = 175

DEGREE DISTRIBUTION: AS (LOG-SCALE)

PRUNING (FACEBOOK)

 \circ Threshold = 800

DEGREE DISTRIBUTION: FACEBOOK (LOG-SCALE)

PRUNING (TWITTER)

• Threshold = 100 to 500 (out-degree)

DEGREE DISTRIBUTION: TWITTER (LOG-SCALE)

SPECTRAL ANALYSIS (LAPLACE SPECTRUM)

SPECTRAL ANALYSIS (LAPLACE SPECTRUM)

ADJACENCY SPECTRUM

ADJACENCY SPECTRUM

Facebook

NODE REMOVAL

- Node removal: Top k node removed based on four metrics
 - Random node removal ('rand' attack)
 - Degree based (nodes with high degree centrality) ('deg' attack)
 - Based on betweeness centrality ('bet' attack)
 - Based on closeness centrality ('load' attack)
- Sort the nodes based on a particular centrality
 and remove Top 'k' nodes: size of attack = k

NODE REMOVAL ON AS (LAPLACE SPECTRUM)

Node removal AS (Assortativity)

NODE REMOVAL ON FACEBOOK

Node removal Facebook (Size of Big Components)

BIMODAL NETWORK SIMULATION

- Bimodal networks are networks in which a node can have either low degree or high degree (super nodes)
- Bimodal network simulation
 - Simulation done using a C code(courtesy Animesh Srivastav)
- Variation of Assortativity with random node removal Statistics of simulated Bimodal Network generated:

Low degree	5
High degree	20
Prob. Of low degree	0.8
Assortativity of network	0.5

BIMODAL NETWORK SIMULATION (ASSORTATIVITY VS. NODE REMOVAL)

• Number of iterations = 10

POST-MIDSEM

ADJACENCY BINNED SPECTRUM (FACEBOOK)

ADJACENCY BINNED SPECTRUM (AS)

LAPLACE BINNED SPECTRUM (FACEBOOK)

LAPLACE BINNED SPECTRUM (AS)

LAPLACE BINNED SPECTRUM OF ATTACKED NETWORK (AS)

DEDUCTIONS

- From the attacks done on AS and Facebook Network is clearly visible that attacks based on load and betweenness centrality behave in same way
- The trend of change in assortativity is different for AS and Facebook network.
- Correlation between various centralities in AS and Facebook?

CO-RELATION

CO-RELATION

CO-RELATION

PEARSON CO-RELATION MATRIX

	BET	DEG	LOAD	CLUST
BET	1.0	0.3179	0.8307	-0.0225
DEG		1.0	0.3204	-0.0079
LOAD			1.0	-0.0229
CLUST				1.0

AS network

	BET	DEG	LOAD	CLUST
BET	1.0	0.1073	0.9641	-0.0052
DEG		1.0	0.1067	-0.0027
LOAD			1.0	-0.0052
CLUST				1.0

Facebook network

CORRELATION (AS VS FACEBOOK)

- AS network has considerably higher correlation between betweenness and load centrality and degree centrality
- Means that nodes with high degree have higher betweenness and closeness (typical of a router network)
- Facebook has correlation between the load, betweeness centrality and degree centrality but it is lower than AS networks

CORRELATION (CONTD...)

- In social network context degree does not dictate the closeness of a node from other nodes.
- In both cases Load centrality and Betweenness centrality are highly correlated, more so in the case of Facebook.
- In both the cases, negligible negetive correlation with clustering coefficients

FUTURE WORKS

- Perform the experiments on twitter dataset
- Perform clustering coefficient based node removal
- Study the effect of attacks on network diameter
- Compare the results obtained for the three data sets
- Simulate experiments with bimodal networks

REFERENCES

- [1]. S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, and A. N. Samukhin, "Spectra of complex networks," Phys. Rev. E, vol. 68, no. 4, p. 046109, Oct 2003.
- [2]. E. Estrada, Spectral Theory of Networks: From Biomolecular to Ecological Systems., Jun 2009.
- [3]. A. N. Samukhin, S. N. Dorogovtsev, and J. F. F. Mendes, "Laplacian spectra of complex networks and random walks on them: Are scale-free architectures really important?" Jun 2007.
- [4]. http://snap.stanford.edu/data/as-skitter.html (Internet Data)
- [5]. Kwak, Haewoon and Lee, Changhyun and Park, Hosung and Moon, Sue. "What is Twitter, a Social Network or a News Media?". http://an.kaist.ac.kr/traces/WWW2010.html (Twitter data set)
- [6]. On the Evolution of User Interaction in Facebook. (Facebook Data Set)

THANKS