OPINION FORMATION IN TIME-VARYING SOCIAL NETWORK: THE CASE OF NAMING GAME

ANIMESH MUKHERJEE DEPARTMENT OF COMPUTER SCIENCE & ENGG. INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Naming Game in complex networks

	N _{max} w	t _{max}	t _{conv}
Fully connected Graph	N ^{1.5}	N ^{1.5}	N ^{1.5}
Scale - free	Ν	Ν	N ^{1.4}
Erdos – Renyi Network	Ν	Ν	N ^{1.4}
Small World	Ν	Ν	N ^{1.4}

Time-varying Network

- But social network are inherently dynamic
- Social interactions and human activities are intermittent
- Links appear and disappear from the system
- As time progresses, societal structure keeps changing with social conventions, shared cultural and linguistic patterns reshaping themselves

t -> t+1 Workshop on Social Networks

Opinions in time-varying social network

- Opinions spread with the time-varying societal structure
- Opinions evolves over time
 - some get trapped into groups
 - some die competing with others

- usually one opinion emerges as the winner but multi-opinion state may exist

Time-varying real world dataset (SG Dataset)

- face-to-face interaction
- Science Gallery in Dublin, Ireland
- spring of 2009

- "INFECTIOUS:STAY AWAY"
- Nodes -> visitors of science gallery
- Edges -> close-range face-to-face proximity
- Weights ->the number of 20 seconds intervals during which close-range face-to-face proximity could be detected

Time-varying real world dataset (HT Dataset)

- face-to-face interaction data of the conference attendees of the ACM Hypertext 2009 conference held in ISI Foundation in Turin, Italy, from June 29th to July 1st, 2009
- Dynamical network consists of 115 conference attendees

http://www.sociopatterns.org/datasets/

- The speaker i is chosen randomly from the population
- The hearer j is chosen preferentially among the neighbors

Scaling of $N_{\!\scriptscriptstyle W}^{\rm\scriptscriptstyle max}$ and $t_{\!\scriptscriptstyle max}$

Workshop on Social Networks

N_w^{max} ~ O(N)

- t_{max} ~ O(N)
- in perfect agreement with existing literature
- But what about t_{conv}?
 O(N^{1.4})

Community structure and t_{conv}

- Real world social networks consist of a number of communities
 - nodes within communities are densely connected
 - links bridging communities are sparse
- Leads to the emergence of long-lasting multiopinion state at the late stage of the dynamics
 fast internal consensus within community
 very slow opinion spreading across communities

Community structure and t_{conv}

- slows down the dynamics
- makes the system even slower is the presence of different sized communities
 - agents in a larger size community have a higher probability of being chosen for a game than those belonging to a smaller size community

 t_{conv} is positively correlated with variance of community sizes well supported by simulation results

Workshop on Social Networks

Examples of Individual Instances

Daily Network	Connectedness	Convergence Type
Day 9	Connected	Slow
Day 20	Disconnected	Fast
Day 22	Connected	Fast
Day 26	Disconnected	Slow

We propose two metrics to capture the two distinctive behavior of convergence time

average unique words per community U(t)
 average overlap of unique words across communities O_c(t)

U(t $|A_i(|A_i|)$ 2(| $\frac{2}{C(C-1)} \sum_{i > j} \frac{1}{\sqrt{2(|A_i|^2 + |A_j|^2)}}$

A_i is the list of unique words within community i and C is the number of communities

Metastability

3 phases 1.Steady growth 2.Reorganization phase 3.Long plateau

Steady rise
 Steady fall
 Plateau

Existence of multi-opinion states and metastability

- In perfect synchronization with real time
 - a single game is played on a single time-evolving snapshot of the same network
 - at each time step t = 1, 2 ..., the game is played among those agents that are alive at that particular instant of time in the network

speaker (randomly chosen)

t = 1

speaker (randomly chosen)

t = 1

The evolution of N_w(t) shows

- Initial slow growth (only a few agents present in the network)
- Sharp transition (growth of population in the network)
- Finally a steady growth regime (though inventions stop but old opinions trapped in different groups don't get disposed off the system and failure events still persist)

 markedly in contrast with the results if games were played on the composite network

The N_d(t) curve shows

- Initial slow growth (network size is very small)
- Sharp transition towards peak (new individuals join the network)
- Finally a drop, but no way close to 1 (new inventions stop)
- The absolute change in N_w is driven by S(t)
 Increase in change in N_w, decrease in S(t) and vice versa

The new connections at each time step drives the change in N_w

The variance of community sizes also correlates with the change in Nw

In a nutshell, the presence of community structure

a continuous influx of new connections (leading to late-stage failures in the system)

steady growth of $N_{\rm w}$ in its final regime of evolution

Conclusions

 In real world social networks, global consensus depends on community structures

 While the agreement process in perfect synchronization with time evolution exhibits different behavior of the emergent properties of the system

Future work

- Incorporating "dominance index" of the agents
- flexibility of the agents in adapting to new opinions modeled by a system parameter β
 (the probability with which the agents update their inventories in case of successful interactions)

THANK YOU Any

Questions?