Solution 1: If a and b are nonzero rational numbers, then ab is a nonzero rational number, and so is ab/2, showing that the operation is closed on the set G. The operation is associative since a * (b * c) = a * ($bc/2$) = a ($bc/2$)/2 = a(bc)/4 and $(a * b) * c = (ab/2) * c = (ab/2)c/2 = (ab)c/4.$ The number 2 acts as the multiplicative identity, and if a is nonzero, then 4/a is a nonzero rational number that serves as the multiplicative inverse of a, since $a * (4/a) = (4a) / (2a) = 2.$ Solution 2: Assume that a and b are elements of G for which $(ab)2 = a2$ b2. Expanding this equation gives us $(ab)(ab) = a2 b2$. Since G is a group, both a and b have inverses, denoted by a-1 and b-1, respectively. Multiplication in G is well-defined, so we can multiply both sides of the equation on the left by a-1 without destroying the equality. If we are to be precise about using the associative law, we have to include the following steps. $a-1$ ((ab)(ab)) = $a-1$ (a2 b2) $(a-1 (ab)) (ab) = (a-1 a2) b2$ $((a-1 a) b)$ $(ab) = ((a-1 a) a) b2$ $(e b) (ab) = (e a) b2$ b $(ab) = a b2$ The next step is to multiply on the right by b-1. The associative law for multiplication essentially says that parentheses don't matter, so we don't really need to include all of the steps we showed before. b (ab) $b-1 = (a b2) b-1$ $(ba) (b b-1) = (a b) (b b-1)$ $ba = ab$ This completes the proof, since we have shown that if $(ab)2 = a2 b2$, then $ba = ab$. Solution 3: the generators correspond to the numbers less than 28 and relatively prime to 28. The Euler -function allows us to compute how many there are: $(28) = (1/2) \cdot (6/7) \cdot 28 = 12$. The list of generators is $\{ \pm 1, \pm 3, \pm 5, \pm 9, \pm 11, \pm 13 \}$. Solution 4 : (a) Show that the operation $*$ is closed on G. Solution: If a, b in G, then $a > 1$ and $b > 1$, so $b - 1 > 0$, and therefore $a(b-1)>(b-1)$. It follows immediately that $ab-a-b+2>1$. (b) Show that the associative law holds for *.

Solution: For a, b, c in G, we have $a * (b * c) = a * (bc - b - c + 2)$ $= a(bc-b-c+2) -a -(bc-b-c +2) +2$ $=$ abc $-ab$ $-ac$ $-bc$ $+a$ $+b$ $+c$. On the other hand, we have $(a * b) * c = (ab-a-b+2) * c$ $= (ab-a-b+2)c - (ab-a-b+2) -c +2$ $=$ abc $-ab$ $-ac$ $-bc$ $+a$ $+b$ $+c$. Thus $a * (b * c) = (a * b) * c$. (c) Show that 2 is the identity element for the operation $*$. Solution: Since the operation is commutative, the one computation $2 * y = 2y - 2 - y + 2 = y$ suffices to show that 2 is the identity element. (d) Show that for element a in G there exists an inverse a-1 in G. Solution: Given any a in G, we need to solve a $*$ $y = 2$. This gives us the equation ay - a - y + 2 = 2, which has the solution $y = a / (a-1)$. This solution belongs to G since $a > a - 1$ implies a / (a-1) > 1. Finally, $a * (a / a-1) = a2 / (a-1) - a - a / (a-1) + 2$ $=$ (a2 -a2 + a - a) / (a-1) + 2 = 2. Solution 5: The function µ preserves multiplication in R× since for all a,b in R× we have μ (ab) = (ab) 3 = a3 b3 = μ (a) μ (b). The function is one-to-one and onto since for each y in R× the equation μ (x) = y has the unique solution.