
 

Social Networks



 

Assortativity (aka homophily)
friendship network at US high school: vertices colored by race



 

Assortativity
Assortativity is a preference for a network's nodes to 

attach to others that are similar (assortative) or different 
(disassortative) in some way. 

 

Women

Men

1958 couples in the city of San Francisco, California --> self-identified their 
race and their partnership chocies



 

Assortativity (more examples)



 

Assortativity

Estimate degree correlation (rich goes with rich)
The average degree of neighbors of a node with 

degree k → <k
nn
>

<k
nn
> = ∑

k' 
k'P(k'|k)  

P(k'|k) the conditional probability that an edge of 
node degree k points to a node with degree k' 

Increasing → assortative → high degree node go 
with high degree node

Decreasing → diassortative → high degree node 
go with low degree node



 

Mixing Patterns
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Signed Graphs

signed network: network with signed edges
“+” represents friends
“-” represents enemies

How will our 
class look?



 

Possible Triads

(a), (b) balanced, relatively stable
(c), (d) unbalanced, liable to break apart
triad is stable ← even number of “-” signs around 

loop

 



 

Stable configurations 4 cycles??



 

Stable configurations 4 cycles??



 

Structural Holes

 Structural holes are nodes (mainly in a social network) that 
separate non-redundant sources of information, sources that are 
additive than overlapping

 Redundancy 
– Cohesion – contacts strongly connected to each other are likely to 

have similar information and therefore provide redundant information 
(same clor nodes) benefits

– Equivalence – contacts that link a manager to the same third parties 
have same sources of information and therefore provide redundant 
information benefit

Structural Hole



 

Social Cohesiveness (distance based)

Refers to the cliquishness
A complete clique is too strict to be practical
Most of the real groups have at least a few members 

who don’t know each other --> relaxing the definition
k-cliques  => Any maximal set S of nodes in which 

the geodesic path between every pair of nodes {u, v} 
ε S is <=k 

a

b c

d

ef

{a, b, c, f, e} is a k-clique 
--> What is the value of k?



 

Do you see the problem with the previous 
definition?

 

Social Cohesiveness (distance based)



 

Do you see the problem with the previous 
definition?

k-cliques might not be as cohesive as they look!

 

Social Cohesiveness (distance based)

a

b c

d

ef

Not a member of the 
clique {a, b, c, f, e} --> 
causes the distance  
between c and e to be 2



 

Soultion: k-clans
A k-clique in which the subgraph induced by S has 

a diameter <= k
{b, c, d, e, f} is a k-clan 
{b, e, f} also induces a subgraph that has 

diameter = 2 

Social Cohesiveness (distance based)

a

b c

d

ef



 

Soultion: k-clans
A k-clique in which the subgraph induced by S 

has a diameter <= k
{b, c, d, e, f} is a k-clan 
{b, e, f} also induces a subgraph that has 

diameter = 2 <-- NOT a k-clan 
– {a, b, f, e} is not maximal (k-clique criteria)

Social Cohesiveness (distance based)

a

b c

d

ef



 

Relax maximality condition on k-clans: k-club
{a, b, f, e} is a k-club

k-clan is a k-clique and also a k-club

Social Cohesiveness (distance based)

a

b c

d

ef



 

A k-plex is a maximal subset S of nodes such that 
every member of the set is connected to n-k other 
members, where n is the size of S

 

Social Cohesiveness (degree based)

a

b c

d

ef

{a, b, c, f} <-- 2-plex {a, b, e, d} <-- 2-plex



 

A k-core of a graph is a maximal subgraph such 
that each node in the subgraph has at least 
degree �

 

 

Social Cohesiveness (degree based)

2-core



 

A k-core of a graph is a maximal subgraph such 
that each node in the subgraph has at least 
degree �

 

 

Social Cohesiveness (degree based)

2-core

3-core (h
ighest k-

core)



 

Social Roles

"Positions" or "roles" or "social categories" are 
defined by "relations" among actors

Two actors have the same "position" or "role" to the 
extent that their pattern of relationships with other 
actors is the same

How does one define such a similarity?
Me (faculty) → IIT ←you (students): In some ways 

our relationships are same (“being governed”); but 
there are differences also: you pay them while they 
pay me

Which relations should count and which ones not, in 
trying to describe the roles of "faculty" and "student”?



 

Equivalence

Structural Equivalence

 

Wasserman-Faust network

Two nodes are said to be exactly 
structurally equivalent if they have the 
same relationships to all other nodes --> 
One should be perfectly substitutable by 
the other.

What are the equivalence classes?



 

Equivalence

Structural Equivalence

 

Wasserman-Faust network

Two nodes are said to be exactly 
structurally equivalent if they have the 
same relationships to all other nodes --> 
One should be perfectly substitutable by 
the other --> connected to exactly the 
same set of neighbors

What are the equivalence classes?



 

Equivalence

Structural Equivalence

 

Wasserman-Faust network

Two nodes are said to be exactly 
structurally equivalent if they have the 
same relationships to all other nodes --> 
One should be perfectly substitutable by 
the other --> connected to exactly the 
same set of neighbors

What are the equivalence classes?



 

Equivalence

Structural Equivalence

 

Wasserman-Faust network

Two nodes are said to be exactly 
structurally equivalent if they have the 
same relationships to all other nodes --> 
One should be perfectly substitutable by 
the other --> connected to exactly the 
same set of neighbors

What are the equivalence classes?



 

Equivalence

Structural Equivalence

 

Wasserman-Faust network

Two nodes are said to be exactly 
structurally equivalent if they have the 
same relationships to all other nodes --> 
One should be perfectly substitutable by 
the other --> connected to exactly the 
same set of neighbors

What are the equivalence classes?

Exact structural equivalence is likely to be rare (particularly in 
large networks) --> Examine the degree of structural 
equivalence --> Any idea about how to measure?



 

Degree of Equivalence

How to measure?
Hint: Number of common neighbors



 

Degree of Equivalence

How to measure?
Hint: Number of common neighbors

n
ij
 = ∑

k 
A

ik
A

kj   
←ijth element of the matrix A2

closely related to the cocitation measure (in 
directed networks) 

Any problem with this measure ← remember you 
are measuring the extent of similarity



 

Degree of Equivalence

How to measure?
Hint: Number of common neighbors

n
ij
 = ∑

k 
A

ik
A

kj   
←ijth element of the matrix A2

closely related to the cocitation measure (in 
directed networks) 

Any problem with this measure ← remember you 
are measuring the extent of similarity

Appropriate normalization



 

Cosine similarity

Inner product of two vectors

 =0 → Ɵ maximum similarity =90 → Ɵ no similarity
Consider ith and the jth row as vectors
cosine similarity between vertices i and j

σ
ij
 = (∑

k 
A

ik
A

kj 
)/(√∑

k 
A

ik
2√∑

k 
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2) = n
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/√(k

i
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)



 

Pearson Correlation

Correlation coefficient between rows i and j



 

Euclidean Distance

For a binary graph??



 

Euclidean Distance

For a binary graph →Hamming distance
Normalization → What could be the maximum 

possible distance?



 

Euclidean Distance

For a binary graph →Hamming distance
Normalization → What could be the maximum 

possible distance?

None of i's neighbors (k
i
) match with j's neighbors 

(k
j
) →k

i
+k

j

Similarity =



 

Equivalence

Automorphic Equivalence

 

Wasserman-Faust network

Franchise group of McDs

B and D are not structurally equivalent --> But do they look 
equivalent?

Headquarters

Store managers

Workers



 

Equivalence

Automorphic Equivalence

 

Wasserman-Faust network

Franchise group of McDs

B and D are not structurally equivalent --> But do they look 
equivalent?
Yes --> they have exactly the same boss and the same number of 
workers --> If we swapped them, and also swapped the four 
workers, all of the distances among all the actors in the graph would 
be exactly identical

Headquarters

Store managers

Workers



 

Equivalence

Regular Equivalence
nodes i and j are regularly equivalent if their 

profile of ties is similar to other set of actors that 
are also regularly equivalent → recursive

Consider the social role “mother”: what are the 
social ties?



 

Equivalence

Regular Equivalence
nodes i and j are regularly equivalent if their profile of ties is 

similar to other set of actors that are also regularly equivalent 
→ recursive

Consider the social role “mother”: what are the social ties → 
husband, children, in-laws etc. 

All mothers will have a similar profile of such ties 
Not structurally equivalent ← two mothers usually don't have 

same husband, children or in-law
Not automorphically equivalent ← Different mother have 

different numbers of husbands, children or in-law
But still (possibly functionally) they share some similarity



 

Equivalence

Regular Equivalence

 
Class 2: at least 1 tie to class 1 + at 
least one tie to class 2

Class 3: no ties to class 1 and at 
least one tie to class 2

Class 1: at least 1 tie to class 1 + no  
ties to class 2



 

Computing Regular Equivalence

Regular Equivalence: vertices i, j are similar if i 
has a neighbor k that is itself similar to j

Matrix form



 

Ego-Centric Networks
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