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Abstract

Data communication is challenging in network environments with no instantaneous end-to-end
path. Such Networking environments find application in wide areas of interest eg military
battle field and disaster recovery, deep-space communication, habitat monitoring, inter-vehicle
communication etc. A multicast is the delivery of message or information to a well-defined group
of nodes in a network.Many DTN applications need multicast service. For example, in military
battlefields, it is vital to quickly and reliably transmit orders from a command center to a group
of field commanders. It is also helpful to share information of surrounding environments among
different squads of soldiers. Traditional methods of internet multicast, however, can.t be used
as such in DTN multicasts. Firstly, it is difficult to maintain the connectivity of a source-rooted
multicast tree (or mesh) during the lifetime of a multicast session. Secondly, data transmissions
suffer from large end-to-end delays along the tree because of the repeated disruptions caused by
periodically broken branches. This calls for separate multicast protocols for DTNs that function
on the underlying principle of store-and-forward architecture.



Chapter 1

Introduction

Delay Tolerant Networks are a special class of networks that witness huge churn w.r.t. availability
of links because of limited transition ranges and mobile nodes. In such networks there is no
guarantee of a instantaneous source to destination path, which makes the problem of routing,
broadcasting and multicasting much more complex. The routing protocols use store and forward
mechanism to transmit messages from source to destination.

Multicasting is the problem of routing a message from a single source to a well-defined group
of receivers (thus broadcast is a special case of muticasting where group of recipients is the
entire network). There are many applications that that require an efficient multicast support,
for example sending information of the victims of a natural calamity to the group of rescue
workers, in battle field sending information about the terrain or enemy posts in a particular
area to the platoons deploys there or even in the case of advertising where application developer
may want that the ad is delivered to only the registered group of clients. The problem of
multicasting has been studied in detail for internet and ad-hoc networks [2, 3, 5, 4, 7]. In the
present work we study the protocols for multicasting in Delay Tolerant Networks, and propose a
novel tree based multicast algorithm to reduce the network congestion by reducing the number
of redundant copies in the network over other tree based multicast protocols.

1.1 Objectives

The main objective of this work is to investigate a novel multicast algorithm based on tree based
routing protocols to minimize the number of redundant message copies. There might be many
scenarios that demand the multicast algorithm to involve less message copies as opposed to quick
delivery of the message. A subclass of the multicast protocols under Tree-Based-Routing (TBR)
protocols. These protocols include STBR, DTBR, OS-multicast. All these protocols require
a node to construct a predicted multicast-tree of routes to the destinations. However all the
protocols use minimum edge weighed path from the node to the destinations for constructing
the tree. The weight of an edge is model specific eg avg waiting time of contact, probability of
existence of edge etc. However in many cases the minimum edge weighed path can be sacrificed
to get a deep-thin tree instead of a shallow-wide tree. This can reduce the number of redundant
message copies at the cost of multicast-tree not being minimum weighed multicast tree.

In the diagram 1.1 are shown two multicast trees for 16 destination nodes. The one on left
is a shallow tree while the other one is a deeper tree. Note that number of redundant copies in
shallow tree is 15 for a depth of 4 while for deeper tree is 10 for a depth of 7. Thus number of
redundant message copies can be reduced but creating thinner trees.

1



Figure 1.1: thin trees have less redundancy

1.2 System Model

The model of Delay tolerant network nodes considered here assumes that each node has a wireless
network interface with some range limitations. A node is A said to come in contact with another
node B if the node B comes within the radio range of A. The model assumed in the paper also
assumes that the nodes can detect if they have come in contact with another node and also sense
it when the contact breaks (i.e. when the node B is no longer in the radio range of A). The inter
contact time of the contact TCA−>B is defined as the time interval between the event of contact
happening an the event of contact breaking. The amount of time A has to weight for a contact
to happen with B is the waiting time TAA−>B. The average of TAA−>B over all the contacts
A− > B is the average waiting time. The model assumes that the network interface of the nodes
have a constant bit rate (cbr channel) and for the message to successfully being transfered the
sender must be in contact with the receiver for the entire message delivery time. The channel is
assumed to be fault free, in that the messages transferred will arrive at the destination in sane
form. It is also assumed that the node can transfer messages only if there is no message already
in transit (the bandwidth of the network interface can’t be shared). The model also assumes
that nodes have an instantaneous update of the maintained graph, irrespective of where the
event occurred. This assumption is physically not feasible, however presents a simplified picture
of the problem statement. Although the proposed algorithm doesn’t explicitly require these
conditions, these model specifications shall be useful in simulation results and reasoning.

1.3 Scope

The scope of present work is limited to the introduction and analysis of the new algorithm
proposed w.r.t the DTBR protocol as previous papers have concluded DTBR to be better than
STBR (in terms of network latency). The simulations for protocols is done on SLAW mobility
model using a custom designed simulator in java based on the System model discussed earlier.
Since throughout the simulations it has been assumed that the nodes have a global knowledge
of the contact graph, the OS-multicast protocol reduces to a simple case of DTBR protocol
(in OS-multicast a node changes the tree passed to it base on the local knowledge, which in
this case is the complete knowledge). The simulation analysis has been done on the following
performance metrics:-

Message copies : This is related to the main motivation and objective of the present work, it
is the number of copies of the message spawned in the system before final termination of
the protocol(i.e. every message copy is system is with its recipient).

Average delivery latency : This is the amount of time each recipient has to wait before it
receives the message after the beginning of a multicast. The protocol presented here tries
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to minimize the number of message copies by compromising the average latency of the
system.

Message Overhead traffic :This is the total size of overhead in the message header that is
passed throughout the interval of a single message multicast. Thus the traffic is computed
per message multicast, in which the overheads of all message transitions are added.

1.4 Organization

The thesis has been organized in form of chapters, beginning at some preliminary introduction
(chapter 1) and literature review (chapter 2) followed by chapter 3 that describes the motivation
and theory behind the new algorithm and presents the pseudo code for the Modified protocol.
This is followed by a detailed simulation analysis in chapter 4 that presents both algorithm
analysis and results of network simulation (along with small note on the implementational as-
pect). Finally the thesis concludes with chapter 5 stating the deductions and some future work
possible.
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Chapter 2

Related Work

A significant amount of work has been done in literature for handling multicasting in DTNs.
Many protocols and algorithms have been proposed for the purpose of multicasting, these proto-
cols differ in the amount of global state knowledge required by them. For example there are some
trivial algorithms like epidemic routing, relay cast routing [8], direct delivery . . . etc that don’t
depend on any global knowledge. Whereas there is another class of algorithms like tree based
algorithms :- Dynamic tree based routing (DTBR), Static Tree Based Routing (STBR), On-
demand Situation-aware Protocol (OSP) [10] . . . etc that compute speculative multicast states
based on some weak knowledge of the global state.

There have been detailed studies of comparisons for many protocols in the literature [1, 11].
The work presented in [9] also goes on to enumerate several criteria based on which a multicasting
algorithm may be chosen over another given the context of the situation. Here is a description
of some of the important protocols found in literature:-

Static tree based routing (STBR) : In this routing protocol a tree rooted at the source is
computed by the source from the knowledge base. The tree contains the shortest distance
paths from the source to the recipients. The source then transmits the message along these
paths. Each node in the path duplicates the message. If a previously calculated link is
unavailable then the node holds the message until that link becomes available even if an
alternative path exists to the receiver. In situations of low mobility where the structure of
the tree computed doesn.t change much, this protocol gives a good message delivery rate
with very less number of message forwarding. Receivers get a single copy of the message.
Generally the delay for sending the message to the receiver(s) is quite high, and in this
delay the network topology may change such that a previously calculated path in the tree
may no longer exist. The node that has the copy of the message will then wait until the
link becomes available even if an alternative or may be even better path is available. This
may lead to prolonged delays for message transmission. Computing a good static tree at
the source requires a good knowledge base with the source.

Dynamic Tree Based Routing (DTBR) :This technique is very similar to the STBR dis-
cussed above. A rooted tree is computed from the source to the destinations using the
available knowledge base. The message is then forwarded to the next neighbors in the tree.
However the recipient list for the neighbors now contains only the receivers that exist in
the sub-tree rooted at that node. The node then re-computes a tree rooted at that node
to the subset of receivers in the message header. This protocol partially overcomes the
shortcoming of the STBR protocol that if a better path is available to the destination then
the node that has the copy of the message can identify such a path. This may lead to
reduced delays as compared to the static tree approach. The message header is although
heavier than the Static tree counterpart but as the message copies descent down the mul-
ticast tree the header contains only the relevant receivers for that portion of the tree. If a
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node acts as a central node during the multicast then the node will get only a single copy
of the message. There is a complication as we go further down the tree the receivers list
in the message header gets more pin pointed. Thus if at a particular node low down the
multicast tree another receiver comes in contact with the node that belongs to a different
portion of the tree OR if a better route becomes available to a receiver in another part of
the tree then that route will not be considered. This may lead to longer delays than the
optimal case of epidemic flooding. Furthermore all the nodes along the path must have a
good knowledge (almost complete topological knowledge) of the entire DTN.

On Demand Situation Aware Multicast (OS-multicast) :This protocol is another exten-
sion to the above discussed DTBR. In this protocol a tree rooted at the source is computed
from the knowledge base of the source. The node then forwards the message to the neigh-
bors along with the entire recipient list and the static graph computed at that node. The
child nodes (neighbors that received the message for forwarding) take the static tree at-
tached in the message as a base and modify it according to the local knowledge of links
(this knowledge may be limited to a particular number of hops) i.e. if a link is not present
(or not expected to be present) the link is removed from the old static graph and the new
paths are computed taking into account the presently available links at the node. This
results in another dynamic tree for the node. This dynamic tree now becomes the static
tree for the next hop of neighbors and the process continues. The protocol overcomes a lot
of shortcomings of the earlier protocols. Each node may just have a rough knowledge of
the network as compared to DTBR and STBR where a node is required to have the entire
knowledge. If the Static graph computed initially is good enough then alternating routes
can be found and used. Since the message header contains all the recipients, an alternating
path to a receiver that was earlier expected to be in another part of the tree may also be
considered. A mentioned the message header should contain not only the entire recipient
list but also the static graph computed until now. Thus the message transfer overhead is
very high. In this protocol a receiver may get multiple copies of the message.

Core Aided Routing : In this approach the fact that DTNs are heterogeneous is exploited.
There are generally some nodes that are more powerful (in terms of buffer space and com-
putations) than other nodes. These nodes are used as dedicated routers for the messages.
There can be small changes in this protocol where the sender gives a copy to the core
node whenever it comes in contact with one of them. The core node will then relay the
message to the receiver when it comes in contact with it. Thus this becomes a 2-hop
multicasting.Since dedicated nodes are used for the purpose of routing and multicasting,
the message overhead of recipients can be overcome by letting only the core nodes main-
tain the group information. Any node that joins a group shall inform at least one of the
core nodes. This works because the routing is 2-Hop.This method also involves very low
network traffic. The buffer utilization of the non-Core nodes is very low thus they can
have very low buffer capacities. Since the routing is handle by a small subset of the nodes,
these nodes can collect the entire network information (e.g. contact information, neighbor
topology etc.) for an efficient routing algorithm.

Spray-and-wait protocol :In this protocol a fixed number L. is chosen and initially L copies
of message are forwarded in the network. When a node forwards a message copy, it deletes
its copy of the message. His forwarding continues for L. hops. This stage is called Spray
and Wait. In This stage the entire network contains L. copies of the message (unless the
TTL has expired). If all the recipients receive the message within these forwards, then the
algorithm terminates otherwise each of the nodes that are carrying a copy of the message
performs a direct transmission to the receivers. The method is scalable in the Spraying
stage since the network contains no more than L message copies. The method may give
high chances of message delivery in low mobility situations. The method can fail terribly
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in situations of mobility in a predefined pattern. Since the forwarded message copies are
deleted from the source, the node may not contain the message when it comes in contact
with a recipient. The protocol is not scalable if all the recipients don.t get the message in
the spray stage of the protocol.

In the present work we propose a novel tree based multicast protocol that tries to optimize upon
the number of redundant message by compromising the message delivery latency.
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Chapter 3

Proposed Algorithm

3.1 Motivation

In this we propose the algorithm for computing multicast trees, to reduce the number of redun-
dant message copies. The main motivation behind the algorithm comes from the fact that if
a node is selected in the multicast tree then the message is anyways expected to come to that
node than why not reuse that node itself for forwarding the message to the targets. For this we
introduce the concept a quantity called ‘Importance’ which defines the relative favourability of a
node from other nodes in being selected in the multicast tree. We denote the node ‘Importance’
(of node n) by In and that of an edge by Ie. Originally the multicast trees are constructed
based on optimization of some parameter, generally minimizing the cost of path from source to
destination. It can be mathematically defined as:-

minimize WP =
∑

e(n1,n2)∈P We (3.1)

equation 3.1 captures the optimization of path weights, note that weight of an edge is a generic
concept and can differ for various implementations of the contact graph. For the case when the
required path is minimum waiting time graph, weights can correspond to the average waiting
time of contact between various nodes, whereas for the case when the message delivery has to be
maximize, We = 1

pe
is a possible weight where pe is the probability of existence of the edge. Now

to reduce the number of message copies for the underlying tree based algorithm we reformulate
equation 3.1 but including the effect of node ‘Importances’ as follows:-

minimize WP =
∑

e(n1,n2)∈P FW (We, Ie)

where Ie = Fe(In1 , In2) (3.2)

Note that the motivation of the algorithm requires that:-

FW (W, I) ≤W ∀W ≥ 0, I ≥ 1 (3.3)

This modified version of equation 3.1 includes the Importances of the nodes in the optimization
equation. In the present work we shall dealing in detail for two special cases for of the functions
Fe(), FI() and FW () (These two flavors are named MTBR1 and MTBR2 respectively), the
choices for respective versions is given in table 3.1.

Table 3.1: Two special cases of the algorithm studied.
Version FI() Fe() FW ()

MTBR1 I ′ = I + α Ie = max(In1 , In2) W ′ = W
Ie

MTBR2 I ′ = β Ie = max(In1 , In2) W ′ = W
Ie

7



3.2 Algorithm

In this section we present a formal description of the generic algorithm with various tuning
parameters and discuss the various aspects of its practical implementation.

3.2.1 Pseudo code

Following is the formal description of the modified tree computation algorithm, reffered as
MTBR (Modified Tree Based Routing).

Input :source s, destinations d[], message msg, destination seed, Graph G

Parameters : Importance update FI(), Edge importance function FE(), Weight update func-
tion FW (), number of iterations nIter, α

Output : Multicast tree T , Importances I[]

Procedure :
compute tree()

1 T = φ
2 for all n ∈ V (G) :

3 I[n] = 1

4 for i = 1 to nIter:
5 sp[] = sortest_path(G, source=s, target=seed)
6 I[] = update_importances(I[], sp, FI())
7 G = update_graph(G, I[], FE(), FW ())
8 for node ∈ d[]− seed :

9 sp[] = sortest_path(source=s, target=node)
10 I[] = update_importances(I[], sp , FI())
11 G = update_graph(G, I[], FE(), FW ())
12 T = shortest_path_tree(G, source=s, target=d[])
13 return T , I[]

Procedure :
update importance(I[], sp, FI())

1 for all nodes in sp[]:

2 I[node] = FI()(I[node], α)
3 return I[]

Procedure :
update graph(G, I[], FE(), , FW ())

1 for edge in E(G):

2 n1, n2 = edge

3 edge_importance = FE(I[n1], I[n2])

4 G.edge[n1, n2][‘weight ’] =

5 FW (edge_importance , G.edge[n1, n2][‘weight ’])

6 return G

3.2.2 Graph Pruning

The performance of the algorithm is dependent on the pre-processing done on the graph. If the
original graph is given to the algorithm proposed herein then the multicast tree produce is a
trivial single hop multicast tree (the multicast algorithm then shall correspond to the case of
direct delivery). The graph provide to the algorithm is best passed pruned beforehand. Following
motivations provide reasons why a pruned graph is considered with the algorithm.
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Figure 3.1: Number of Edges Vs. Weight

Metric Value

Number of nodes |V | 1000

Number of Edges |E| 499277

Density ρ(G) 0.99

Diameter 2

Table 3.2: Metrics of a sampled Graph.

1. The size of the graphs are quite big for sufficient amount of simulation time. For
example here is the size metrics of a graph that was sampled from the simulation setup
after ≈ 3hrs of mobility simulation (SLAW mobility). From the table it is clear that the
actual average contact time graph tends to a clique after sufficient amount of simulation.
The computational complexity of finding the shortest path is O(n2) (for dense graphs)
but the complexity can be improved for sparse graphs. Thus it makes sense for mobile
nodes to maintain a pruned graph for computation of the multicast tree (as it can save
the memory and power requirements of the node).

2. There are many unnecessary edges in the graph. Figure 3.1 shows the graph of number
of edges with weight less than a particular value. It can be seen that there are a number
of edges which have very big value of weight. Since the algorithm is primarily based on
finding the shortest path from a source to targets, it is most likely that the edges with
weights higher than a particular threshold value woll not be used in a shortest path in
any iteration of the algorithm. Thus these edges can be safely removed from the graph
to be considered in the graph for computation of the multicast tree.In the graph notice
that some of the edges have very large weights ≈ 106 ! which corresponds to an average
waiting time of ≈ 105(1.15days)! These edges with large weights are too improbable to
appear in an optimum path from source to destination. Furthermore these edges just add
to the time and space requirement of the underlying shortest path algorithm. Notice that
the curve has an exponential trend that signifies that for pruning a significant number of
edges the threshold shall be varied in the range where the graph is flatter.

3. The best possible cases for the complete graph can give rise to trivial multicast trees
corresponding to the simple routing trees of direct delivery or first contact delivery. As
already discussed in the statistics of the graph in table 3.2 the diameter of the graph is
2, and the density of the graph is 0.99 ≈ 1 which signifies that for most of the source
destination pairs the lenght of path is 1 (or 2 for some rare cases). Thus the multicast
tree for the normal shortest path optimization will incur no redundant messages (as the
delivery is direclty to the targets). As shown in figure 3.2 the number of ‘red’ nodes (that
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Figure 3.2: DTBR tree from sampled graph

denote redundant nodes) are quite less, thus the margin for imporvment is neglegiable,
after applying the MTBR1(α = 1.0) and MTBR2(β = 2.0) on the tree we get a very
trivial direct delivery tree as shown in figure 3.3. .

The procedure is simple where the edges with a weight greater than a particular threshold are
removed from the graph for consideration in the compute tree() procedure as described in
section 3.2.1.

1 prune_graph(G, threshold)

2 for edge in G.edges ():

3 if edge.weight > Threshold :

4 G.remove_edge(edge)

5 return G

Selecting the threshold parameter of the pruning routine defines the structure of the residual
graph and thus the structure of the computed multicast trees. A good value of the threshold

should fullfil the following objectives :-

1. The number of edges should be reduced to a appreciable amount, so that the pruning of the
graph has some effect on the computational aspect of the algorithm (Note that pruning
the graph every time will not improve the complexity of the shortest path algorithm since
the procedure prune graph is itself O(|E|). Thus the pruning procedure in practice must
be on line and thresholding shall be done for an edge whenever the contact for that edge
happens).

2. There should be a big component in the network and the number disconnected components
should be very less.

3.3 Dynamic knowledge scenarios

In the cases where global knowledge is unavailable, or ever for the cases when global state of
interconnection graph is known there can be some minor modifications in the algorithm that
bring about a degree of coordination in the otherwise completely distributes execution of the
algorithm by various nodes of the network. In dynamic tree based protocol every node computes
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Figure 3.3: MTBR tree for DTBR tree in figure 3.2

a multicast tree of its own. Since the network knowledge may vary from node to node, the nodes
that appear with high importance values in local multicast tree of a node may not retain their
importance in the neighbors of the node. This may lead to a wide multicast tree despite of using
importance values for nodes and deriving a thin local-multicast tree. To counter the above effect
we need to add some sort of hysteresis for node importance in the model discussed above. For
this we can introduce a hysteresis factor for the nodes in DTN (say hi for a node i). Now while
forwarding a message to a neighbor, the forwarding node includes a part of the local values of for
nodes in the local multicast tree, in the message header. The receiving neighbor then initializes
the nodes in the local DTN model as:

Iu =

{
(1− h) + h× I ′

u if I
′
u is provided

1 otherwise
(3.4)

Where I ′u is the importance of the node u as is indicated in the message header and h is the
hysteresis factor for the receiving node. The value of h may be fixed for the entire DTN or
may be configures with the individual nodes. It is the measure of dynamism in the multicast
protocol. For the equations the value of h in in the range h ∈ [0, 1].Note for that very high
values of h ≈ 1 the protocol will tend to be a static tree based routing protocol. We can say as
(h → 1) ⇒ (Iu → I

′
u) (high dependence on history) and (h → 0) ⇒ (Iu → 1) (no evidence of

history). For forwarding the importance of a node in the local multicast tree there are message
header overheads. To reduce these overheads we may consider following options

1. If the underlying multicasting protocol is similar to ‘OS multicast protocol’ where the
entire local tree is embedded in the message body, then including the importance of the
nodes in the tree introduce a very little extra overhead in the message header.

2. We may include pairs < ID, IID >in the message header for a subset of nodes in the local
multicast tree which pass through certain constrains, most obvious constrain being that
the node is among top K‘important’ nodes in the local multicast-tree. Note that the value
of K can be altered to affect the message header overheads. A constant value of K for the
node u introduces an upper bound on the message overhead as (constant×max(ku∀u)).
This overhead is independent of the size of the multicast tree, thus it does not hinder with
the scalability of the underlying multicast protocol. The value of K may be optimally
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tuned for a network by considering the reduction in redundant message copies versus the
message overheads involved in passing importance values.

3. Passing the importance of nodes with Iu = 1 in the final local multicast tree may be
avoided.

In the above mentioned protocol it is not only possible to give greater importance to a node
based on its ‘heredity’ but it is also possible to force the receiver node to give lesser importance
to a node. This however has no obvious application unless of course the forwarding node has
information such as a node being congested or out of order in which case it is practical to exclude
the node from any future multicast trees.

3.4 Version MTBR1

This special case of the generic algorithm described in section 3.2.1 corresponds to the choice of
functions as given in the table 3.1. The ‘Importance’ update function of this version of algorithm
is I ′ = I + α where α is a predefined constant that parameterizes the algorithm. Due to the
nature of the update equation one can very well reason that the order in which the targets are
processed is very important to the properties of the generated tree. If a node is selected for
the first time in the multicast path, then with a higher probability it will again be selected in
another shortest path and as the number of times it is selected in the shortest path increases its
probability of selection in next path also increases. This ‘Self amplifying’ phenomena is like an
‘Avalanche’ in that the first destination selected decides to a large extend the nature of tree, thus
it shall be called ‘Avalanche’ effect. The consequence of the avalanche effect can be extrapolated
to theoretically predict a tree with large latency. Because of the avalanche effect a node may
get excessively high values of ‘Importance’ and may ruin the performance of the algorithm by
introducing a bias.

3.4.1 Avalanche effect

As discussed in the previous section the update function described for MTBR1 can lead to a
exponential blowup in the importance of the node. To demonstrate this we assume that the
probability P (u, i) that a node u is selected in the ith iteration of the compute tree() routine is
directly proportional to the importance Iu(i− 1) of the node after the (i− 1)th iteration . That
is for a node u we can write:-

P (u, i) ∝ Iu(i− 1)

∴ P (u, i) = C × Iu(i− 1) (3.5)

Thus the Expected value of the importance of the node after the ith iteration can be computed
as:-

E(Iu(i)) = (1− P (u, i))× Iu(i− 1) + P (u, i)× (I(u, i− 1) + α)

∴ = (1 + Cα)× I(u, i− 1)

∴ E(Iu(i)) = (1 + Cα)i−i0 × I(u, i0)

∴ E(Iu(i)) = (1− Cα)id (3.6)

where i0 is the largest integer such that I(u, i0) = 1 and id = i− i0.
Thus it is clear form equation 3.6 the expected value of the importance of a node varies expo-
nentially after it has been selected for the first time. Thus the first node is expected to have a
very high value of ‘Importance’ and thus the effect on the multicast tree. Thus selection of seed
in the algorithm is very important to the property of the tree.
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3.4.2 Dilution of ‘Avalanche’ effect

There can be several modifications to the algorithm suggested in section 3.2.1 to dilute or counter
the avalanche effect, these are:-

1. One may consider forming a partial multicast-tree for say some most versatile destinations
(probably based on contact frequencies and hysteresis importance) with the objective
function for optimization given by ‘Z’ as defined in equation 3.1. Note that the tree is
constructed without using the values of Iu but these are anyways updated as previously
discussed. After constructing this partial tree with chosen destinations we may start using
equation 3.2 as the objective function for optimization. This process essentially dilutes
the effect of favoring a single node because it was previously favored.

2. Another alternative is to construct parallel multicast trees corresponding to the M most
versatile destination nodes as the seeds. Then finally select the tree based on some property
say the tree with least delay OR with max delivery probability OR with minimum nodes
involved.

3.5 Version MTBR2

Yet another very intuitive way of overcoming the avalanche effect is to consider the α as a
function of the iteration index i i.e. α = α(i). for example let us assume a simple case where we
want that all the nodes are given equal importance irrespective of the iteration in which they
were first chosen (this is a very logical requirement since we should intuitively give equal credit
to all the nodes through which a message passes, since selecting the node has already accounted
for a duplicate message copy for that node). Thus our requirement can be mathematically stated
as:-

E(Iu(i)) = β × P (u, i) + Iu(i− 1)× (1− P (u, i))

∴ β × P (u, i) + Iu(i− 1)× (1− P (u, i)) = Iu(i− 1) + α(i)P (u, i)

∴ α(i) = β − Iu(i− 1) (3.7)

substituting this value of α(i) in FI() we get:-

Iu(i) =

{
β if node is selected once
1 has n’t been selected

(3.8)

This is the main motivation behind the second version of the algorithm. I can seen easily from
equation 3.8 that the importances now have binary values i.e either 1 or β thus nodes with
value β are all important nodes.In case of MTBR1 the nodes at a shallower depth have greater
chances of having a high value of ‘Importance’ than nodes at deeper depths in the multicast
tree. However our initial motivation was not to distinguish among important nodes but to
distinguish important nodes from not-important nodes. Therefore when a node appears in a
shortest path, then the node has become important, thus the value of importance if node is set
to a statically higher value . Hence in the case of MTBR2 a node.s importance value can be
either 1 (unimportant node) or (important node).

In few words the MTBR2 protocol only aims at reducing the number of redundant nodes
on the multicast tree whereas MTBR1 protocol aim to reduce the redundant nodes while con-
sidering the depth of the multicast tree (which is not necessary for the problem statement).
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Chapter 4

Simulation

In this section we shall present the simulation results obtained for the performance of MTBR
algorithm proposed herein. The simulation results has been divided in two parts :-

Algorithm Analysis : In this section we present a detailed analysis of the structure of multi-
cast trees computed using the algorithm versions MTBR1 and MTBR2. The simulation
done herein are from the sampled graphs from the same mobility trace used in the next
part of the simulation of message transfers.

Network Simulation : In this section we present the results of simulating message multicasts
using the proposed algorithm for versions MTBR1 and MTBR2

4.1 Algorithm Analysis

In the following section we investigate the properties of the multicast trees generated from the
proposed algorithm. The comparative analysis done herein is for MTBR1 trees, MTBR2 trees
and DTBR1 trees. Note that all the other tree based protocols as described in the literature
review (chapter 2) use the same underlying algorithm as DTBR protocol for computing the
multicast tree (i.e. shortest path tree). As we are only interested in the properties of the
multicast tree, considering only the DTBR trees for comparisons suffices.

4.1.1 Graph generation

The algorithm was run on several graphs which were obtained using:

1. Random graph generation

2. Graph Sampling from actual mobility trace

3. Pruning the Sampled Graph

Random Graph Generation

The random graph used in the simulation analysis herein were created using networkx [6] module
of python (can be downloaded from http://networkx.lanl.gov/). Steps followed to generate
a random weighted graph are:-

1. Generate an ErdsRnyi Graph G(n, p) using the networkx module.

2. Iterate through all the edges in the graph G.

3. For each edge assign a weight W ∈ [minw,maxw].
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Figure 4.1: DTBR tree for random graph

The graphs used in the simulation analysis have 1000 nodes. Here is the working of MTBR1
and MTBR2 protocols with variation of parameters on a sample multicast tree from a random
source to 100 random recipients in a random weighted graph of 1000 nodes and probability of
edge = 0.3, the edge weights for the graph were randomly chosen from [100, 1000]. Figure 4.1
shows as simple shortest path tree1 simulated on a random graph with 100 targets. The red
nodes denote the nodes that are not destination (thus the redundant nodes) and the green nodes
represent the destinations. The tree has a diameter of 6 with |Vtotal| = 152(|Vred| = 52).

Figure 4.2 shows the structure of MTBR1 trees for various values of α. Now Comparing the
MTBR1(α = 1.0) tree from DTBR tree in figure 4.1 we see that MTBR1 protocol has indeed
generated a tree with significantly less number of red nodes (only 2 in this case). Note that
MTBR1(α = 0) is same as DTBR tree but introducing a small value of α for MTBR1(α = 0.01)
changes the tree significantly. This can be attributed to the fact that in DTBR the criteria for
tree formation is just shortest path, a small value of alpha acts as a smoothing to reduce the
diameter of the tree. It can be seen that the structure of the generated tree interestingly changes
as the value of α is increased. Also note the visual evidence of decrement in number of redundant
message copies in the multicast tree as the value of α is increased. (Number of redundant message
copies is mathematically equal to the number of non-recipient OR red nodes in the graph). It can
be seen in MTBR1(α = 0.5) and MTBR1(α = 1.0) trees that some nodes are acting as hubs i.e.
they have a huge out degree to the recipients. Figure 4.3 shows the structure of MTBR2 trees
for different values of β. Note the reduction in number of non-recipient nodes (the red nodes).
The smoothing effect as seen in MTBR1(α = 0.01) tree is also visible in MTBR2(β = 1.1)
tree i.e a small value of β does n’t reduce the number of red nodes drastically but immediately
reduces the tree depth by 1. The number of redundant message copies do reduce as the value
of β is increased (as is visually evident). When compared with MTBR1 protocol the MTBR2

protocol performs equally good w.r.t. the number of redundant message copies, however as
expected the diameter of the tree increases for MTBR2protocol. These illustrations provide
theoretical grounds for possibility of improvement in the actual mobility pattern based graphs.

1From now referred to as DTBR tree
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(a) α = 0.01, |V |red = 52, diameter = 4

0

(b) α = 0.05, |V |red = 44, diameter = 4

0

(c) α = 0.1, |V |red = 16, diameter = 6

0

(d) α = 0.5, |V |red = 6, diameter = 6

0

(e) α = 1.0, |V |red = 2, diameter = 6

Figure 4.2: Trees for the MTBR1 protocol for various values of α
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(a) β = 1.1, |V |red = 44, diameter = 4

0

(b) β = 1.3, |V |red = 13, diameter = 6

0

(c) β = 1.6, |V |red = 8, diameter = 6

0

(d) β = 2.0, |V |red = 1, diameter = 7

0

(e) β = 3.0, |V |red = 2, diameter = 8

Figure 4.3: Trees for the MTBR2 protocol for various values of β
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(a) Number of vertices in big component (b) Number of edges in the big component

Figure 4.4: Selecting Threshold

Graph Sampled from SLAW mobility trace

The average waiting time graph is sampled at some temporal points [500000sec to 600000
mboxsec@5000] these graphs are then used for analyzing the algorithm. The sampled graph is
a weighted graph with edge weights equal to the average waiting time for contact between two
nodes. The results presented herein are averaged over results of simulations done over 20 such
graph samples (taken in the range [500000sec to 600000
mboxsec@5000]).

Pruning of graph As disscused in earlier section 3.2.2 the threshold should be selected so
as to remove a considerable number of edges from the graph and also ensure existence of a big
component in the graph. Figure 4.4(a) show the number of vertices in the big component as the
threshold is fixed. we can see that after a threshold of ≈ 150000 the number of edges in the big
component = 1000 = |V |total i.e. there is a single component in the graph. Figure 4.4(b) shows
the number of edges in the pruned graph as a function of the fixed threshold value. We can see
that the number of edges at around the threshold of ≈ 150000 reduces to merely ≈ 35000. The
threshold for the sampled graph is thus selected as 155000.

Trees in pruned sampled graph To illustrated the working of algorithm on the pruned
graph a sample DTBR tree with 10 recipients is shown in figure 4.5(a) and the corresponding
MTBR1(α = 1.0) and MTBR2(β = 2.0) trees.The corresponding MTBR2(β = 2.0) tree is
given in figure 4.5(c).Notice the new nodes that are introduced in the multicast tree but were
not present in the original DTBR tree. Also notice the reduction in the number of red nodes
in the modified version of tree. Formation of hubs is also evident from the above tree. The
MTBR1(α = 1.0) tree for the DTBR tree given above is given in figure 4.5(b).Notice that both
MTBR trees shown in figures 4.5(b) and 4.5(c) are thinner than the original DTBR tree.

4.1.2 Effects of α and β

In in section we present the effect of α and β on the nature and properties of the multicast
tree. A demonstration of the effect of these parameters on MTBR1 and MTBR2 has already
been presented in figures 4.2(for MTBR1) and figure 4.3 (for MTBR2). Here is an analysis of
how the statistical properties of the multicast tree change with variation in α for the MTBR1

protocol and β for the MTBR2 protocol. All the results are taken by averaging the values over
20 different sampled graphs all pruned with a threshold of 155000. In all the cases the numbers
of recipients in the multicast group is fixed to 100 (10% of the network size).

18



3

385

387

844

854

665

21
797

319

61

405

952

802

818

126

721 832

718

623

531

511

(a) DTBR tree

832

126

385

3

721

81

818

405

425
854

511

844

718

623

531

(b) MTBR1(α = 1.0) tree

832

126

385 3

721

818

405

929718

425
854

511

844

623

531

(c) MTBR2(β = 1.0) tree

Figure 4.5: Illustration of tree modification with 10 targets

Effect on redundant message copies

(a) Red. message as function of α (b) Red. msg as function of β

Figure 4.6: Effect on Redundant message copies

Figure 4.6(a) shows the graph for number of redundant message copies vs the α value for
MTBR1 protocol compared to that of the DTBR protocol (Green line parallel to the X-axis).
It can be seen that the number of redundant message copies reach a minimum possible value on
increasing α value (≈ 9 in this case). Also notice that the nature of the curve is exponential and
achieves a theoretical reduction of ≈ 65% on the number of redundant message copies (reduction
compared to DTBR tree).

The Graph shown in the figure 4.6(b) represents the functional change in number of redun-
dant message copies vs β for the performance of MTBR2 protocol over DTBR. In this case also
the number of message copies decrease in an exponential trend and reach a static value of ≈ 9
after a certain value of β ≈ 2. For the case of MTBR1 the redundant copies stabilize around
α ≈ 1.0 and for MTBR2 the copies stabilize around β ≈ 2.0.

Effect on Expected Message latency Etree(lat)

Here we present the behavior of ‘Expected’ Message latency as a function of α for MTBR1 and
β for MTBR2 trees. All the trees calculated in the algorithm are weighted trees, where the
weights of the edges denote the average waiting time for contacts to happen. Therefore we can
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(a) Etree(lat) as function of α for MTBR1 (b) Etree(lat) as function of β for MTBR2

Figure 4.7: Effect on Latency

compute the expected latency of a path P as :-

EP (lat) =
∑
e∈P

We (4.1)

Now a tree can be seen as superimpositions of single source paths to the targets, the EP (lat) for
all these paths can be calculated using the equation 4.1. Since the paths are covered parallely
in time the expected value of the latency of entire multicast tree is the largest expected latency
of the sets of all paths in the tree from source to targets. Thus mathematically :-

Etree(lat) = max({EP lat : P ⊂ tree}) (4.2)

The graphs shown herein are based on the expected value of latency for the entire tree as given
by equation 4.2. Figure 4.7(b) is a graph of how the expected latency of message delivery varies
with β for the MTBR2 protocol. Although the trend is not clear over such small and coarse
interval, the curve is seemingly of the form K−ex. It can be easily noted that as β increases, the
latency also increases. This is an expected result since the generated tree is thinner and longer.
Figure 4.7(a) is the same graph for MTBR1 protocol that shows the variation of expected
latency of the multicast tree with the protocol parameter α in the range [0.1, 2.0]. This graph
also the same trend line as exhibited by MTBR2. Note that the results shown here for the
expected latency has been computed by averaging over 20 sampled graphs from the mobility
pattern simulation (for same source and destination).

4.1.3 Centralities and ’Importance’

In graph theory centrality measures are used for comparing the central-ness of a node compared
to the other nodes. Since in the proposed algorithm also we are trying to define a concept of
hubs for DTNs by introducing a new parameter called ‘Importance’ (which is nothing but a
measure of how central is a node fro a particular multicast) a natural question arises that is this
new parameter doing the same thing as well known centrality measures of complex graph theory.
For investigation this aspect we present in this section the analysis of correlation between node
‘Importances’, betweenness centrality and closeness centrality.

Betweenness Centrality is the ratio of total number of all pair shortest paths to the number of
shortest paths passing through a vertex (or edge). Similarly Closeness centrality is the reciprocal
of sum of lengths of shortest paths from the vertex to all the other vertices.

The centralities computed herein are on a single instance of sampled graph (at time stamp
595000sec). The importance values are computed by taking 10iterations of each of the algo-
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rithms (with α = 1.0 and β = 2.0)

MTBR1(α = 1.0)

Plots shown in figure 4.8 graphically shown the dependence or the correlation between centrality
metrics and ‘Importance’ values for the MTBR1(α = 1.0). The Pearson’s correlation coefficient
for left graph (bet. centrality and importance value) is σxy = 0.111 and for the right graph
(closeness centrality and importance value) is σxy = 0.119, thus on may conclude that centrality
measures are weakly/not-correlated to the importance values of the nodes as obtained from the
MTBR1 algorithm as described in the present work. (The plots are obtained by plotting the
points for ordered pair (centrality, importance) for a particular node)

(a) plot of bet. with Iu (b) plot of closeness with Iu

Figure 4.8: Correlation of centralities with Iu for MTBR1

MTBR2(β = 2.0)

(a) plot of bet. with Iu (b) plot of closeness with Iu

Figure 4.9: Correlation of centralities with Iu for MTBR2

Figure 4.9 shows the plots for graphical representation of correlation between centrality
measures and the importance values computed for MTBR2(β = 2.0). The Pearson’s correlation
coefficient for left graph (bet. centrality and importance value) is σxy = 0.14 and for the right
graph (closeness centrality and importance value) is σ = 0.168, thus one may conclude that
centrality measures are weakly/not-correlated to the importance values of the nodes as obtained
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from the MTBR2 algorithm as described in the present work. (The plots are obtained by
plotting the points for ordered pair (centrality, importance) for a particular node)

From the above two analysis we can conclude that the concept of ‘Importance’ is disjoint
from the centrality measures considered for the analysis viz. betweenness centrality and closeness
centrality.

4.1.4 Avalanche Effect

As discussed earlier in section 3.4.1 equation 3.6 shows that the importance of a node depends
heavily on the iteration in which it was included in the multicast tree. Thus it is expected
theoriticaly that changing the order of targets in the iteration of compute tree() routine will
result in multicast trees with markedly different properties (probably different values for latency
and redundant message copies). In this section we investigate this difference in properties of the
multicast tree and find out whether the MTBR2 protocol surpasses the problem of ‘Avalanche’
Effect as postulated in section 3.5 from equation 3.7.

Temporal Avalanche Effect

In this section we study the possible avalanche effect in the Etree(lat) of the multicast tree.
Since it is based on the expected waiting time, we simulate the trees for the mobility traces for
the following three ordering of the targets :-

1. Random order, where the targets are ordered randomly.

2. Reverse shortest path, where the targets are ordered in decreasing order of their weighted
shortest path from the source in the DTBR tree.

3. Actual shortest path, where the targets are ordered in ascending order of their weighted
shortest path from source.
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Figure 4.10: Temporal Avalanche effect

Figure 4.10 shows the variation of Expected latency of the MTBR1 multicast tree for the
different orderings of the targets. It can be seen that the avalanche effect is visible only after a
significant number of targets (≈ 10%) in the multicast group, after which it can be seen that the
trendlines for Reverse ordering and actual ordering become increasingly apart, while the random
ordering follows a path between these two trend lines. Figure 4.10 also shows the variation for
MTBR2 we can see that there is no trend in the differences seen for the orderings, which can
be assumed to be oscillatory deviations. Thus the MTBR2 stands the theoritical postulation of
surpassing avalanche effect.
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Spatial Avalanche Effect
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Figure 4.11: Spatial Avalanche effect

Figure 4.11 shows the difference in the number of redundant copies of the proposed multicast
protocol as the size of recipients increase. It can be seen that the avalanche effect in the
number of redundant message copies is seen in case of both MTBR1 and MTBR2 protocols,
however the this spatial effect is not predicted by the equation 3.6, throughout the calculations
in section refsec:avalanche we have considered the expected value of ‘Importance’ of a node.
The Importance of the node directly affects only the latency of the tree, since higher importance
means costlier edges become available for shortest path. Thus the avalanche effect explained in
equation 3.6 is temporal in nature. The difference shown here in the plots show that the number
of redundant message copies is lower in the case of targets order in ascending order w.r.t the
shortest path lengths.

Note that the effect shown here is not at all undesirable. Since the number of message copies
are lesser for the case when targets are ordered by shortest path lengths, this gives way to fine
tune the algorithm.

4.2 Network Simulation

In this section we present the results of simulation of message multicasts on an underlying
mobility model. For the entire simulation we have selected SLAW (Self-similar Least Action
W alk) model as the underlying mobility model because it can capture to some extend the actual
motion of humans. Models like Random Way point does n’t give any insight into the performance
of the algorithm since in RW model all the nodes are similar, thus the average waiting time for
contacts for the nodes tend to become same for all the pairs of nodes. The problem of computing
multicast tree thus reduces to an unweighted graph (since all the edge weights are equal, graph
can be assumed unweighted). The performance of the DTBR and MTBR algorithms on the
trace of a RW model is thus trivial.

4.2.1 Simulation Test Bed

Simulations for the designed protocol are done in a custom simulator coded in java. The Sim-
ulator takes a contact trace as input and generates message Multicast events. The Simulation
is done on DTBR and MTBR. Contact traces for SLAW mobility model is generated using
ONE simulator. The custom simulator generates graph of node interaction based on the average
waiting time for contact between any two nodes. For now all the nodes use this same global
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interaction graph for computing shortest path trees. (It is assumed that the nodes have the
global knowledge of the graph).

4.2.2 Event Queue

The Simulator is an event based simulator, thus for each contact event (contact UP or contact
DOWN) a network events is registered with the event queue. The simulator keeps track of
number of contact events in the queue. When there are no contact events in the queue, the
simulator reloads the contact sequence from the trace file specified (because without contact
events the simulator is idle). Thus there is a periodicity in the contact sequence at least with
the period of total time of the contact trace simulation (i.e. the time till which the mobility
pattern was simulated in ONE simulator).

Phantom Events

Since the number of UP and DOWN contact events might not be same in the contact trace or
because of minor perturbations induced intentionally in reloading the mobility trace, when the
trace file is reloaded there might be some contacts already present in the network topology that
have no corresponding contact break event. These phantom contacts are handled by register-
ing a break contact event for all the existing contacts at the time of reloading the event queue.
Thus at the boundaries of mobility traces the event queue may contain physically impossible
events, but this is a transient state and the results shown herein are well within the boundaries
of the mobility traces.

4.2.3 SLAW traces

The SLAW traces used in the simulations are programatically generated from MATLAB code
available at the following ncsu site:- http://research.csc.ncsu.edu/netsrv/?q=content/

human-mobility-models-download-tlw-slaw. Table 4.1 and 4.2 show the details of the sets
of slaw traces on which the simulations are performed. Matlab code used for generation of the
respective slaw trace has been given (issuing the command will not generate the exact same
trace but the properties of the trace should be equivalent to trace 1&2).

Trace 1 : trace = SLAW MATLAB(3, 1000, 4000, 50, 0.75, 72, 50, 1, 30, 60*60);

Trace 2 : trace = SLAW MATLAB(3, 126, 2000, 2000, 0.75, 24, 50, 1, 30, 60*60);

Number of nodes 1000

Area of simulation 4000m× 4000m

Warmup time 1000s

Simulation Time 259200s (72hr OR 3day)

Number of waypoints 50

Alpha 3

Hurst parameter 0.75

Clustering Range 50m

Beta (for pause time) 1

Min wait time 30s

Max wait time 1hr (60× 60s)

Number of contact Events 9713129 (4857720 up, 4855409 down)

Table 4.1: SLAW trace #1
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Number of nodes 126

Area of simulation 2000m× 2000m

Warmup time 1000s

Simulation Time 86400s (24hr OR 1day)

Number of waypoints 2000

Alpha 3

Hurst parameter 0.75

Clustering Range 50m

Beta (for pause time) 1

Min wait time 30s

Max wait time 1hr (60× 60s)

Number of contact Events 85811 (43019 up, 42792 down)

Table 4.2: SLAW trace #2
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Figure 4.12: SLAW trace average waiting times

Simulation

The traces used in the simulation are generated in MATLAB simulated environment of finite
duration as mentioned in tables 4.1 and 4.2. The amount of time the mobility patterns are
simulated gives two temporal regions of interest as seen w.r.t. figure 4.12. For computation of
the average waiting times of the figure 4.12, the SLAW traces are repeated over and over again
to the required simulation time. For example it can be seen that in figure 4.12(a) the actual
simulation time for the mobility pattern is ≈ 3days but the amount of simulation time in the
plot is ≈ 10days. Thus the trace is repeated ≈ 3 times for the computation these plots. As is
visually evident from the plots the mobility pattern stabilizes in terms of average waiting time
after some amount of simulation. This may be the effect of repetition of the trace, hence no
conclusive remarks can be made for the nature of actual average waiting time trend in a general
SLAW model. For the simulation purpose however the setup mentioned here provide a stable
interconnection graph for algorithm analysis. From the graphs two temporal sections are vividly
prevelant:-

Unstable Zone : As shown in figure 4.12, during the time interval [0, 150000] for plot 4.12(b)
and [0, 200000] for figure 4.12(a), the average waiting time of the graph is increasing
monotonically. It can be reasoned that during this time interval the graph properties are
not well ‘learnt’ by the simulation setup and hence the internal state representation of the
system exhibits unstable behavior. Simulation in these regions of the mobility traces give
an idea of how good an algorithm performs in initial stage of installation of a DTN system.
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Run Redundant Message Copies(Ri) (R−Ri)
2

1 71.2 1.69
2 68.5 1.96
3 65.5 19.36
4 67.2 7.29
5 72.3 5.76
6 71.1 1.44
7 73.2 10.8
8 72.1 4.84
9 68.7 1.44

10 69.2 0.49

R = 699
∑

= 55.07

Table 4.3: Demonstrating Statistical Soundness

This state is however transient since over time the system shall learn a specific pattern.

Stable Zone : As evident from figure 4.12, the plots have stabilized after a certain point
(200000 for 4.12(a) and 150000 for 4.12(b)). Beyond these points it can be reasoned
that the simulation setup has identified a pattern in the mobility trace. Even though
the average waiting time stabilizes, there is still a lot of churn and heterogeneity in the
interconnection graph (evident from high variance). Trace #1 has a very large number
of contact events ≈ 10M , which makes it computationally difficult (within the resources
available) to simulate it for 20 iterations to the stability point and beyond, thus the analysis
in the stability region shall be presented only for trace #2.

In the following sections we shall analyses different performance metrics from the network sim-
ulations done on mobility pattern depicted in table 4.1 and 4.2. All the simulation results
presented herein are averaged over 10 runs where each run consists of 20 message multicasts
(unless state otherwise), thus effectively all the results are averaged over 200 message multicasts.

4.2.4 Statistical Soundness

The results presented in the current work are significantly accurate and practically free from
random phenomena. To demonstrate the idea we take the example of 10 runs of code (20 message
multicasts each) as shown in the table 4.3. From table 4.3 we can infer that the variance of the
sample is given as:-

S2(n = 10) =

∑
(Ri −R)2

n− 1
=

55.07

9
= 6.1

for a 90% confidence interval, t9,90 ≈ 1.833 thus interval is,

R± t9,90 ×
√
S2(10)

10
= 69.9± 1.4

Thus with 90% confidence (probability) the value of redundant message copies varies no more
than 1.4×100

69.9 = 2.1% from the average value, i.e 69.9. This shows that the results presented in
the present thesis are statistically significant.

4.2.5 Implementational Overview

This section presents a general overview of the implementational details that shall provide
grounds to reason the outcomes of the following simulations presented. The algorithm im-
plementation is simple and evident from the pseudo code presented in section 3.2.1, however
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there are some evident problems while simulation that need to be addressed.The following is the
description of the general logic flow in simulating node u:-

Contact Event with v : node u searches its local buffer for any message that has been marked
for transmit to v, if found then checks if the interface of u and v are idle. if yes then makes
them busy and starts transmission else retries after a timeout.

Receive Event of msg : node u appends its id to the list of ids in the message header. This
is done to prevent the message from going in loops (as it happens very frequently in the
case of MTBR2 and to a lesser extent in MTBR1). Next the node computes tree for
further forwarding of the message and stores it in local buffer (if a contact is found then
the message is sent).

Passing History : Each message header has a unique ID and a history of the nodes it has
passed through, the message also contains a vector of k < ID, IID > pairs from the
multicast tree of the previous node (as explained in section 3.3).

Delivery and Forwarding : A node u may receive many requests for forwarding the message
with same ID but it can only have a singe message copy that may address it as a recipient.
Thus a recipient gets only one copy of the multicast message in all the tree algorithms
presented.

In the following sections we present a comparative analysis of the proposed algorithms and
DTBR in separate scenarios. The analysis for STBR yields similar results as obtained in the
algorithm analysis in section 4.1, since in the case of STBR implementations of the algorithms,
the multicast tree is passed along with the message and the tree is followed irrespective of the
current state of network graph. This means if initially the tree properties are better for the
MTBR1 or MTBR2 tree, the properties for the entire multicast shall also be better for these
algorithms. DTBR however presents an entirely different scenario where the current state of
network is considered at each node of the actual transit path. Thus due to high churn in the
edges of the graph we get unexpected results for the case of Dynamic implementation of the
algorithm. We omit results for STBR protocol since they are same as obtained in the algorithm
analysis section.

4.2.6 Redundant message copies

The main aim of the algorithm was to reduce the number of redundant message copies to an
appreciable level. In this section we analyze this reduction and try to reason the outcomes. As
explained earlier we present the analysis for both stable and unstable portions of the mobility
trace plot.

Effect of group size

Figure 4.13 shows the trend in number of message copies and the number of additional message
copies per each message delivered on variation of the multicast group size for the trace #1. An
unexpected result that crops up in the plots is that the MTBR1 performs poorer than DTBR
protocols that seemingly contradicts the results obtained in Algorithm analysis under section 4.1.
However the outcomes can be reasoned to be a result of the unstable nature of graph in the
time interval. The plots in figure 4.13 were taken from multicast of 20 message copies to the
specified number of recipients, where the messages where injected in the simulation environment
staring from the simulation time tstart = 60000sec at a constant difference of 100sec. Thus the
simulation results are mainly contained in the unstable portion of the trace. Since the MTBR1

protocol is more prone to ‘Avalanche effect’ as deduced in section 3.4.1 and supplemented in
section 4.1.4, then change in the topology metrics of the system affects the MTBR1 version more
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Figure 4.13: Message copies for trace #1 (unstable)(α = 1.0,β = 2.0)

than MTBR2 which performs quite good as compared to DTBR protocol. Thus the reasoning
fits in the concept of high dependence on importance of nodes for MTBR1 while in the case
of MTBR2 the importances are diffused, thus giving tolerance to network churn. The plot in
figure 4.13(b) is the redundancy ratio plotted against number of recipients.

Redundancy Ratio(RR) =
Message copies(MC)− 1−No. Recp.(nR)

nR
(4.3)

Figure 4.14 presents the same results for trace #2 which has a lower contact activity (evident
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Figure 4.14: Message copies for trace #2 (unstable)(α = 1.0,β = 2.0)

from table 4.2). In this case MTBR1 performs better than both MTBR2 and DTBR owing to
less contact activity (thus less churn and more stability) and small graph (thus lesser nodes to
participate).

Figure 4.15 shows the results of MTBR in stable region of SLAW trace #2 (As mentioned
earlier, simulation on trace #1 was impractical due to resource limitations). As expected the
performance of MTBR1 has improved over DTBR as compared to the unstable case thus aug-
menting the credibility of reasoning for figure 4.13. It can be seen that after a certain point the
MTBR2 protocol can not perform better than DTBR which can be attributed to lack of room
for improvement, however for reasonable multicast group size (i.e up to ≈ 30%) the performance
of both MTBR1 and MTBR2 are comendable for reducing the number of redundant copies.
From these results it becomes evident that MTBR protocol stands its ground on reducing the
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Figure 4.15: Message copies for trace #2 (stable)(α = 1.0,β = 2.0)

number of message copies when compared to DTBR in a dynamic routing implementation.

effect of algorithm parameters

Now we look at how the parameters to the algorithm change the number of message copies for
the multicast events. In the simulation results presented here the group size is fixed to 100 for
trace #1 and 20 for trace #2. Two parameters are varied in these simulations viz. hysteresis
factor h (section 3.4) and α(or β) as the case may be.
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Figure 4.16: Message copies(α = 1.0,β = 2.0)

Variation with α(or β) Figure 4.16 shows the plots of variation of Message copies as the
parameter for algorithm varies (i.e α for MTBR1 and β for MTBR2) where αmin = 0.01
while βmin = 1.1. In plot of figure 4.16(a) we notice that for the case of unstable region in
SLAW trace #1 the number of redundant copies does’t vary as much as MTBR2 with the
variation in α for MTBR1. This means that the MTBR1 protocol is not much sensitive to
the parameter change (some sort of ‘inertia’ in performance). Correlating this observation with
the plot in figure 4.16(b) we notice that the general shape of curves for MTBR1 and MTBR2

(take seperatly) are same in all the trend lines (trace #1 and trace #2 both), however the trend
line variation seems scaled down for each of the protocol in figure 4.16(a). If we include the
degree of stability while noticing the plot 4.16(b) we can see that for both the protocols the
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dependence on parameter follows the same pattern with just a small deviation.This can signify
that for trace #1 the amount of instability is not a factor that changes the performance of
MTBR algorithm. Keeping the notion of stability aside, we can notice that as the parameter
attains a very small increment in its value as compared to its value for DTBR trees (αDTBR = 0
and βDTBR = 1), the number of redundant copies decreases instantly then rapidly increases and
finally follows a predictable decaying trend. This effect of small value of parameters has been
previously pointed out in section 4.1 in context of ‘smoothing’ effect. The trend for both the
parameters finally decay down to show a infinitismly limiting trend to a minimum possible value
for redundant copies (≈ 140 for trace #1 and ≈ 22 for trace #2).
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Figure 4.17: Message copies with h

Effect of h While analyzing the message copies for variation with ‘Hysteresis’ factor we fix the
values of other variables as: α = 1.0, β = 2.0, nR = 100(trace #1),20(trace #2), K = n(number
of nodes). The value of K = n is very trivial in which a node passes the importances of
all the nodes according to its multicast tree. Figure 4.17 shows the plots for bot stable and
unstable regions, one can readily deduce that there is no visible change in the number of copies
with ‘Hysteresis’ factor. In all the cases the #Message copies remain almost static with minor
pertebations. It can be attributed to the reasoning that with the specified choice of α and
β we have already reached the static region as evident from figure 4.16. Thus inefficacy of h
might be a result of saturation in performance limits. However it becomes clear that the history
information doesn’t decide the minimum number of message copies reachable.

4.2.7 Message Delivery Latency

As evident from the previous section the MTBR algorithm is able to stand the grounds of its
original motivation to reduce the number of message copies for multicasting using tree based
protocols. It is however clear that the reduction in message copies is achieved by ‘thinning’ of
the multicast-tree which may result in its elongation thus sacrificing the delivery latency of the
multicast. In this section we present an analysis of how much does one have to let go in terms of
Latency to accommodate the reduction claimed. In this section also we analyze the performance
following the same steps followed earlier form evaluation of message copies in earlier section.
The analysis is presented seperatly for variation of some system parameter while the others are
kept constant.
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Figure 4.18: Latency with group size

Effect of group size

Figure 4.18 show the variation of average message delivery latency as the size of mulitcast group
is varied. For the sake of completeness we define the average message delivery latency in terms of
following parameters. Let m be a message, Tm be the time of its injection in simulation system
(i.e the time instant when multicast event was handled). Let there be nR targets indexed from
1 to nR and τi be the time when message was delivered to the ith target. The we define the
average delivery time as:-

Avg. Latency per delivery for m =

∑nR
i=1 (τi − Tm)

nR
(4.4)

A deducible trend that is evident from the figure 4.18 is that the average delivery latency for
MTBR1 and DTBR remains constant however it increases almost monotonically for the case of
MTBR2 and the absolute value for MTBR2 is quite large as compared to MTBR1 or DTBR.
The fact that a protocol from the MTBR family will have a higher latency is understandable
and expected as the algorithm tries to substitute longer paths for shorter ones to accommodate
multiple message copies to the same node. This explains the increase in latency of MTBR2,
however a much unexpected result arises from the fact that in figure 4.18(a) the latency for
MTBR1 protocol is all the way less than the latency of DTBR in the simulated range. To
investigate the result a possible reason for this observation can be attributed to the instability
of network. One can reason from plots in figure 4.12 that the average waiting time for SLAW
increases monotonically in the unstable phase. From the average waiting time curves shown in
figure 4.12 one can reason that for any pair of vertices u and v the average waiting time Ti until
ith contact is higher than Ti−1 by some exponential factor (to explain the trend of curve). Thus
the average waiting time is not such a good predictor as exponential averaging. In MTBR1 the
average waiting times are divided by an exponential importance (eq 3.6) which should provide
a better prediction for the next average time. However the factor of division in case of MTBR2

and DTBR is constant thus providing a bad prediction. The explanation for the observation
thus shall pertain to the specifics of the mobility pattern.

Effect of α or β

Figure 4.19 shows the variation of delivery latency with graph parameters α and β. Note that
the graph shown here shall not be confused as contradiction to figure 4.1.2 which is the expected
time in which the entire multicast will finish while figure 4.19 plots the expected delivery latency,
which are different things. Similar to other plots which vary the α or β there is a characteristic
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Figure 4.19: Latency with α and β

sudden change in the Latency metric. The curves then reach a constant value, which signifies
that every message delivery takes almost the same time irrespective of the thickness or thinness
of tree. Also notice that the trend of latency is scaled down for unstable regions (or regions
with higher contact activity). This effect was also observed in simulation for redundant message
copies as shown in figure 4.16.

Effect of h
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Figure 4.20: Latency with h

From the figures 4.20 it can be deduced that the latency of delivery has no evident relationship
with the ‘Hysteresis’ of the DTN nodes. In both the stable and unstable region simulation the
delivery latency just ripples around a constant trend. It can be reasoned that Hysteresis in a
way increases the parameter α or β of the algorithm but the values of these parameter used for
taking the plot are already in the region of stability i.e. (α = 1.0 and β = 2.0). This might be
the reason for non dependence of delivery latency on h.

4.2.8 Message Overhead Bandwidth

Message Overhead is the amount of extra information kept in the message header for successfully
behavior of the protocol. In the simulator designed the message header contains the following
fields that add to overhead :-
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message ID : This is a 4 byte long integer that uniquely identifies a multicast in progress.

Path : It is the list of all nodes that forwarded the message.It is used to prevent messages from
going in loops. Each entry in the path is 4 byte integer.

‘Importance’ history : This is an array of K 12 byte tuples, that pass the importance values
to next node.

recipient list : This is a list of targets that belong to the multicast group.

From this list it can be reasoned that the message overhead that varies with the algorithm
comes mainly from the path vector. Message overhead traffic determines the amount of network
bandwidth that has been consumed without transfer of actual useful data. Thus it is central
to the study of a multicast algorithm as to what and how much overheads are imposed on the
bandwidth. In the section presented herein we study the variation of message overhead with
different system and model parameters.

Effect of group size
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Figure 4.21: Message header overhead with group size

Figure 4.21 shows the effect of increasing the size of multicast group in the overhead traffic.
The trend line for MTBR2 has a higher slope in both the plots as compared to the DTBR
and MTBR1 plots. Had the overhead been solely of increase in target group size the variation
would have been linear with same slope and values. However the increased overhead for MTBR2

beyond the accountability by recipient list size compels the inclusion of message path in the
affecting parameters. The total number of nodes in the multicast are lower for MTBR2 as
compared to the cases of MTBR1 and DTBR, then the only way that message overhead could
have exploded is that the path mainly consists of a line graph fanning out only near the end (thus
all the nodes in the path have recipient list equal to the original recipient list, thus incurring a
huge overhead all along the path). This observation thus implicitly provides a proof of thinner
trees in actual multicasting.

Effect of α or β

Figure 4.22 shows the plot of message overheads with the algorithm parameters (α for MTBR1

and β for MTBR2). The plots depict that there is general increase in the overhead traffic with
an increase in the corresponding parameter. Now having a look at the data elements in the
message header only the path field can be a reason for the increase in the message overheads
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Figure 4.22: Message header overhead with α and β

for both the algorithms. This combined with the fact that number of nodes visited are reduced
for MTBR1 and MTBR2 protocol contributes to the introduction of concept of long and ‘thin’
actual multicast paths in the system. On can also notice that the Message overhead increase
has a steeper slope for the case of unstable region simulation as compared to the stable mobility
trace region.
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Figure 4.23: Message header overhead with h

Introduction of h in the protocols demands inclusion of node importances from the sender,
in the message header for at most top K nodes. For the sake of simplicity of reasoning we
set K = |V | i.e. all the importances are forwarded to the next hop. We notice that there
os an increase in the message overhead as the value of h is increased, which again demands
the restoration to, increase in the path length, as the possible explanation. However notice
that the MTBR2 protocol is unchanged by the h factor, however the MTBR1 protocol shows
a significant increase in the overhead traffic. Since the number of recipients is same the only
possible explanation for this observation can be, a longer path to the destinations.
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Chapter 5

Conclusions

In the preceding part of work we studied the properties of algorithm proposed in both theory
and practice (simulations). There are a few vivid conclusions that can be derived viz:-

5.1 Deductions

As explained and analyzed under algorithm analysis and network simulations, the algorithm
developed does achieve a reduction in the number of message copies in one flavor or another.
This reduction is achieved either at the cost of increased delivery latency (case of MTBR2)
or increased overhead traffic. The Simulation results show that best results are obtained when
the underlying picture of the network for the node is stable. The algorithm although achieves
a betterment in the number of message copies for the multicast in unstable environment, the
results taken in complete spirit are below expectations for such situations of high churn in the
system state. From the Simulations results presented in the thesis a verdict can be passes
regarding each idea explored in the algorithm so far:-

1. Importances does provide a novel an disjoint concept for visualization of hubs in the case
of DTNs. With proper selection of update functions, the algorithm can be tailored for a
particular mobility pattern.

2. In almost all the simulation results, the inclusion of ‘Hysteresis’ factor has seemingly
defeated the reason and expectations of its introduction. However no conclusive remark
can be made for the efficacy of history of importances just based on the simulation on a
single type of mobility trace.

3. Like most Tree based routing protocols the algorithm propose herein is more of a tree
manipulation algorithm than a multicast management algorithm. Thus the algorithms
performance is limited by the underlying physical layer of the node interactions.

4. A dry run of the algorithm (simulating algorithm on a single sample of a graph) for
analyzing the properties of the algorithm yields promising and expected results as cited
in section 4.1. This sprouts the possibility of good implementations of the algorithm by
selecting proper system state metrics for edge weights.

5. Pruning the node graph is a novel approach to reduce the computational cost of the system
without compromising the reachability (all the results mentioned above were on pruned
data but still the messages could achieve 100% delivery rate). The computation of the
threshold however shall require some research for the specific case.
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5.2 Limitations

Other than the conclusions made above, the present study revealed allot of limitations and
shortcomings of various kinds in the simulation. The first and foremost limitation is that of the
average waiting time to represent the expected system state. Comparing the results shown in
section 4.1 and section 4.2 we can arrive at a strong argument regarding the average waiting
time being a bad indicator for edge weights in the inter-connection graphs. One can notice that
section 4.1 claims pretty good results for the trends of message copies and expected latency,
however the results for actual network simulation differ from this analysis to great extend. The
only different in the Network Simulation and Algorithm analysis presented herein is that the
algorithm analysis considers the results of the algorithm application to a set os static graphs.
However in the case of Network analysis the graph metrics is allowed to change. Since this is
the only difference, it can be the only explanation for difference in results of the two analysis
presented. The only possible p recursion of this reasoning is that the average waiting time as
the edge metric compromises the performance of the algorithm for simplicity of implementa-
tion.Better candidates for the representation of DTN graphs do exist, but the analysis of these
representations within the time and scope of work was limited by resources available. Another
limitation of the analysis in this work is a short spectrum of comparative analysis. Which could
have conclusively tracked biases in the algorithm performances for different types of mobility
patterns.

5.3 Future Work

The present work has focused mainly in only two flavors of the algorithm for two specific sets
of choices for the update functions. The work can be extended by performing a comparative
study of a larger spectrum of algorithm versions. Furthermore the present work has dealt with
only SLAW mobility traces which, although very common, is not exhaustive. A Conclusive
study for finding parameter values for the algorithm that provide optimum multicast for a
particular mobility pattern may be considered. Since the System model assumes that the nodes
have a global knowledge of the common inter connection graph, there was no specific need
for simulating the results on different finds of tree based routing algorithms. For the sake of
completion of study, it is important that other TBR algorithms be included in the comparative
study whereby implicitly requiring to implement local knowledge version of the algorithm. The
algorithm modifications suggested in section 3.3 may be studied in detail for optimization on
a specific scenario. Another important problem that comes to picture is the specification of
the multicast group to the source and the intermediate forwarding nodes. Since the inclusion
of all the recipients in the message header may incur larger overheads, one may include the
geographical information in headers (since in most practical cases the multicast group is dictated
by the geographical position of the node). A much needed analysis of the algorithm on different
graph edge metrics can conclusively postulate the its behavioral characteristics thus making the
implementation on a specific case much more easier and elaborate.
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