
Multiprocessor Procrastination Scheduling in ERFair Realtime Systems

Anshuman Tripathi1

Dept. of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Abstract

Processor shutdown is primary method to reduce the leakage power in ideal processors. This paper presents, ERFair Processor
Procastination Scheduler (EPPS), an ERFair scheduler for multiprocessor, hard-realtime systems that attempts to locally maximize
the average processor shutdown interval while maintaining proportional fairness for the tasks. Comparative studies with the Basic-
ERFair scheduler and ESPS algorithm show that EPPS algorithm can achieve as high as 10 times the shutdown length achievable
by these uniprocessor counter parts.

Keywords: ERFair Scheduler, Procrastination, Processor shutdown, multiprocessor.

1. Introduction

The presence of embedded systems like PDAs, cellphones,
etc, powered by sources of limited energy, has proliferated in
contemporary technology. This combined with the leakage power
loss in gate chips has made the problem of power dissipation
and energy efficiency critical to design of devices and software.

While there are many advancements in reducing the power
consumption in at the level of processor design, with the advent
of multiple power states in processors many software based op-
timizations have become possible. From [1] the power con-
sumed in a processors can be crudely described by the follow-
ing equation:

C× s×V 2︸ ︷︷ ︸
dynamic power

+

static power︷ ︸︸ ︷
V × Isc︸ ︷︷ ︸

short circuit power

+ V × Ileak︸ ︷︷ ︸
leakage power

(1)

where s is the frequency of operation for the CPU. Based on
equation 1, there are two major approaches that are commonly
used for power reduction viz: Dynamic voltage scaling (DVS) [2,
3, 4] and processor shutdown [5, 6]. In DVS technology, a pro-
cessor has a set of operating frequencies mapped to the supply
voltage. As evident from Equation 1, a reduction in s and V
leads to lower power dissipation. Processor shutdown on the
other hand means putting the processor in a sleep/OFF power
state, where the processor can not be used for any further com-
putations. In this suspended state, the processor consumes very
less energy and can be again put to normal state, subject to loss
of power and time in the transition. In both these approaches the
transition of processors among states consumes power. Thus a
practical use of this technology will require maximizing the av-
erage length of time CPU is in a particular state (to make the
transition to that state profitable).

Email address: anshumant.iit@gmail.com (Anshuman Tripathi)

This paper proposes an approach for efficient processor shut-
down in ERFair [7] multiprocessor systems. ERFair schedul-
ing is an important approach in QoS applications, as it concur-
rently handles many independent aspects [8, 9, 10] like realtime
audio-video, telnet, gaming, web browsing, etc. This paper
presents ERFair Processor Procrastination Scheduler (EPPS)
a modified version of the basic ERFair scheduler, that greedily
shuts down processors while locally maximizing the shutdown
intervals.

The rest of the paper is organized as following: In Section 2
a brief comparison of previous works has been presented, Sec-
tion 3 describes the system model that is considered in the de-
sign of the algorithm, it gives a brief description of the power
model used and the ERFair systems. A detailed analysis and
description of EPPS algorithm is given in Section 4. The im-
plementation and simulation results for different datasets is pre-
sented in Section 5. Finally Section 6, gives a summary of the
conclusions.

2. Related Work

As described in previous section, practical use of power
down technology for energy savings, requires idle period to be
long enough so as to amortize the transition costs. A completely
greedy approach, therefore, is not necessarily fruitful as it may
degrade the performance without appreciable improvements to
energy consumption. Previous works like [11, 12] attempt to
maximize the idle time interval by delaying the execution of
tasks. Author in [13] proposes a polynomial time algorithm
(O
(
n5
)
) to find the time intervals, when the processors could

be shutdown, using a dynamic programming approach. There
are also works where a combination of DVS and power down
technologies has been considered, like [14, 15, 16, 17, 18, 19].
PACE algorithm described in [20] proposes a generic approach
of varying the operating frequency in a DVS enabled proces-
sors, to maximize the power gains. It may be noted that use

Preprint submitted to Elsevier January 21, 2013

of DVS in combination with shutdown technology in general
gives a better energy saving as compared to using the DVS tech-
nology alone, since slowdown causes increase in the leakage
power.

ESPS algorithm described in [5] proposes a novel approach
of slack stealing in ERfair systems by modifying the basic ER-
Fair algorithm and scheduling processor shutdowns to locally
maximize the intervals in uniprocessor systems. The present
work develops on similar lines by extending the scope of shut-
down to multiprocessor environments. In the present work we
compare the performance of both ESPS and the proposed algo-
rithm in multiprocessor systems.

3. System Model

It is assumed that the system has multiple identical proces-
sors and the tasks submitted to the system are periodic tasks
with hard deadlines. The scheduler attempts to put processors
in power saving state, while still being ERFair to the processes.
In this section a brief introduction of ERFair scheduling is pro-
vided, along with the Energy model for the processors that dic-
tates the design of scheduler.

3.1. ERFair Scheduling
ERFair scheduling falls in the category of proportionally

fair scheduling approach, which is an effective strategy for rate-
based realtime applications. A rate based application, other
than the deadline, also requires minimum guaranteed quality
of service of the form reserve X units of time for application A
out of every Y units.

Consider a set of tasks {T1,T2, . . .Tn}, such that the compu-
tational requirement of Ti is ei and the period for recurrence of
task instance is pi. For such a task set, an ERFair Scheduler not
only aims to meet the deadlines of the tasks, but also ensures a
minimum rate of execution for the task. Such scheduler tries to
schedule tasks such that in t time slots from arrival of task Ti,
at least b ei×t

pi
c units of execution time is given. To state more

formally, lag of a task Ti is defined as:

lag(Ti) =
ei× t

pi
−allocated(Ti, t) (2)

where allocated(Ti, t) is the actual execution time allotted to
task Ti till time slot t. Based on this definition of lag, a scheduler
is said to be ERFair iff:

∀(t, i) lag(Ti, t)< 1 (3)

This means that in an ERFair scheduler, if there is an under
allocation for a task, it must always be less than one time slot.
The criteria for ERFair schedulability of a task set is:

n

∑
1

ei

pi
≤ m (4)

Equation 4 simply translates to the obvious condition that the
total utilization of tasks in the task set, should not be any more
than the number of processors available. The ratio ei

pi
is called

the weight of task Ti and the summation
n
∑
1

ei
pi

is called the uti-

lization of the task set. Thus for ERFair schedulability of a task
set, condition in equation 4, signifies that total task utilization
be less than available processors.

3.2. Energy Model

Although shutting down processors can save on their power
consumption, there are other factors that limit the minimum
amount of time a processor should be shut down for it to be
beneficial. The power state transitions consume extra power, so
the time of shut down should be long enough to compensate for
the power requires in state transitions. The minimum length of
a profitable processors shut down is called the break even time
point Tbreakpoint .

The exact value of Tbreakpoint is processor specific and is
dependent on the Power used in ON state (PON), the Power re-
quirement for transitioning (Ptr), the Power used when proces-
sor is in sleep state (POFF) and the time taken for transition from
ON to SLEEP state (Ttr). Based on these architecture specific
variables, the break even time can be formulated as:

Tbreakpoint = Ttr +Ttr×
Ptr−PON

PON−POFF
(5)

4. EPPS algorithm

4.1. Working Principle

As described in [5], the slack of a task is the amount of time
it can be suspended from the active queue without any possibil-
ity of violating ERFairness of the scheduler. It is also noted that
for tasks in ready queue the slack increases uniformly at the rate
of 1−w

w where w is the total utilization of the system. Although
these claims have been made for uniprocessor systems in [5], it
can nevertheless be generalized for multiprocessor systems (as
later proved in Theorem 1). The ERFair Processor Procrastina-
tion Scheduler (EPPS) works by using the accumulated system
slack as a leverage to greedily shutdown processors, there by
reducing their ideal time and subsequently the leakage power
dissipation. It must be noted that when a new instance of a task
arrives, the system slack always becomes zero, since the slack
of new instance of a task is zero. Thus at any point in time the
farthest time until which processors can be shutdown without
the risk of violating ERFairness, is the closest expected arrival
time (in case of our model its same as the closest deadline).

For a system with m processors and n tasks with total weight
U , if at least dUe processors are available in power on state, the
schedulability criteria for ERFairness as defined in Equation 4
is satisfied. As a result m−dUe processors can be shutdown
without any risk of violating fairness to tasks. At any time t
during the task schedule, if the number of processors active are
ma, then Algorithm 1 tries to speculate when the system slack
will be high enough so that an extra processor can be shutdown
(i.e only ma− 1 processors will be active). Let us assume that
the closest arrival time for system is td . Since the system slack
at td is zero, all we require is that it remains positive before td .
To maximize the shutdown interval, we should shutdown the

2

extra processor at a time tcut such that system slack gradually
decreases and becomes zero at td . The trajectory taken by slack
in this case is given by equation:

Slack(t) = r
′ × (t− td) (6)

where r
′

is the rate of slack generation when system has ma−1
processors, which (according to [5]) is given by

r
′
=

{
1−w

′

w′
ma > 1

−1 ma = 1
(7)

where w
′

is given as:

w
′
=

U
ma−1

(8)

By taking the intersection point of equation 6 with the slack tra-
jectory of the task with minimum slack i.e (Tmin) we can com-
pute the time tcut , when system can have only ma−1 processors.
The shutdown would be practical only if td− tcut ≥ Tbreakpoint .

4.2. Slack updates

The EPPS algorithm requires that the slack of all the tasks
is updated regularly. This however is a very expensive opera-
tion, since one update of slacks will require at least O(n) time,
where n is the number of tasks in the system. To overcome
this obstacle we use the following results. Since the system is
ERFair, the slack rate r will be same amongst Active tasks and
Inactive tasks. For any task Ti the slack rate ri is given by:

ri =

{ 1−w
w Ti ∈ Active
−1 Ti ∈ Inactive

(9)

where w is the utilization of the system. Thus task slack only
needs to be updated when the slack rate changes for the task,
which is possible in three scenarios:

1. When a task completes its execution (i.e it is removed
from Active and put to Inactive heap). This step not only
changes the slack rate for finished task but since the uti-
lization w is changed, slack rate of all the Active tasks is
also affected.

2. When either a new instance of a task or a new task arrives
to Active heap.

3. When a processor is shutdown or woken up (thus chang-
ing the value of w in equation 9).

Algorithm 1 thus only updates the slacks of the tasks in one of
these three conditions.

4.3. Details

Based on the discussions in the previous sections, a detailed
pseudo-code description of the algorithm for EPPS is given in
Algorithm 1. The logic of the pseudo-code presented here is in
line with the working principle of EPPS algorithm described in
the previous section.

Algorithm 1 Algorithm EPPS
1: {Given: A set of n tasks and m processors.}
2: Power down processors so that only dUe processors are ON.
3: for Each time slot t, do
4: Select and execute the most urgent m subtasks from the heap of Active

tasks.
5: Is a task has completed, then put it in Inactive tasks otherwise re-insert

it in heap of Active tasks.
6: Let sum of task weights (in Active heap) = U
7: if A new task OR subtask has arrived then
8: Update Task slacks
9: Power up processors, so that dUe processors are available in power-

on state.
10: tshutdown = NewShutdownPoint()
11: if A task has finished then
12: Update task slacks
13: tshutdown = NewShutdownPoint()
14: if t == tshutdown AND m > 0 then
15: Update task slacks
16: Shutdown 1 more processor
17: tshutdown = NewShutdownPoint()

Algorithm 2 Function NewShutdownPoint()
1: {Given: A set of n tasks and m processors.}
2: let utilization of tasks in Active heap be U .
3: let there are ma processors currently active.
4: if ma == 1 then
5: r = −1
6: else
7: w =U/(ma−1) AND r = 1−w

w
8: td = Earliest deadline of for tasks in Active heap.
9: Tmin = Minimum Slack Task (amongst both Active and Inactive heap)

10: Find tcut the timeslot of intersection between Slack trajectory of Tmin and
line S = r× (t− td). Where S is slack variable and t is timeslot variable

11: if td - tcut ≥ Tbreakpoint then
12: return return tcut
13: else
14: return return −1

4.4. Analysis
In this section some proofs are presented leading to the

complexity analysis of EPPS as described in Algorithm 1.

Theorem 1. The rate of slack generation for a task Ti in a mul-
tiprocessor environment is given by equation 9.

PROOF. Case Ti ∈ Inactive: Since the task is in inactive state, it
means its already suspended from execution. As per definition
slack of the task Ti is the amount of time it can remain sus-
pended without violating ERFairness. Since the task is already
inactive, with every timeslot, the slack will decrease by 1 (since
Ti has already spent 1 timeslot in suspended state). Thus for all
inactive tasks the rate of slack generation is −1. The same ar-
gument holds good even when the number of processors in the
system are 0.

Case Ti ∈ Active: The weight of task is given by wi =
ei
pi

, let
the sum of all the tasks be U . Since in Basic ERFair schedul-
ing a processor is never left ideal, if there are m processors the
rate of execution for the task is given by wi.

m
U . Thus the rate

of overallocation is wi.
m
U −wi. For each unit of overallocation,

the overallocation in terms of time is 1
wi

. Thus the rate of time
overallocation is m

U −1 which can be re-written as 1−w
w .

3

Thus the slack generation is given by equation 9.

Theorem 2. EPPS is ERFair.

PROOF. It may be noted that EPPS as described in Algorithm 1
the slack of the system is never allowed to go below zero in
event of processor shutdown.

Since the slack is the amount of time a task may be sus-
pended from execution without violating ERFairness, there is
no violations during the time of processor shutdown. In the
remaining timeslots there are at least dUe processors in the sys-
tem, which satisfies the ERFair schedulability criteria.

Thus the system is ERFair in all timeslots.

Theorem 3. The time complexity of a single call to NextShut-
downPoint() is O(n), where n is the number of tasks in the sys-
tem.

PROOF. In light of the description in Algorithm 2, we can con-
clude that.

1. Step 8 of the algorithm can be implemented in O(lg(n))
time by using a heap implementation.

2. Step 9 will require O(n) time to find the minimum slack
task among both Active and Inactive task lists.

3. Rest of the steps can be completed in O(1) time, as they
are merely mathematical computations, based on well de-
fined formulae.

Thus the complexity of single call to NextShutdownPoint()
is O(n).

Theorem 4. In worst case, a constant number of calls are made
to update slacks per lifetime of a task instance in the system.

PROOF. In light of the description in Algorithm 1, we can con-
clude that.

1. Task slacks are updated when either a new task arrives
or a task finishes its execution or a shutdown point is
reached.

2. For any task instance Ti, this means that once the update
of slacks in system is done on its arrival and once when
it finishes.

3. A processor shutdown point is computed only when ei-
ther a task arrives or leaves the system. Thus for any task
Ti there can be in worst case 2 calls to compute tshutdown,
which implies there can be only 2 processor shutdown
events.

Thus in total there can be at most 4 calls to update system slack
per task instance lifetime.

Theorem 5. The amortized scheduling complexity C per time-
slot of the EPPS algorithm is:

C =

{
O(m · lg(n)) ; E ≥ n

lg(n)
O(nm

E) ; otherwise.
(10)

where, n denotes the number of tasks at any given time, m the
number of processors and E the average length of time for
which a task / application executes on the system.

PROOF. Based on description provided in Algorithm 1, we can
say that:

1. For each time slot, steps 3 and 4 take O(mlg(n)) time,
due to m removals and insertions in Active heap.

2. The remaining time requirements are dominated by call
to NextShutdownPoint() and updating system slacks for
the task.

3. As per Theorem 4 the for a single processor lifetime the
number of calls to update slack and NextShutdownPoint()
are constant (say ci for task Ti). Thus for n tasks the total
number of such calls is ∑

n
i=1 ci = O(n).

4. As per Theorem 3 the complexity of each such call is
O(n). Thus for the lifetime of n tasks the total complex-
ity of updating slacks and calling NextShutdownPoint()
becomes O

(
n2
)
.

5. The minimum time required to complete n tasks is sumn
i=1ei
m .

Let the average execution time requirement of tasks is E.
Then the minimum time required to complete the n tasks
becomes nE

m .
6. Thus maximum time taken by update slacks and NextShut-

downPoint() per time-slot is given as O
(

m×n2

E

)
.

7. When E ≥ n
lg(n) the complexity per timeslot

becomes O(mlg(n)).

Note that the complexity derived in Theorem 5 is not a tight
upper-bound, since it doesn’t take into account the processor
shutdown, which will further increase the expected lifetime of
a task, thereby reducing the complexity of the scheduler per
timeslot.

5. Results

Simulation based experiments were conducted to compare
the efficacy of the proposed scheduler with ESPS [5] and Basic-
ERFair scheduler. To adapt these schedulers to the multiproces-
sor environment some modifications were made, as to when the
processors are shutdown.

ESPS: This scheduler is primarily used for uniprocessor
shutdown. The multiprocessor version used in the experiments
shuts down all the processors of the system at a time. Rest of
the details of the algorithm were kept same as described in [5].

Basic-ERFair: Basic ERFair algorithm simply takes the m
most urgent task and executes them on the available processors.
It does not encompass the possibility of processor shutdown.
In the experiments done, processors were shutdown when there
were no active tasks in the system and the expected time for
arrival of the next task instance is at least Tbreakpoint timeslots
away.

5.1. Datasets
The dataset used in the simulations consisted of randomly

generated hypothetical task sets. The weights of the tasks were
generated using the randfixedsum method as described in [21],
while the period of the tasks were taken from normal distribu-
tions with σ = µ/5. Unless stated otherwise, in the following

4

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 2 4 6 8 10 12 14 16 18 20

T
ot

al
 p

ro
ce

ss
or

 s
hu

td
ow

n
tim

e

Number of Processors (m)

Shutdown Time Vs #Processors

EPPS
ESPS

Basic-ERFair

Figure 1: #Tasks(N)=30, System Load (L) = 75%

sections, the periods were taken from a normal distribution with
µ = 100 and σ = 20. Task sets were generated for number of
tasks ranging from 10 to 100 and number of processors varying
from 2 to 20. The values system load considered for simulation
were 55%, 65%, 75%, 85% and 90%.

5.2. Simulations

In the simulations the value of Tbreakpoint is taken to be 3ms
(unless stated otherwise), based on the power model of Trans-
meta Cruseo Processor with 70nm technology. This section ex-
plores the performance of EPPS algorithm in comparison to
ESPS and Basic−ERFair algorithm, while varying system pa-
rameters like number of processors (m), system load (L), aver-
age task period (P) and Tbreakpoint . All the results in this section
are averaged over 100 runs of the scheduler for 100000 time
slots of schedule length.

5.2.1. Effect of Processors
Figure 1 shows the variation in the shutdown lengths achieved

by candidate algorithms, when the number of processors are
changed in the system, keeping the other parameters constant.From
the plot it can be seen that the for the range considered, the
EPPS algorithm shows a linear increase in the total shutdown
time as the number of processors are increased. However the
ESPS and Basic−ERFair do not scale to the increase in pro-
cessors. This observation can be reasoned as, since the num-
ber of tasks and system load are fixed for the variation in the
number of processors, as the number of processors increase,
the average task weight increases. Also since the average pe-
riod of a task in the experiment is 100, it can be said that with
increase in processors, the execution requirements of a single
task increase. As the weight of some tasks approach 1, all the
processors can not be shutdown at the same time (some proces-
sors need to serve tasks with high weight). Hence in such cases
the time instances when all the processors are free and there is
no task in the list, become more scarce. This results in poor

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 10 20 30 40 50 60 70 80 90 100

T
ot

al
 p

ro
ce

ss
or

 s
hu

td
ow

n
tim

e

Number of Tasks (n)

Shutdown Time Vs #Tasks

EPPS
ESPS

Basic-ERFair

Figure 2: #Processors(m)=16, System Load(L)=75%

performance of Basic−ERFair and ESPS algorithm for higher
number of processors.

5.2.2. Effect of Tasks
Figure 2 shows the effect of varying number of tasks in sys-

tem on shutdown time. As reasoned in previous section, the
performance of Basic−ERFair and ESPS algorithm is better
when the average task weight in the system is low. In this ex-
periment, the number of processors (m), Average task period
(P) and the system load (L) are kept constant. This means
as the number of tasks increase, the average task weight (and
hence the average execution requirement) will decrease. Hence
as the number of tasks is increased the ESPS algorithm starts
to approach the performance of EPPS algorithm (as evident
from Figure 2). The performance of Basic−ERFair scheduler
does not increase much because another effect of increase in
the number of tasks is that, the system queue does not become
empty very often which counteracts on the effect on decrease
in task weights, this results in lower increase in performance of
Basic−ERFair scheduler than compared to ESPS.

5.2.3. Effect of Period
Figure 3 shows the effect of increasing the average task pe-

riod, on the shutdown time achieved by ESPS and EPPS al-
gorithms (the shutdown time for Basic−ERFair scheduler was
very low as compared to these two schedulers and thus has been
omitted for comparison). In is evident from the plots in Figure 3
that as the average period of tasks increase, the performance of
ESPS approaches that of EPPS algorithm. For EPPS algorithm
the shutdown length initially increases on increasing the task
period and then remains almost constant. The improvement in
the results for shutdown interval can be attributed to the fact
that, in these experiments the value of Tbreakpoint is kept constant
at 3. As the period of tasks increase, the feasible time interval
for shutting down the processors of the system also increases.
Hence for high values of task periods, most of the processor

5

System Load (L) P = 50 P = 100 P = 200
ESPS EPPS ESPS EPPS ESPS EPPS

55 477971.07 670898.98 587655.18 655787.55 608572.76 647752.82
65 265660.03 511016.92 349571.66 495566.49 411371.81 487732.69
75 109954.15 351143.4 204502.468 335550.933 261601.3 327652.18
85 23854.94 191215.64 67530.63 175838.16 113004.28 167621.43
90 12384.68 111946.94 15379.7 95567.76 41036.55 87914.15

Table 1: Shutdown time in timeslots(m = 16, N=30)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 50 100 150 200 250 300 350 400 450 500

T
ot

al
 p

ro
ce

ss
or

 s
hu

td
ow

n
tim

e

Average Task Period

Shutdown Time Vs Task Period

EPPS
ESPS

Figure 3: #Processors(m)=16, #Tasks(N)=30, System Load (L)=75 %

shutdown points are valid. This results in the increase of shut-
down intervals for ESPS algorithm as it gradually approaches
the performance of EPPS algorithm.

5.2.4. Effect of System Load
Table 1 shows the shut down time for 100000 time slots

of schedule on a system with 16 processors and 30 tasks. As
expected the shutdown time decreases as the system load is in-
creased. Also as depicted in the previous section, as the average
period of the tasks is increased, the total shutdown time also in-
creases for both the algorithms. To compare the performance of
ESPS and EPPS algorithm we define:

K =
Shutdown length for EPPS
Shutdown length for ESPS

(11)

Figure 4 shows the variation of K for task sets with different pe-
riods, as the system load is varied. It can be seen that although
as per table 1 the shut down length for both the algorithm de-
crease as system load increases, the decrease in ESPS algo-
rithm is more prominent, since the value of K increases with
increase in system load. This observation can be reasoned on
the grounds that, as the system load increases, since the number
of tasks are constant, the average task weight increases. As al-
ready depicted in previous sections, an increase in task weight
is detrimental to performance of ESPS algorithm, whereas its
effect on EPPS is not that profound.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 55 60 65 70 75 80 85 90

K

System Load

K Vs System Load

Pavg=50
Pavg=100
Pavg=200

Figure 4: #Processors (m) = 16, #Tasks (N) = 30

5.2.5. Effect of Tbreakpoint

Figure 5 shows the variation in the shutdown time achieved
by ESPS and EPPS algorithms for a system load of 75% with
16 processors and 30 tasks in the systems with an average pe-
riod of 100. Since ESPS algorithm tries to shutdown all the pro-
cessors at the same time, the shutdown intervals for each indi-
vidual processor shutdown is very low as compared to the EPPS
algorithm (which shuts down processors greedily). Thus as the
value of Tbreakpoint is increased, ESPS algorithm fails to find
proper shutdown points owing to constraint of shutting down
all the processors at the same time. While EPPS algorithm also
shows a slight decrease in the average shutdown time, its neg-
ligible as compared to performance degradation of ESPS algo-
rithm, which shows an almost linear decrease in the achieved
shutdown time as the value of Tbreakpoint increases.

6. Conclusion

To the best of author’s knowledge EPPS is the first algo-
rithm for processors shut down in ERFair system with multiple
processors. The proposed scheduler performs better than naive
adaptations of single processor algorithms like ESPS, while not
compromising on the algorithm complexity for scheduling. The
EPPS algorithm exploits available system slack to shut down
processors greedily while locally maximizing the shutdown in-
tervals. The simulation results for the algorithm show a good

6

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 p

ro
ce

ss
or

 s
hu

td
ow

n
tim

e

Tbreakpoint

Shutdown Time Vs Tbreakpoint

EPPS
ESPS

Figure 5: #Processors (m) = 16, #Tasks (N)= 30, System Load (L)=75 %

performance on shutting down processors in real time ERFair
systems.

References

[1] W. Yuan and K. Nahrstedt, “Energy-efficient cpu schedul-
ing for multimedia applications,” ACM Trans. Comput. Syst.,
vol. 24, no. 3, pp. 292–331, Aug. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1151690.1151693

[2] H. Aydin, R. Melhem, and et al., “Determining optimal processor speeds
for periodic real-time tasks with different power characteristics,” in IN
PROCEEDINGS OF EUROMICRO CONFERENCE ON REAL-TIME
SYSTEMS, 2001, pp. 225–232.

[3] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-time
embedded systems on variable speed processors,” in Proceedings of the
2000 IEEE/ACM international conference on Computer-aided design,
ser. ICCAD ’00. Piscataway, NJ, USA: IEEE Press, 2000, pp. 365–368.
[Online]. Available: http://dl.acm.org/citation.cfm?id=602902.602984

[4] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” in Proceedings of the
41st annual Design Automation Conference, ser. DAC ’04. New
York, NY, USA: ACM, 2004, pp. 868–873. [Online]. Available:
http://doi.acm.org/10.1145/996566.996798

[5] A. Sarkar, S. Swaroop, S. Ghose, and P. Chakrabarti, “Erfair scheduler
with processor shutdown,” in High Performance Computing (HiPC), 2009
International Conference on, dec. 2009, pp. 4 –12.

[6] J. Augustine, S. Irani, and C. Swamy, “Optimal power-down strategies,”
in Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, oct. 2004, pp. 530 – 539.

[7] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” in 12th
Euromicro Conference on Real-Time Systems, Jun 2000, pp. 35–43.

[8] S. Ramabhadran and J. Pasquale, “Stratified round robin: A low complex-
ity packet scheduler with bandwidth fairness and bounded delay,” in ACM
SIGCOMM, 2003, pp. 239–249.

[9] A.-W. H. Stoica, Ion, K. Jeffay, S. Baruah, J. Gehrke, and C. G. Plaxton,
“A proportional share resource allocation algorithm for real-time, time-
shared systems,” in 17th IEEE Real-Time Systems Symposium, December
1996. [Online]. Available: citeseer.ist.psu.edu/stoica96proportional.html

[10] J. Regehr, M. Jones, and J. Stankovic, “Operating system support for mul-
timedia: The programming model matters, Tech. Rep. MSR-TR-2000-89,
Sep 2000.

[11] M. Chrobak and C. Drr, “Polynomial time algorithms for minimum en-
ergy scheduling,” 908.

[12] M. Bender, R. Clifford, and K. Tsichlas, “Scheduling algorithms for
procrastinators,” Journal of Scheduling, vol. 11, pp. 95–104, 2008.
[Online]. Available: http://dx.doi.org/10.1007/s10951-007-0038-4

[13] P. Baptiste, M. Chrobak, and C. Dürr, “Polynomial time algorithms for
minimum energy scheduling,” CoRR, vol. abs/0908.3505, 2009.

[14] J. Chen and T. Kuo, “Procrastination for leakage-aware rate-monotonic
scheduling on a dynamic voltage scaling processor,” in ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), 2006, pp. 153–162.

[15] ——, “Procrastination determination for periodic real-time tasks in
leakage-aware dynamic voltage scaling systems,” in ICCAD ’07: 2007
IEEE/ACM international conference on Computer-aided design. Piscat-
away, NJ, USA: IEEE Press, 2007, pp. 289–294.

[16] R. Jejurikar and R. Gupta, “Procrastination scheduling in fixed priority
real-time systems,” ACM SIGPLAN Notices, vol. 39, no. 7, pp. 57–66,
2004.

[17] ——, “Dynamic slack reclamation with procrastination scheduling in
real-time embedded systems,” in DAC ’05: 42nd annual conference on
Design automation. New York, NY, USA: ACM, 2005, pp. 111–116.

[18] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” in DAC ’04: 41st annual con-
ference on Design automation. New York, NY, USA: ACM, 2004, pp.
275–280.

[19] Z. Lu, Y. Zhang, M. Stan, J. Lach, and K. Skadron, “Procrastinating volt-
age scheduling with discrete frequency sets,” in DATE ’06: conference
on Design, automation and test in Europe. 3001 Leuven, Belgium, Bel-
gium: European Design and Automation Association, 2006, pp. 456–461.

[20] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algo-
rithms with pace.”

[21] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for synthesis of
mutliprocessor tasksets,” WATERS, pp. 6–11, 2010.

7

