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✦

Abstract—Limiting overall scheduling overheads (primarily combining
task selection overheads and task migration overheads) is of utmost
importance in today’s resource constrained multiprocessor real-time
systems because it provides premium spare processor bandwidth that
may be useful in various situations. This paper presents Partition Ori-
ented Affinity-Aware ERfair Scheduler (POAES), a hard real-time ER-
fair multiprocessor scheduler that incurs significantly lower overheads
compared to all the known ERfair schedulers under most workload
scenarios. POAES employs a two level scheduling technique in which
the outer level consists of a load balancer with an online partitioning /
merging mechanism that maintains the work load mapped onto disjoint
groups of processors. At the inner level, within each task-processor
group a task-to-processor affinity aware ERfair scheduler is used to
execute tasks in ERfair manner while simultaneously attempting to
minimize inter-processor task migrations. Experimental results show
that POAES incurs much lower overall scheduling related overheads
as compared to the current migration aware ERfair schedulers in most
scenarios.

Index Terms—Proportional fairness, ERfair scheduling, Real time
scheduling, Task migration, Task partitioning, Low overhead

1 INTRODUCTION

Guaranteeing responsiveness to all time-critical events in soft-
ware intensive multi-processor resource constrained environ-
ments has been the ever cherished goal of the real-time systems
community for architectures ranging from big multi-cluster
servers to multi-core high-performance embedded systems
like hand-held devices. Additionally, because many of these
systems run a mix of different independent applications such
as real-time audio processing, streaming video, interactive
gaming, web browsing, telnet, etc., often their scheduling
requirements not only demand meeting deadlines, but CPU
reservation to ensure a minimum Quality of Service (QoS).
These demands are generally of the formreserve X units of
time for application A out of every Y time units.

Attempts to satisfy such conflicting demands led to the
development of the global ERfair scheduling methodology [1].
ERfair scheduling is a work-conserving version1 of the propor-
tional fair scheduling methodology (PF [2], PD [3], PD2 [4]).
Given a set of periodic tasks{T1,T2,T3, . . . ,Tn}, with each
task Ti having a computation requirement ofei time units,
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1. A work conserving scheduler never allows a processor to idle when there
are ready tasks available to run

required to be completed within a period ofpi time units from
the start of the task, ERfair schedulers need to manage their
task allocation and preemption in such a way that not only
are all task deadlines met, but also each task is executed at
a consistent rate proportional to its weightwti =

ei
pi

. ERfair
algorithms generally consider discrete time lines and divide
the tasks into equal sized subtasks such that a single subtask
may be executed within the time period of a slot. ERfairness
is formally defined in terms of a parameter calledlag [4].
At any given timet, lag(Ti , t) denotes the difference between
the amount of time that has been actually allocated to a task
Ti and the amount of time that should have been ideally
allocated to it in the interval[0, t) (denoted byallocated(Ti , t)).
Thus, lag(Ti , t) = (ei/pi) ∗ t − allocated(Ti , t). A scheduling
algorithm is ERfair iff ∀(t,Ti), 0 ≤ |lag(Ti , t)| < 1. Each
subtasksti j of a taskTi has apseudo-deadlinetime pdi j before
which it must completesti j . pdi j is defined as:

pdi j = ⌈
j ∗ pi

ei
⌉ (1)

Thus, ERfair’s salient features include its ability to meetall
hard real-time deadlines, allowing full CPU resource utiliza-
tion and also guaranteeing a specified execution rate for all
applications. However, along with all these desirable features,
an efficient practical scheduler must also keep scheduling
overheads like itsown task selection timeand inter-processor
task migrationsto a minimum. Limiting these overheads is of
paramount importance especially in resource constrained real-
time systems because it provides premium spare processor
bandwidth that may be useful in various situations like:
completing tasks during transient overloads, implementing
power management strategies like processor slowdown and
processor shutdown, fault tolerance, executing non-real-time
and aperiodic tasks on a best effort basis, etc. Simulation based
experiments showed us that the global Basic-ERfair scheduler
severely lacks in this front and may consume almost 30% of
the allocated time for task executions even on a moderately
large sized 16 processor system (Refer table 1).

Traditionally, a completely partitioned approach have gen-
erally been adopted to avoid migrations. Here, once a task
is allocated a processor, it is exclusively executed on it [5],
[6]. Partitioning also has the added advantage of reducing the
average scheduling complexity at each time slot because unlike
global schedulers, separate schedulers that run independently
in parallel may be employed for each partition. In this respect,
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global schedulers generally have to incur the extra overhead of
communicating to all processors the tasks they should execute
at each time slot.

One of the major problems faced by partitioning is that no
more than half the system capacity may be utilized in order
to ensure that all deadlines are met in the worst case [7].
However, this worst-case condition may be relaxed either by
bounding the maximum weight of any individual task under
a certain value [8] or by allowing individual tasks to be
split across multiple processors [9]. Levin et. al. in [10] and
Kimbrel et. al. in [11] discuss migration aware algorithms
which provides a trade-off between the amount of deviation
from perfect scheduling fairness and the number of migrations.

Lately Sticky-ERfair [12] and Partition Oriented ERfair
Scheduler (POES)[13], two optimally fair (ERfair) scheduling
approaches with reduced migrations and / or context-switches
have been developed. Sticky-ERfair follows an overall global
scheduling policy. The algorithm controls migrations by keep-
ing track of the processor where a task last executed and
by using the system’s slack capacity in underloaded ERfair
systems. Employing these techniques, it attempts to execute
on a given processor its most recently executed task such that
this execution do not lead to a future ERfairness violation.
On the other hand, POES follows a semi-partitioned approach
switching towards higher global-ism with increasing load and
vice-versa. Both these techniques have been shown to achieve
handsome gains in terms of migration overheads with Sticky-
ERfair being more effective at high workload conditions and
POES being more effective under lower workloads.

However, measurement and estimation of the actual gains
in terms of the reduction in overall overheads (combining
scheduling complexity and migration related overheads) for
both these algorithms have been lacking. This paper does
a comprehensive simulation based experimental analysis and
comparison of the total scheduling related overheads of Basic-
ERfair, Sticky-ERfair and the POES algorithms. The analysis
considers different workload conditions, varying number of
processors and different values for the overhead of a single
migration (this depends on the system architecture), etc. We
observed that although Sticky-ERfair achieves high gains in
terms of migration overheads even under heavy workloads,
the overall gains obtained may be quite moderate due to high
task selection times. On the other hand, with a lower average
task selection complexity, POES provides very high reductions
in overall overheads under low to moderately heavy system
load scenarios when it is able to partition the task set into
disjoint processor groups. However, one of the drawbacks of
this algorithm is that it quickly becomes as bad as Basic-ERfair
when the system becomes global under high workloads.

Using the insights gained through these observations, this
paper also presents thePartition-Oriented Affinity-Aware ER-
fair Scheduler (POAES), that aims to obtain high reductions
in total overall overheads under all workload conditions by
effectively leveraging and combining the benefits of both the
global (Sticky-ERfair) and semi-partitioned (POES) schedul-
ing approaches mentioned above. As an example of the
achieved gains, the right-most column for 16 processors in
table 1 shows that on a system with time-slot size of 1 msec,

while Basic-ERfair, Sticky-ERfair and POES may consume
upto 31%, 14% and 6% of a time-slot as scheduling related
overheads, POAES incurs only about 1%.

We first describe the working of the POAES algorithm
along with illustrative examples in the next section. Section 3
presents the detailed experimental analysis results. We discuss
and comparatively analyze the migration overheads of the dif-
ferent algorithms under various scenarios in section 3.1. Then,
results for the task selection overheads of these algorithms
have been discussed in section 3.2. Finally, in section 3.3 we
present a comparative analysis the overall scheduling related
overheads. We conclude in section 4.

2 THE POAES ALGORITHM

POAES actually works at two levels. The outer level consists
of a load balancer with an online partitioning / merging mech-
anism (similar to the POES algorithm [13]) that retains the
optimal schedulability of a fully global scheduler by merging
processor groups as resources become critical while using
partitioning for fast scheduling at other times. The principal
objective is to remain only just as global at any given instant
of time as is necessary to maintain ERfair schedulability.
At the inner level, for any processorVi within a particular
task-processor group, a task-to-processor affinity aware ERfair
scheduler (similar to Sticky-ERfair [12]) allocates the most
recently executed ready task that previously executed onVi

(thus restricting migrations and preemptions) in such a way
that this allocation does not cause any ERfairness violations
in the system at any time during the schedule length. We
now describe the online load balancing mechanism with an
illustrative example.

The Load Balancer (Outer Level): Given a set ofn
periodic tasks{T1,T2, ...,Tn} to be scheduled in a system of
m processors{V1,V2, ...,Vm}, the task and processor sets are
partitioned intok disjoint subsets or groups ({τ1,τ2, ...,τk}
and {ρ1,ρ2, ...,ρk} respectively) at any instant during the
schedule length. The tasks in groupτi are allowed to execute
and migrate only within its corresponding processor group
ρi. If {Tτi1,Tτi2, ...,Tτi|τi|

} denote the tasks in groupτi and
{Vρi1,Vρi2, ...,Vρi|ρi|

} denote the processors in groupρi, then
such a partition is feasible, only if,

∀k
i=1

|τi|

∑
j=1

wtτi j ≤ |ρi| (2)

At lower workloads, a complete partition is usually always
feasible and the number of groupsk is equal to the number
of processorsm. If a new task arrives which cannot be ac-
commodated into any task group, two or more task-processor
groups aremergedso that the newly formed group will be
able to feasibly accommodate the new task. If a task departs
from any task-group and the corresponding processor-group
contains more than one processor, asplit of this group is
attempted such that the feasibility condition in equation 2is
not violated.

Example: Consider (n =) 5 tasks,T1, T2, T3, T4 and T5

(having weightswt1 = 9/10, wt2 = 4/5, wt3 = 5/9, wt4 = 1/2
and wt5 = 1/5) to be scheduled on (m=) 3 processorsV1,
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V2 and V3. Let the arrival times of these tasks be 0, 0, 0,
10, 20. Therefore, at timet = 0, the 3 ready tasksT1, T2

and T3 get partitioned into the 3 available processorsV1, V2

and V3 respectively. Each processor forms a separate group.
ProcessorV3 having highest remaining capacity (4/9) forms
groupρ1. Similarly, processorsV2 andV1 form groupsρ2 and
ρ3 respectively. Figure 1 shows this situation.

τ3 = {T1}

V1

ρ3

τ2 = {T2}

V2

ρ2

τ1 = {T3}

V3

ρ1

Fig. 1. Time t = 0; each processor individually forms a
separate group.

A new task T4 arrives att = 10. TaskT4 having weight
wt4 = 1/2 cannot be accommodated into any existing group.
Hence, groupsρ1 andρ2 are merged to accommodateT4. After
merging, we get two groups: i.ρ1 consisting of processors
V2 and V3 with tasksT2, T3 and T4 and ii. ρ2 consisting of
processorV1 and taskT1 allocated to it. Figure 2 depicts this.

τ2 = {T1}

V1

ρ2

τ1 = {T2, T3, T4}

V2

ρ1
V3

Fig. 2. Time t = 10. Two task-processor groups get
merged.

Task T5 arrives at timet = 20. Now, all the processors are
merged into a single group to accommodateT5. This situation
is depicted in figure 3.

τ1 = {T1, T2, T3, T4, T5}

V1

ρ1
V2 V3

Fig. 3. Time t = 20. The system becomes completely
global.

Now, let the taskT4 complete execution and leave the system

at time (say)t = 350. We again obtain a fully partitioned
system as shown in figure 4.

τ3 = {T1}

V1

ρ3

τ2 = {T2}

V2

ρ2

τ1 = {T3, T5}

V3

ρ1

Fig. 4. Time t = 350. A fully partitioned system is obtained
again.

The Affinity-Aware Scheduler (Inner Level): After the
load balancing step at the outer level, a set of task-processor
groups is obtained. Each task-processor group (consistingof
1 or more processors) acts as a separate global scheduling
system on its own and employs a separate Affinity aware
ERfair scheduler similar to Sticky-ERfair [12] at the inner
level that attempts to minimize migrations and preemptionsby:
(I) Keeping track of the processor where a task last executed,
and (II) Utilizing task over-allocations in under-loaded ERfair
systems.. Given a task-processor group containingm′ proces-
sors (say), the Affinity-Aware ERfair scheduler selects the
most urgentm′ tasks (thosem′ tasks whose pseudo-deadlines
are earliest) similar to the Basic-ERfair algorithm. However,
for any processor sayVi within the group, the affinity aware
ERfair scheduler may postpone the execution of one of these
selected tasks and replace it by the most recently executed
ready task that previously executed onVi (thus restricting
migrations and preemptions) in such a way that this allocation
does not cause any ERfairness violations in the system at
any time during the schedule length. To ensure ERfairness,
the algorithm defines a new parameter calleddeadline of
postponementfor each sub-task of a task. The deadline of
postponement of thej th subtask of a taskTi denotes the time
slot upto which the execution of thej th subtask ofTi may
be safely postponed (suspended from ready state) without any
possibility of the system violating ERfairness. It is givenby:

φi j = pdi j −⌊
pi

ei
⌋−2 (3)

Affinity-Aware ERfair guarantees ERfairness by not allowing
a task to be postponed when there exists ready tasks whose
deadlines of postponement have been crossed.

Example: Consider 5 tasks,T1, T2, T3, T4 and T5 to be
scheduled in a group of 3 processorsV1, V2 and V3. Let
the execution requirements and periods of these tasks be as
follows: e1 = 36, e2 = 40, e3 = 50, e4 = 64, e5 = 72 and
periods p1 = p2 = p3 = 120, p4 = p5 = 80. Hence, thewti
(= ei/pi) values of these tasks arewt1 = 3/10, wt2 = 1/3,
wt3 = 5/12, wt4 = 4/5 andwt5 = 9/10. At t = 0, the pseudo-
deadlines (refer equation 1) and the deadlines of postponement
(refer equation 3) of the first sub-task of these tasks will be:
pd11= 3, pd21= 2, pd31= 2, pd41= 1, pd51= 1 andφ11=−2,
φ21=−3, φ31=−2, φ41=−2, φ51=−2. In the first time-slot,
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the tasksT5, T4 andT3 will be selected for execution because
these tasks are most urgent and all of them are beyond their
deadlines of postponement.

Now, let us consider another arbitrary time instant say,t =
225. Let, the tasks 1 through 5 have executed last on processors
V1, V1, V1, V2 and V3 respectively. Let theφi values for the
next subtasks of these tasks respectively be 222, 224, 226,
226, 227 and theirpdi values be 230, 230, 233, 233 and 236.
Our Affinity-Aware algorithm will first choose the three most
urgent tasks, that isT1, T2 and T3 in the same manner as
Basic-ERfair chooses. After this,T1 is alloted processorV1. As
t = φ2 = 225, T2 must be executed in the current time slot to
avoid possible ERfairness violation.T2 will incur a migration.
However, execution ofT3 may be postponed because theφi

values of all the remaining ready tasks are greater than 225.
T4 is executed onV2 in place ofT3, thus saving one migration
with respect to ERfair in this time slot. Finally,T2 is allotted
processorV3.

In the next section, we experimentally evaluate the perfor-
mance of the POAES algorithm and compare it against the
Basic-ERfair [1], Sticky-ERfair [12] and POES [13] algo-
rithms. The evaluation methodology is based on simulation
experiments using randomly generated task sets.

3 EXPERIMENTS AND RESULTS

The simulation based experiments conducted to compare the
performance of POAES against Basic-ERfair, Sticky-ERfair
and POES algorithms measure both the number of migrations
per time slot and total execution times of the algorithms on
different types of generated data sets. All the results presented
herein have been averaged over 100 simulations each having
a schedule length of 100000 time slots. The ultimate objective
of all these experiments is to obtain for each of the mentioned
algorithms a measure of their overall scheduling overheads
combining their average task selection and task migration
times at each time slot and hence be able to arrive at a
reasonably good comparative estimate of how fast would
these algorithms execute in practice on actual workloads.
Throughout the simulations, a separate check was kept on the
lag of every task in the system to verify ERfairness of the
algorithm;no violations were detected.

The experimental framework consists of randomly gen-
erated task sets with hypothetical task weights (ei/pi) and
periods (pi). The task weights have been generated using a
uniform distribution within the range[µw−0.05,µw+0.05]
where µw is the required average individual task weight.
Periods of the tasks are taken from a normal distribution with
µ= 4000 andσ = 3500. Data sets representing systems with
various average individual task weights, average total system
workloads and different number of processors were considered
in the experimental analysis.

3.1 Migration Measurement Results

The number of inter-processor task migrations suffered by
POAES and the three other ERfair algorithms mentioned
above have been measured by running them on 100 different
instances of each data set type. Figures 5, 7 and 8 depicts the

plots of the number of migrations per time slot (on the y-axis)
with respect to variation in the total system load percentage
(L) (system load is computed as the fraction of sum of the
weights of all the tasks to the number of processors in the
system), average individual weight (µw) of tasks and number
of processors (m) respectively (on the x-axis).
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Fig. 5. Processors (m) = 10, Avg. Individual Task Weight
(µw) = 0.3
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Fig. 6. [90%−100%] System Load (Processors (m) = 10,
Avg. Individual Task Weight (µw) = 0.3)

Figure 5 shows the plot of the number of migrations per
time slot as the average system load is varied between 10% and
100% on a 10 processor system with mean individual weight
of tasks beingµw = 0.3. It may be observed from this figure
that all the algorithms exhibit a similar nature. Figure 6 which
depicts the same but a magnified view of the plots in figure 5
for the range 90% to 100% load, clearly shows that POAES
incurs negligible migrations until the system load reaches
as high as≈ 98% and although migrations increase rapidly
after this point, POAES shows better performance as system
capacity gets more and more crunch. It may however be noted
that at full system load (100%), with no slack available for task
execution postponement and the system becoming completely
global, performance of all algorithms become almost equally
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poor and the number of migrations become proportional to the
size (number of processors) of the system for all algorithms.
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Fig. 7. Processors (m) = 10, System Load (L) = 95%

Figure 7 shows the plots of migrations per time slot when
the average individual weight of tasks is varied between 0.1
to 0.9. A 95% loaded 10-processor system was considered.
A prominent feature in this graph is that while the partition
oriented schedulers POES and POAES show distinct maximas
at around 0.6 and 0.8 on the x-axis respectively, the global
schedulers show a steady gradient with a gradual fall at higher
average task weight values. The occurrence of this maxima
may be attributed to the existence of two opposing factors
acting concurrently. The first factor is that when the mean
individual task weight increases with the system load being
fixed at 95%, the total number of tasks in the system decrease
contributing to a decrease in the number of migrations. The
second factor is the reduction in the total number of partitions
caused by higher mean task weights and this contributes to
increased migrations.

A closer observation at the Sticky-ERfair plot reveals that
the second factor is also feebly at work in its case and this
causes migrations to slightly increase with increasing task
weights with a distinct dip at very heavy mean task weight
values. This happens because although Sticky-ERfair follows
an overall global methodology, it exhibits micro-level partition
orientation in its attempt to maximize the continuous length
of time for which a task executes on a particular processor.
By employing a POES like partitioning approach at the outer
level with a Sticky-ERfair like scheduling mechanism at the
inner level, POAES combines the benefits of both and is thus
able to weaken the effect of the second factor in reducing the
total number of partitions upto a much later stage and allows
the maxima for POAES to be obtained at a point much further
beyond the maxima for POES.

It may further be observed from this graph that the mi-
grations per time slot for all the scheduling algorithms tend
to converge as the mean task weights approach unity. This
is due to the fact that on a 95% loaded system of 10
processors with average individual task weights beyond 0.9,
the partitioning algorithms fail to identify feasible partitions
and the systems become almost completely global. Hence,

POES and POAES exhibit natures similar to Basic-ERfair and
Sticky-ERfair respectively. One may notice here that Sticky-
ERfair briefly outperforms POAES in the region beyond
mean task weights≈ 0.85. This happens because with such
high individual task weights, multiple partitions if formed in
POAES, may often consist of loads more than 95% in each
partition. As depicted in figure 6, as migrations of Sticky-
ERfair increase very rapidly in the 95%−100% load range,
it is possible for the POAES algorithm to perform poorer due
of “higher than average” system load partitions.
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Fig. 8. Avg. Individual Task Weight (µw) = 0.3, System
Load (L) = 95%

Figure 8 plots the variation in the average number of
migrations per time slot versus the number of processors for
an average task weight of 0.3 and system load of 95%. The
obvious benefit of partitioning is clearly evident in this graph.
Although all plots show a linear nature, the slope for the
increase in the number of migrations per time slot with respect
to the number of processors is much higher for the global
schedulers as compared to their partition oriented counterparts
and this makes partition oriented schedulers more scalable.
Performance wise, POAES outperforms all the other three
schedulers.

3.2 Time Measurement Results

We have measured the average execution times to estimate
task selection overheads for the new algorithm POAES and
also the existing algorithms Basic-ERfair, Sticky-ERfairand
POES running them on 100 different instances of each data
set type with the schedule length being 100000 time slots.
Figure 9 depicts theaverage task selection time per time
slot with respect to varying number of processors (1 to 16
processors) obtained for data sets having average task weight
of 0.5 and system load of 95%. This graph shows that
in general the partition oriented schedulers incur much less
overheads in terms of the time taken to select tasks at each
time slot as compared to their global counterparts. This is due
to the fact that in partition oriented systems, the scheduling of
each partition occurs concurrently in parallel with the other
partitions. In comparison, global schedulers have to incur
the extra overhead of communicating to all processors the
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#Processors Scheduler Nmig Csched(µs)
Ctotal(µs)

Cmig = 1µs Cmig = 10µs Cmig = 50µs Cmig = 100µs

4

POAES 0.0086 3.35 3.36 3.44 3.78 4.21

POES 0.241 2.53 2.76 4.94 14.58 26.63
Sticky ERFair 0.022 6.04 6.06 6.26 7.14 8.24

ERFair 0.767 4.03 4.79 11.7 42.38 80.72

8

POAES 0.022 4.79 4.81 5.01 5.89 6.99

POES 0.323 3.7 4.02 6.93 19.85 36.00
Sticky ERFair 0.410 13.9 14.26 17.95 34.35 54.85

ERFair 1.46 9.83 11.28 24.42 82.82 155.82

12

POAES 0.025 6.23 6.25 6.48 7.48 8.73

POES 0.422 4.86 5.28 9.08 25.96 47.06
Sticky ERFair 0.737 22.86 23.60 30.23 59.71 96.56

ERFair 2.21 16.62 18.83 38.72 127.12 237.62

16

POAES 0.028 7.85 7.88 8.13 9.25 10.65

POES 0.507 5.61 6.12 10.68 30.96 56.31
Sticky ERFair 1.02 33.03 34.05 43.27 84.23 135.43

ERFair 2.837 23.00 25.83 51.37 164.85 306.7

TABLE 1
Scheduling costs per time slot (Task weight (µw) = 0.5, Load (L) = 95%)
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Fig. 9. Avg. Individual Task Weight (µw) = 0.5, System
Load (L) = 95%

tasks they should execute at each time slot. In the POES or
POAES algorithms, themergeand partition operations form
their only fully or partially global parts. It may be noticedthat
with increase in the number of processors, the difference of
execution times between the global and partitioned algorithms
widen drastically. POES with a slightly lower intra-partition
scheduling complexity (To schedule tasks within each parti-
tion, POES uses Basic-ERfair while POAES uses a Sticky-
ERfair like methodology.) incurs the least overhead, although
being closely followed by POAES.

3.3 An Estimation of Overall Scheduling Overheads

The total scheduling overhead at each time slot (Ctotal) is
obtained as the sum of the average task selection time (Csched)
and the time spent in task migrations at each time slot
(obtained as the product of the average number of migrations
per time slot (Nmig) and the cost of a single migration (Cmig)).
Thus,

Ctotal =Csched+Cmig×Nmig (4)

The cost of a single migration (Cmig) depends heavily on
the system architecture and realistic values may typicallyvary
from lower than 1µs in closely-coupled multi-core systems to
more than 100µs in loosely-coupled multi-processor systems.
Table 1 summarizes the average total scheduling overhead
results for all the four algorithms evaluated here on data sets
having average task weight of 0.5 and workload of 95% for
different number processors and differentCmig values. It may
be noted from the table that POAES appreciably outperforms
all the other three algorithms forCmig values 10µs, 50µs
and 100µs. However, in extremely tightly coupled systems
(Cmig = 1µs) POES performs marginally better than POAES.

Assuming a time slot size of≈ 1ms(which is a typical value
in many of today’s real time systems) on a moderately large
sized (16 processors) loosely coupled (Cmig = 100µs) real-
time multiprocessor system, it may be observed that Basic-
ERFair consumes as much as≈ 30% of a time slot while
POAES consumes only about 1%. Thus, POAES is much
more scalable and gives premium spare processor bandwidth
which may be useful in various scenarios. Examples include,
completion of tasks which misbehave at runtime by taking
more time than they were stipulated to take, execution of non-
real time and aperiodic tasks on a best effort basis along with
the real time periodic tasks, implementing power management
strategies like processor slowdown and processor shutdown,
fault tolerance, etc.

4 CONCLUSION

We have presented a new partition oriented multiprocessor
ERfair scheduling algorithm that attempts to minimize overall
scheduling overheads and provide premium spare processor
bandwidth which may be of vital importance especially in
today’s resource constrained real-time embedded systems.
We have designed, implemented and evaluated the POAES
algorithm. The simulation results are promising.
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