Transactions on Computers

Partition Oriented Affinity-Aware ERfair Scheduler

Journal:

Transactions on Computers

Manuscript ID:

TC-2012-07-0498

Manuscript Type:

Brief Contribution

Keywords:

D.4.1.e Scheduling < D.4.1 Process Management < D.4 Operating Systems
< D Software/Software Engineering, D.4.1.c
Multiprocessing/multiprogramming/multitasking < D.4.1 Process
Management < D.4 Operating Systems < D Software/Software
Engineering, D.4.7.e Real-time systems and embedded systems < D.4.7
Organization and Design < D.4 Operating Systems < D Software/Software
Engineering

ARONE"

Page 1 of 7

©CoO~NOUTA,WNPE

Transactions on Computers

Partition Oriented Affinity-Aware ERfair
Scheduler

Anshuman Tripathi, Arnab Sarkar, and P. P. Chakrabarti Sr. Member, IEEE

Abstract—Limiting overall scheduling overheads (primarily combining
task selection overheads and task migration overheads) is of utmost
importance in today’s resource constrained multiprocessor real-time
systems because it provides premium spare processor bandwidth that
may be useful in various situations. This paper presents Partition Ori-
ented Affinity-Aware ERfair Scheduler (POAES), a hard real-time ER-
fair multiprocessor scheduler that incurs significantly lower overheads
compared to all the known ERfair schedulers under most workload
scenarios. POAES employs a two level scheduling technique in which
the outer level consists of a load balancer with an online partitioning /
merging mechanism that maintains the work load mapped onto disjoint
groups of processors. At the inner level, within each task-processor
group a task-to-processor affinity aware ERfair scheduler is used to
execute tasks in ERfair manner while simultaneously attempting to
minimize inter-processor task migrations. Experimental results show
that POAES incurs much lower overall scheduling related overheads
as compared to the current migration aware ERfair schedulers in most
scenarios.

Index Terms—Proportional fairness, ERfair scheduling, Real time
scheduling, Task migration, Task partitioning, Low overhead

1 INTRODUCTION
Guaranteeing responsiveness to all time-critical evensoft-

required to be completed within a period gftime units from

the start of the task, ERfair schedulers need to manage their
task allocation and preemption in such a way that not only
are all task deadlines met, but also each task is executed at
a consistent rate proportional to its weight, = %. ERfair
algorithms generally consider discrete time lines anddeivi
the tasks into equal sized subtasks such that a single kubtas
may be executed within the time period of a slot. ERfairness
is formally defined in terms of a parameter calledy [4].

At any given timet, lag(Ti,t) denotes the difference between
the amount of time that has been actually allocated to a task
T; and the amount of time that should have been ideally
allocated to it in the intervdD, t) (denoted byallocated T, t)).
Thus, lag(T;,t) = (&/pi) *t — allocatedT;,t). A scheduling
algorithm is ERfair iff ¥(t,T;), 0 < |lag(Ti,t)| < 1. Each
subtaskst; of a taskT; has apseudo-deadlinéme pd; before
which it must completesj. pd; is defined as:

j* pi
o 1

Thus, ERfair’s salient features include its ability to maltt
hard real-time deadlines, allowing full CPU resource zaili

pd; = [

)

ware intensive multi-processor resource constrainedremvi tion and also guaranteeing a specified execution rate for all
ments has been the ever cherished goal of the real-timensyst@Pplications. However, along with all these desirableufes,
community for architectures ranging from big multi-cluste@n efficient practical scheduler must also keep scheduling
servers to multi-core high-performance embedded systeR¥grheads like itown task selection timandinter-processor
like hand-held devices. Additionally, because many of ¢hefdSk migrationso a minimum. Limiting these overheads is of

systems run a mix of different independent applicationshsu@ramount importance especially in resource constraieald r
as real-time audio processing, streaming video, interactiime systems because it provides premium spare processor

gaming, web browsing, telnet, etc., often their schedulirjfija

ndwidth that may be useful in various situations like:

requirements not only demand meeting deadlines, but CiS@Mpleting tasks during transient overloads, implementin
reservation to ensure a minimum Quality of Service (QoS)OWer management strategies like processor slowdown and
These demands are generally of the famserve X units of Processor shutdown, fault tolerance, executing noniiess-

time for application A out of every Y time units

and aperiodic tasks on a best effort basis, etc. Simulagged

Attempts to satisfy such conflicting demands led to tHexperiments showed us that the global Basic-ERfair scleedul

development of the global ERfair scheduling methodology [15€Verely lacks in this front and may consume almost 30% of
ERfair scheduling is a work-conserving versiaf the propor- the allocated time for task executions even on a moderately

tional fair scheduling methodologyF [2], PD [3], PD? [4]).
Given a set of periodic task8T1, T2, T3, ..., Tn}, with each
task T; having a computation requirement ef time units,

Authors are with the Computer Science & Engineering DepantmIndian
Institute of Technology, Kharagpur, WB 721 302, India. Hm@anshu.g546,
arnabg @gmail.com, ppchak@cse.iitkgp.ernet.in

1. A work conserving scheduler never allows a processorléovithen there
are ready tasks available to run

large sized 16 processor system (Refer table 1).
Traditionally, a completely partitioned approach have-gen
erally been adopted to avoid migrations. Here, once a task
is allocated a processor, it is exclusively executed onlit [5
[6]. Partitioning also has the added advantage of redudiag t
average scheduling complexity at each time slot becaudeeunl
global schedulers, separate schedulers that run indepiyde
in parallel may be employed for each partition. In this respe

©CoO~NOUTA,WNPE

Transactions on Computers Page 2 of 7

2

global schedulers generally have to incur the extra overlbéa while Basic-ERfair, Sticky-ERfair and POES may consume
communicating to all processors the tasks they should ¢éxecupto 31%, 14% and 6% of a time-slot as scheduling related
at each time slot. overheads, POAES incurs only about 1%.

One of the major problems faced by partitioning is that no We first describe the working of the POAES algorithm
more than half the system capacity may be utilized in ordatong with illustrative examples in the next section. Sati3
to ensure that all deadlines are met in the worst case [plesents the detailed experimental analysis results. Béeisi
However, this worst-case condition may be relaxed either laypd comparatively analyze the migration overheads of the di
bounding the maximum weight of any individual task undeferent algorithms under various scenarios in section henT
a certain value [8] or by allowing individual tasks to beesults for the task selection overheads of these algosithm
split across multiple processors [9]. Levin et. al. in [1@da have been discussed in section 3.2. Finally, in section &3 w
Kimbrel et. al. in [11] discuss migration aware algorithmpresent a comparative analysis the overall schedulingectla
which provides a trade-off between the amount of deviatimverheads. We conclude in section 4.
from perfect scheduling fairness and the number of mignatio

Lately Sticky-ERfair[12] and Partition Oriented ERfair 2 THE POAES ALGORITHM
Scheduler (PO.ESDL?’]’ two opuma}lly fair (ERfair) scheduhng POAES actually works at two levels. The outer level consists
approaches with reduced migrations and / or context-swchof a load balancer with an online partitioning / merging mech
have been developed. Sticky-ERfair follows an overall glob

scheduling policy. The algorithm controls migrations byjse anism (similar to the POES algorithm [13]) that retains the

ing track of the processor where a task last executed a%ltlmal schedulability of a fully global scheduler by mergi

. ; LR rocessor groups as resources become critical while using
by using the system’s slack capacity in underloaded ERfé‘)'rrtitioning for fast scheduling at other times. The phiati

systems. Employing these techniques, it attempts to ee{GCBE'ective is to remain only just as global at any given instan

on a given processor its most recently executed task such tﬁfa] time as is necessary to maintain ERfair schedulability.
this execution do not lead to a future ERfairness violatiog\. the inner level, for any processdf within a particular '
) 1

On_ thg other hand, POES fOIIOW§ a se_mi-_partitioned aloloroat(f';lsk-processor group, a task-to-processor affinity awRfaik
switching towards higher global-ism with increasing loauia scheduler (similar to Sticky-ERfair [12]) allocates the sho

vice-versa. Both these techniques have been shown to achiev ;
o S . .~ recently executed ready task that previously executed/on
handsome gains in terms of migration overheads with Stlckﬁ;

ST . . o hus restricting migrations and preemptions) in h a w
ERfair being more effective at high workload conditions an us 'est ct g mig ations and preemptio S). such a way
. . at this allocation does not cause any ERfairness vialatio
POES being more effective under lower workloads. . .)
o in_the system at any time during the schedule length. We
However, measurement and estimation of the actual gains
. S .~ now describe the online load balancing mechanism with an
in terms of the reduction in overall overheads (combinin

scheduling complexity and migration related overheads) fcﬁjustrative example.
9 piexity 9 The Load Balancer (Outer Level): Given a set ofn

both these algorlthms h‘.”“’e been Iacklng. This paper doeesriodic tasks{T1, Ty, ..., T} to be scheduled in a system of
a comprehensive simulation based experimental analysis an
. .] m processorg Vi, Vs, ...,Vin}, the task and processor sets are
comparison of the total scheduling related overheads oicBas__ . . 4 0
: .) . artitioned intok disjoint subsets or groups1d,t2,...,tk}
ERfair, Sticky-ERfair and the POES algorithms. The analysand{ 1 p2 k} respectively) at any instant during the
considers different workload conditions, varying numbér o P Ps o P b y y 9

. . theduIe length. The tasks in grotipare allowed to execute
processors and different values for the overhead of a sin €1 mi N .
o : . migrate only within its corresponding processor group
migration (this depends on the system architecture), et. W, . .

.) . . ' pi If {Ti,, Ty, -, Thi } denote the tasks in group and
observed that although Sticky-ERfair achieves high gams Ve Vo 1 V2- dlﬂ\ te th : 5 th
terms of migration overheads even under heavy workloads '’ 9'2"".’."'\piJ} enote the processors in gropp then
the overall gains obtained may be quite moderate due to h@%Ch a partition is feasible, only if,
task selection times. On the other hand, with a lower average ‘ il _
task selection complexity, POES provides very high redunsti Viea ZWtrij <|pi| (2)
in overall overheads under low to moderately heavy system 1=
load scenarios when it is able to partition the task set into At lower workloads, a complete partition is usually always
disjoint processor groups. However, one of the drawbacks fefsible and the number of groufsis equal to the number
this algorithm is that it quickly becomes as bad as BasicalitRf of processoran. If a new task arrives which cannot be ac-
when the system becomes global under high workloads. commodated into any task group, two or more task-processor

Using the insights gained through these observations, tigioups aremergedso that the newly formed group will be
paper also presents thrartition-Oriented Affinity-Aware ER- able to feasibly accommodate the new task. If a task departs
fair Scheduler (POAES)Yhat aims to obtain high reductionsfrom any task-group and the corresponding processor-group
in total overall overheads under all workload conditions bgontains more than one processorsglit of this group is
effectively leveraging and combining the benefits of both thattempted such that the feasibility condition in equatiors 2
global (Sticky-ERfair) and semi-partitioned (POES) salied not violated.
ing approaches mentioned above. As an example of theExample Consider (=) 5 tasks, Ty, T, T3, T4 and Ts
achieved gains, the right-most column for 16 processors (imaving weightswt; = 9/10, wt = 4/5, wiz =5/9, wty = 1/2
table 1 shows that on a system with time-slot size of 1 msemd wts = 1/5) to be scheduled onm(=) 3 processord/,

Page 3 of 7 Transactions on Computers

©CoO~NOUTA,WNPE

V, and V3. Let the arrival times of these tasks be 0, 0, (gt time (say)t = 350. We again obtain a fully partitioned
10, 20. Therefore, at timé = 0, the 3 ready task3;, T, system as shown in figure 4.

and T3 get partitioned into the 3 available processuis V»

and V3 respectively. Each processor forms a separate group.
Processoivs having highest remaining capacity /@) forms
grouppl. Similarly, processors, andV; form groupsp2 and

p3 respectively. Figure 1 shows this situation.

11 ={Ts 12={T 13={T1

Fig. 4. Timet =350 A fully partitioned system is obtained
again.

The Affinity-Aware Scheduler (Inner Level): After the
load balancing step at the outer level, a set of task-process
Fig. 1. Time t = 0; each processor individually forms a groups is obtained. Each task-processor group (consisfing
separate group 1 or more processors) acts as a separate global scheduling
' system on its own and employs a separate Affinity aware

A new taskT,; arrives att = 10. TaskT; having weight ERfair scheduler similar to Sticky-ERfair [12] at the inner
wt; = 1/2 cannot be accommodated into any existing groufgVvel that attempts to minimize migrations and preemptimns
Hence, grouppl andpz are merged to accommoddie After (|) Keeping track of the processor where a task last executed
merging, we get two groups: pl consisting of processorsand (1) Utilizing task over-allocations in under-loade&fair
V, and V3 with tasksT,, T3 and T4 and ii. p2 consisting of Systems.. Given a task-processor group containihgroces-
processol; and taskT; allocated to it. Figure 2 depicts this.Sors (say), the Affinity-Aware ERfair scheduler selects the

most urgentm’ tasks (thosen' tasks whose pseudo-deadlines

11 ={T2, T, Ta} 2 ={T} are earliest) similar to the Basic-ERfair algorithm. Hoeev

for any processor say; within the group, the affinity aware
‘ | ‘ | ERfair scheduler may postpone the execution of one of these
selected tasks and replace it by the most recently executed
ready task that previously executed ®h (thus restricting
migrations and preemptions) in such a way that this allocati
does not cause any ERfairness violations in the system at
any time during the schedule length. To ensure ERfairness,
the algorithm defines a new parameter calldebdline of
postponemenfor each sub-task of a task. The deadline of
Fig. 2. Time t = 10. Two task-processor groups get postponement of th¢" subtask of a tasK; denotes the time
merged. slot upto which the execution of thg" subtask ofT, may

be safely postponed (suspended from ready state) withgut an

Task Ts arrives at timet = 20. Now, all the processors arepossibility of the system violating ERfairness. It is givey:
merged into a single group to accommodajeThis situation

o
is depicted in figure 3. @ = pdj— [é]2 3)
1 ={Ty, T2, T3, Ty, Ts} Affinity-Aware ERfair guarantees ERfairness by not allogvin

a task to be postponed when there exists ready tasks whose
deadlines of postponement have been crossed.

Example Consider 5 tasksTi, To, T3, T4 and Ts to be
scheduled in a group of 3 processdrs, Vo and V3. Let
the execution requirements and periods of these tasks be as
follows: e; = 36, e = 40, e3 = 50, &4 = 64, es = 72 and
periods p1 = p2 = p3 = 120, ps = ps = 80. Hence, thent;
(= &/pi) values of these tasks aret; = 3/10, wtp = 1/3,
wtz = 5/12, wiy = 4/5 andwts = 9/10. Att =0, the pseudo-
Fig. 3. Time t = 20. The system becomes completely deadlines (refer equation 1) and the deadlines of postpenem
global. (refer equation 3) of the first sub-task of these tasks will be

pdi1 =3, pchy =2, pd1 =2, pda1 =1, pdsy = 1 and@yy = —2,
Now, let the taskly complete execution and leave the systemgp1 = —3, @31 = —2, (u1 = —2, @51 = —2. In the first time-slot,

©CoO~NOUTA,WNPE

Transactions on Computers Page 4 of 7

4

the tasksTs, T4 and T3 will be selected for execution becauselots of the number of migrations per time slot (on the y-pxis

these tasks are most urgent and all of them are beyond theith respect to variation in the total system load percemtag

deadlines of postponement. (L) (system load is computed as the fraction of sum of the
Now, let us consider another arbitrary time instant $ay, weights of all the tasks to the number of processors in the

225. Let, the tasks 1 through 5 have executed last on prasessystem), average individual weighty() of tasks and number

V1, V1, V1, Vo and V3 respectively. Let thep values for the of processorsnf) respectively (on the x-axis).

next subtasks of these tasks respectively be 222, 224, 226,

226, 227 and theipd values be 230, 230, 233, 233 and 236.

Our Affinity-Aware algorithm will first choose the three most 8

Migrations Vs System Load

urgent tasks, that i§1, T, and Tz in the same manner as , PE?E(% e
Basic-ERfair chooses. After thi$; is alloted processadr;. As ERFalr a4
t = @p = 225, T, must be executed in the current time slot to 5 © .'
avoid possible ERfairness violatiom, will incur a migration. g 5
However, execution off3; may be postponed because the 3]
values of all the remaining ready tasks are greater than 225§ ¢ 4
T4 is executed oV, in place ofTs, thus saving one migration g3 7
with respect to ERfair in this time slot. Finally; is allotted s, s
processows. =

In the next section, we experimentally evaluate the perfor- o
mance of the POAES algorithm and compare it against the = 0 p———t——tubo i e —— 80 —
Basic-ERfair [1], Sticky-ERfair [12] and POES [13] algo- System Load (L)
rithms. The evaluation methodology is based on simulation
experiments using randomly generated task sets. I(:ig.) 5. OPSrocessors (m) =10, Avg. Individual Task Weight

pw) = 0.

3 EXPERIMENTS AND RESULTS
The simulation based experiments conducted to compare the

performance of POAES against Basic-ERfair, Sticky-ERfair Migrations Vs System Load

and POES algorithms measure both the number of migrations 8 POAES o,
per time slot and total execution times of the algorithms on 7 Slicky e
different types of generated data sets. All the resultsegmtes! 6 '

herein have been averaged over 100 simulations each havi
a schedule length of 100000 time slots. The ultimate objecti
of all these experiments is to obtain for each of the mentone
algorithms a measure of their overall scheduling overheads R
combining their average task selection and task migrationg g
times at each time slot and hence be able to arrive at a -
reasonably good comparative estimate of how fast would 1

s per timqaot
(5]
B

rafn

these algorithms execute in practice on actual workloads. ¢~ e N N N e
Throughout the simulations, a separate check was kept on the 90 92 94 9% 98 100
lag of every task in the system to verify ERfairness of the System Load (1)

algorithm;no violations were detected Fig. 6. [90%— 100% System Load (Processors (m) = 10,
The experimental framework consists of randomly 9€kvg. Individual Task Weight (hw) = 0.3)

erated task sets with hypothetical task weighes') and
periods (). The task weights have been generated using aFigure 5 shows the plot of the nhumber of migrations per

uniform d|§trlbutlon W'.th'n the range_{MN_—_O.OS,MN+O.05] time slot as the average system load is varied between 10% and
where Py, is the required average individual task weight

0 . o .
Periods of the tasks are taken from a normal distributiotn wit/L 00% on a.10 processor system with mean |nd|V|dgaI.we|ght
f tasks beingu, = 0.3. It may be observed from this figure

\L/la:ri ;1830 C;Vaer:go e: ir:?gi(\)/?dug?ttZsief;erieﬁgsz\rg?g (Saytsc: teanés stngluat all the algorithms exhibit a similar nature. Figure Giath
9 gn's, g % depicts the same but a magnified view of the plots in figure 5

workloads and different number of processors were consitiey, o0 oo 9004 10 100% load, clearly shows that POAES
in the experimental analysis.

incurs negligible migrations until the system load reaches
. . as high as~ 98% and although migrations increase rapidly
3.1 Migration Measurement Results after this point, POAES shows better performance as system
The number of inter-processor task migrations suffered logpacity gets more and more crunch. It may however be noted
POAES and the three other ERfair algorithms mentionehat at full system load (100%), with no slack available skt
above have been measured by running them on 100 differemecution postponement and the system becoming completely
instances of each data set type. Figures 5, 7 and 8 depictsdlobal, performance of all algorithms become almost eguall

Page 5 of 7 Transactions on Computers

©CoO~NOUTA,WNPE

poor and the number of migrations become proportional to tROES and POAES exhibit natures similar to Basic-ERfair and
size (number of processors) of the system for all algorithmsSticky-ERfair respectively. One may notice here that $tick
ERfair briefly outperforms POAES in the region beyond

Migrations Vs Avg, Individual Task Weights mean task weightsz 0.85. This happens because with such

3 POAES —— high individual task weights, multiple partitions if formén
- ity o POAES, may often consist of loads more than 95% in each
25 .y ERFalr e partition. As depicted in figure 6, as migrations of Sticky-

3 s ERfair increase very rapidly in the 95%100% load range,
£ . it is possible for the POAES algorithm to perform poorer due
g 5 B of “higher than average” system load partitions.
|
i=) 1 L Migrations Vs #Processors
= ~ 4
,,,,,,,,,,,,,,,,,,,,,,,, 'POAES —»—
0.5 g @rarse LR POES ---&---
s 35 ERFar o
O — e - ~ _ — 3
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 B
Avg. Individual Task Weights (i) -
E 2.5
Fig. 7. Processors (m) = 10, System Load (L) = 95% g ?
% 15
Figure 7 shows the plots of migrations per time slot when=
the average individual weight of tasks is varied between 0 os
to 0.9. A 95% loaded 10-processor system was considered.)
A prominent feature in this graph is that while the partition °5 > YE " s 10 12 14 16
oriented schedulers POES and POAES show distinct maximas No. of Processors (m)

at around 6 and 08 on the x-axis respectively, the global o]

schedulers show a steady gradient with a gradual fall aehigif19- 8- AVG. Lndlwdual Task Weight (uw) = 0.3, System

average task weight values. The occurrence of this maxirn@@d (L) = 95%

may be attributed to the existence of two opposing factors o)

acting concurrently. The first factor is that when the mean Figure 8 plots the variation in the average number of

individual task weight increases with the system load beiﬁalgratlons per time .slot versus the number of processors for

fixed at 95%, the total number of tasks in the system decre&dkaverage task weight of®and system load of 95%. The

contributing to a decrease in the number of migrations. TIpPVious benefit of partitioning is clearly evident in thisagh.

second factor is the reduction in the total number of parii Although all plots show a linear nature, the slope for the

caused by higher mean task weights and this contributes/igrease in the number of migrations per time slot with respe

increased migrations. to the number of processors is much higher for the global
A closer observation at the Sticky-ERfair plot reveals thaqphedulers as compared to their partition oriented copates

the second factor is also feebly at work in its case and {tfd this makes partition oriented schedulers more scalable

causes migrations to slightly increase with increasing tak €formance wise, POAES outperforms all the other three

weights with a distinct dip at very heavy mean task weigifcnedulers.

values. This happens because although Sticky-ERfairvisllo

an overall global methodology, it exhibits micro-level ftion 3.2 Time Measurement Results

orientation in its attempt to maximize the continuous lénglWe have measured the average execution times to estimate

of time for which a task executes on a particular processeaisk selection overheads for the new algorithm POAES and

By employing a POES like partitioning approach at the outaiso the existing algorithms Basic-ERfair, Sticky-ERfaird

level with a Sticky-ERfair like scheduling mechanism at theOES running them on 100 different instances of each data

inner level, POAES combines the benefits of both and is thest type with the schedule length being 100000 time slots.

able to weaken the effect of the second factor in reducing tR&gyure 9 depicts theaverage task selection time per time

total number of partitions upto a much later stage and allow®t with respect to varying number of processors (1 to 16

the maxima for POAES to be obtained at a point much furthprocessors) obtained for data sets having average tasktwveig

beyond the maxima for POES. of 0.5 and system load of 95%. This graph shows that
It may further be observed from this graph that the min general the partition oriented schedulers incur muck les

grations per time slot for all the scheduling algorithmsdtenoverheads in terms of the time taken to select tasks at each

to converge as the mean task weights approach unity. Thime slot as compared to their global counterparts. Thisues d

is due to the fact that on a 95% loaded system of 10 the fact that in partition oriented systems, the schadudif

processors with average individual task weights beyond Oegnch partition occurs concurrently in parallel with the esth

the partitioning algorithms fail to identify feasible piéidins partitions. In comparison, global schedulers have to incur

and the systems become almost completely global. Hentdge extra overhead of communicating to all processors the

©CoO~NOUTA,WNPE

Transactions on Computers Page 6 of 7

6

h Ciotal (115)
#Processors Scheduler Nrmig Csched 18) Coia = 15 | Crig = 100S | Coig = 5005 | Conig = T00S

POAES 0.0086 3.35 3.36 3.44 3.78 4.21

4 POES 0.241 2.53 2.76 4.94 14.58 26.63
Sticky ERFair [0.022 6.04 6.06 6.26 7.14 8.24

ERFair 0.767 4.03 4.79 117 42.38 80.72

POAES 0.022 4.79 4.81 5.01 5.89 6.99

8 POES 0.323 3.7 4.02 6.93 19.85 36.00
Sticky ERFair | 0.410 139 14.26 1795 34.35 54.85
ERFair 1.46 9.83 11.28 24.42 82.82 15582

POAES 0.025 6.23 6.25 6.48 7.48 8.73

12 POES 0.422 4.86 5.28 9.08 25.96 47.06
Sticky ERFair | 0.737 22.86 23.60 3023 5971 96.56
ERFair 2.21 16.62 1883 3872 12712 237.62

POAES 0.028 7.85 7.88 8.13 9.25 10.65

16 POES 0.507 5.61 6.12 10.68 30.96 56.31
Sticky ERFair | 1.02 33.03 34.05 4327 84.23 13543

ERFair 2.837 23.00 25.83 51.37 164.85 3067

TABLE 1

Scheduling costs per time slot (Task weight (pw) = 0.5, Load (L) = 95%)

Task Selection Overhead Vs #Processors The cost of a single migratiorC,ig) depends heavily on
35 PORES ——) the system architecture and realistic values may typiceally
0 Sticky - from lower than fusin closely-coupled multi-core systems to
X/ more than 10Qsin loosely-coupled multi-processor systems.
25 Table 1 summarizes the average total scheduling overhead

results for all the four algorithms evaluated here on data se
_ having average task weight of®0and workload of 95% for
15 §e i different number processors and differ€hfig values. It may
' be noted from the table that POAES appreciably outperforms
all the other three algorithms foCmig values 1Qis 50us
and 10Qus However, in extremely tightly coupled systems
(Cmig = 19 POES performs marginally better than POAES.
0 2 4 6 8 10 12 14 16 Assuming a time slot size af 1ms(which is a typical value
No. of Processors (m) in many of today’s real time systems) on a moderately large
sized (16 processors) loosely coupleChg = 10Qug real-
time multiprocessor system, it may be observed that Basic-
ERFair consumes as much as30% of a time slot while
POAES consumes only about 1%. Thus, POAES is much
ore scalable and gives premium spare processor bandwidth
which may be useful in various scenarios. Examples include,
completion of tasks which misbehave at runtime by taking
mpre time than they were stipulated to take, execution of non

execution times between the global and partitioned algmst trﬁal tlmle;.and ap_er(qudltc ti3k§ onl a bestF effort basis anrig wit
widen drastically. POES with a slightly lower intra-padit € real imé periodic tasks, impiementing power managémen

scheduling complexity (To schedule tasks within each par trategies like processor slowdown and processor shutdown
tion, POES uses Basic-ERfair while POAES uses a Stick wit tolerance, etc.

ERfair like methodology.) incurs the least overhead, al§io 4 concLuUsION

being closely followed by POAES.

20

10

Task Selection Overhead per time slot (us)

Fig. 9. Avg. Individual Task Weight (p) = 0.5, System
Load (L) =95%

tasks they should execute at each time slot. In the POES
POAES algorithms, thenergeand partition operations form
their only fully or partially global parts. It may be noticéiat
with increase in the number of processors, the difference

We have presented a new partition oriented multiprocessor
ERfair scheduling algorithm that attempts to minimize aller
3.3 An Estimation of Overall Scheduling Overheads scheduling overheads and provide premium spare processor
The total scheduling overhead at each time s@t:4) is bandwidth which may be of vital importance especially in
obtained as the sum of the average task selection @xng.) today's resource constrained real-time embedded systems.
and the time spent in task migrations at each time sldle have designed, implemented and evaluated the POAES
(obtained as the product of the average number of migrationigorithm. The simulation results are promising.

er time slot Ninig) and the cost of a single migratio@q)).
?’hus) dge md %9) REFERENCES

[1] J. Anderson and A. Srinivasan, “Early-release fair sthi@g,” in 12th
Ciotal = Cschedt Cmig % Nmig 4) Euromicro Conference on Real-Time Systedus 2000, pp. 35-43.

Page 7 of 7 Transactions on Computers

1

2 [2] S.Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Propmordte progress:

3 A notion of fairness in resource allocatiodgorithmicg vol. 15, no. 6,
pp. 600-625, 1996.

4 [3] S. Baruah, J. Gehrke, and C. Plaxton, “Fast schedulingafodic

5 tasks on multiple resources,” i@th International Parallel Processing

6 SymposiumApr 1995, pp. 280-288.

7 [4] J. Anderson and A. Srinivasan, “Mixed pfair/erfair sdoéng of asyn-
chronous periodic tasksJournal of Computer and System Sciences

8 vol. 68, no. 1, pp. 157-204, Feb 2004.

9 [5] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Araers

10 and S. Baruah, “A categorization of real-time multiprocessor
scheduling problems and algorithms.” [Online]. Available:

11 citeseer.ist.psu.edu/601206.html

12 [6] J. Malkevitch, “Bin packing and machine scheduling.” [De]. Avail-

13 able: http://www.ams.org/samplings/feature-column/fgaackings1

14 [7] B. Andersson and J. Jonsson, “The utilization boundsasfifoned and
pfair static-priority scheduling on multiprocessors aré/80in 15th

15 Euromicro Conference on Real-Time Systedus 2003, pp. 33-40.

16 [8] J. Lopez, M. Garcia, J. Diaz, and D. Garcia, “Worst-caséization

17 bound for edf scheduling on real-time multiprocessor systeimsl2th
Euromicro Conference on Real-Time Systedusm 2000, pp. 25-33.

18 [9] B. Andersson and E. Tovar, “Multiprocessor schedulinighview pre-

19 emptions,” in12th IEEE International Conference on Embedded and

20 Real-Time Computing Systems and Applicati@6, pp. 322-334.

[10] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, -fap: A

21 simple model for understanding optimal multiprocessor schiegliilin

22 22nd Euromicro Conference on Real-Time Systenv¥ashington, DC,

23 USA: IEEE Computer Society, 2010, pp. 3-13.

[11] T. Kimbrel, B. Schieber, and M. Sviridenko, “Minimizing griations

24 in fair multiprocessor scheduling of persistent taskdgurnal of

25 Schedulingvol. 9, no. 4, pp. 365-379, Aug 2006. [Online]. Available:

26 http://dx.doi.org/10.1007/s10951-006-7040-0

27 [12] A. Sarkar, S. Ghose, and P. P. Chakrabarti, “StickgierfA task-
processor affinity aware proportional fair schedul&gal-Time Systems

28 Journal, vol. 47, no. 4, pp. 356-377, 2011.

29 [13] A. Sarkar, A. Shanker, S. Ghose, and P. P. Chakrabartow overhead

30 partition-oriented erfair scheduler for hard real-time eddss systems,”

31 IEEE Embedded Systems Lettersl. 3, no. 1, pp. 5-8, 2011.

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

