Social Networks

Assortativity (aka homophily)

friendship network at US high school: vertices colored by race

Assortativity

Assortativity is a preference for a network's nodes to attach to others that are similar (assortative) or different (disassortative) in some way.

Women											
		black	hispanic	white	other						
Men	black	506	32	69	26						
	hispanic	23	308	114	38						
	white	26	46	599	68						
	other	10	14	47	32						

1958 couples in the city of San Francisco, California --> self-identified their race and their partnership chocies

Assortativity (more examples)

Assortativity

- Estimate degree correlation (rich goes with rich)
- The average degree of neighbors of a node with degree $k \rightarrow \langle k_m \rangle$

$$<\!\! k_{nn} > = \sum_{k'} k' P(k'|k)$$

- P(k'|k) the conditional probability that an edge of node degree k points to a node with degree k'
- Increasing \rightarrow assortative \rightarrow high degree node go with high degree node
- Decreasing \rightarrow diassortative \rightarrow high degree node go with low degree node

Mixing Patterns

Women

	$e_{_{ij}}$	black	hispanic	white	other	a _i
	black	0.258	0.016	0.035	0.013	0.323
Men	hispanic	0.012	0.157	0.058	0.019	0.247
	white	0.013	0.023	0.306	0.035	0.377
	other	0.005	0.007	0.024	0.016	0.053
$\sum_{ij} e_{ij} = 1$	b.	0.289	0.204	0.423	0.084	r = 0.621
	j					

Level of assortative mixing (*r*):

$$\left(\sum_{i} e_{ii} - \sum_{i} a_{i} b_{i}\right) / (1 - \sum_{i} a_{i} b_{i}) = (\text{Tr} \mathbf{e} - ||\mathbf{e}^{2}||) / (1 - ||\mathbf{e}^{2}||)$$

Perfectly assortative. $r = 1$

Signed Graphs

- signed network: network with signed edges
- "+" represents friends
- "-" represents enemies

How will our class look?

Possible Triads

- (a), (b) balanced, relatively stable
- (c), (d) unbalanced, liable to break apart
- triad is stable ← even number of "-" signs around loop

Stable configurations 4 cycles??

Stable configurations 4 cycles??

Structural Holes

- Structural holes are nodes (mainly in a social network) that separate non-redundant sources of information, sources that are additive than overlapping
- Redundancy
 - Cohesion contacts strongly connected to each other are likely to have similar information and therefore provide redundant information (same clor nodes) benefits

 Equivalence – contacts that link a manager to the same third parties have same sources of information and therefore provide redundant information benefit
 Structural Hole

- Refers to the cliquishness
- A complete clique is too strict to be practical
- Most of the real groups have at least a few members who don't know each other --> relaxing the definition
- k-cliques => Any maximal set S of nodes in which the geodesic path between every pair of nodes {u, v}
 ε S is <=k

{a, b, c, f, e} is a k-clique
--> What is the value of k?

Do you see the problem with the previous definition?

- Do you see the problem with the previous definition?
- k-cliques might not be as cohesive as they look!

Not a member of the clique {a, b, c, f, e} --> causes the distance between c and e to be 2

- Soultion: k-clans
- A k-clique in which the subgraph induced by S has a diameter <= k</p>
- {b, c, d, e, f} is a k-clan
- {b, e, f} also induces a subgraph that has diameter = 2

Soultion: k-clans

- A k-clique in which the subgraph induced by S has a diameter <= k</p>
- {b, c, d, e, f} is a k-clan
- {b, e, f} also induces a subgraph that has diameter = 2 <-- NOT a k-clan</p>
 - {a, b, f, e} is not maximal (k-clique criteria)

Social Cohesiveness (distance based)
Relax maximality condition on k-clans: k-club
{a, b, f, e} is a k-club

k-clan is a k-clique and also a k-club

Social Cohesiveness (degree based)

• A k-plex is a maximal subset S of nodes such that every member of the set is connected to n-k other members, where n is the size of S

Social Cohesiveness (degree based)

A k-core of a graph is a maximal subgraph such that each node in the subgraph has at least degree k

Social Cohesiveness (degree based)

 A k-core of a graph is a maximal subgraph such that each node in the subgraph has at least degree k

Social Roles

- "Positions" or "roles" or "social categories" are defined by "relations" among actors
- Two actors have the same "position" or "role" to the extent that their pattern of relationships with other actors is the same
- How does one define such a similarity?
- Me (faculty) → IIT ← you (students): In some ways our relationships are same ("being governed"); but there are differences also: you pay them while they pay me
- Which relations should count and which ones not, in trying to describe the roles of "faculty" and "student"?

Structural Equivalence

Two nodes are said to be exactly structurally equivalent if they have the same relationships to all other nodes --> One should be perfectly substitutable by the other.

What are the equivalence classes?

Wasserman-Faust network

Structural Equivalence

Wasserman-Faust network

Two nodes are said to be exactly structurally equivalent if they have the same relationships to all other nodes --> One should be perfectly substitutable by the other --> connected to exactly the same set of neighbors

What are the equivalence classes?

Structural Equivalence

Wasserman-Faust network

Two nodes are said to be exactly structurally equivalent if they have the same relationships to all other nodes --> One should be perfectly substitutable by the other --> connected to exactly the same set of neighbors

What are the equivalence classes?

Structural Equivalence

Wasserman-Faust network

Two nodes are said to be exactly structurally equivalent if they have the same relationships to all other nodes --> One should be perfectly substitutable by the other --> connected to exactly the same set of neighbors

• What are the equivalence classes?

Structural Equivalence

Two nodes are said to be exactly structurally equivalent if they have the same relationships to all other nodes --> One should be perfectly substitutable by the other --> connected to exactly the same set of neighbors

What are the equivalence classes?

Wasserman-Faust network

Exact structural equivalence is likely to be rare (particularly in large networks) --> Examine the degree of structural equivalence --> Any idea about how to measure?

Degree of Equivalence

- How to measure?
- Hint: Number of common neighbors

Degree of Equivalence

- How to measure?
- Hint: Number of common neighbors
- $n_{ij} = \sum_{k} A_{ik} A_{kj} \leftarrow ij^{th}$ element of the matrix A^2
- closely related to the cocitation measure (in directed networks)

Degree of Equivalence

- How to measure?
- Hint: Number of common neighbors
- $n_{ij} = \sum_{k} A_{ik} A_{kj} \leftarrow ij^{th}$ element of the matrix A^2
- closely related to the cocitation measure (in directed networks)
- Appropriate normalization

Cosine similarity

Inner product of two vectors

$$similarity(x, y) = cos(\theta) = \frac{x \cdot y}{||x|| * ||y||}$$

- ⊖=0 → maximum similarity ⊖=90 → no similarity
 Consider *i*th and the *j*th row as vectors
- cosine similarity between vertices i and j
- $\sigma_{ij} = (\sum_{k} A_{ik} A_{kj}) / (\sqrt{\sum_{k} A_{ik}^{2}} \sqrt{\sum_{k} A_{kj}^{2}}) = n_{ij} / \sqrt{(k_{ik} k_{j})}$

Pearson Correlation

Correlation coefficient between rows i and j

Euclidean Distance

$$d_{ij} = \sum_{k} (A_{ik} - A_{jk})^2$$

For a binary graph??

Euclidean Distance

$$d_{ij} = \sum_{k} (A_{ik} - A_{jk})^2$$

For a binary graph → Hamming distance
 Normalization → What could be the maximum possible distance?

Euclidean Distance

$$d_{ij} = \sum_{k} (A_{ik} - A_{jk})^2$$

- For a binary graph \rightarrow Hamming distance
- Normalization \rightarrow What could be the maximum possible distance?
- None of *i*'s neighbors (k_i) match with *j*'s neighbors

 $(k_j) \rightarrow k_i + k_j$ • Similarity = ____

$$\frac{d_{ij}}{k_i + k_j}$$

Automorphic Equivalence

Wasserman-Faust network

B and D are not structurally equivalent --> But do they look equivalent?

Automorphic Equivalence

Wasserman-Faust network

B and D are not structurally equivalent --> But do they look equivalent?

Yes --> they have exactly the same boss and the same number of workers --> If we swapped them, and also swapped the four workers, all of the distances among all the actors in the graph would be exactly identical

Regular Equivalence

- nodes *i* and *j* are regularly equivalent if their profile of ties is similar to other set of actors that are also regularly equivalent → recursive
- Consider the social role "mother": what are the social ties?

Regular Equivalence

- nodes *i* and *j* are regularly equivalent if their profile of ties is similar to other set of actors that are also regularly equivalent
 → recursive
- Consider the social role "mother": what are the social ties → husband, children, in-laws etc.
- All mothers will have a similar profile of such ties

- But still (possibly functionally) they share some similarity

Regular Equivalence

Class 1: at least 1 tie to class 1 + no ties to class 2

Class 2: at least 1 tie to class 1 + at least one tie to class 2

Class 3: no ties to class 1 and at least one tie to class 2

Computing Regular Equivalence

Regular Equivalence: vertices i, j are similar if i has a neighbor k that is itself similar to j

$$\sigma_{ij} = \alpha \sum_{k} A_{ik} \sigma_{kj} + \delta_{ij}$$

Matrix form

$$\sigma = \alpha \mathbf{A} \sigma + \mathbf{I}$$

$$\downarrow$$

$$\sigma = (\mathbf{I} - \alpha \mathbf{A})^{-1}$$

Ego-Centric Networks

