Solutions of Tutorial V Discrete Structures (CS21001)

Autumn Semester 2014

September 2, 2014

- 1. (a) $F_n = F_0 \cdot F_1 \cdots F_{n-1} + 2$. We will prove this by induction. When n = 1, $F_0 + 2 = 3 + 2 = 5 = F_1$. Now, assume $F_n = F_0 \cdot F_1 \cdots F_{n-1} + 2$. Then,
 - $F_0 \cdot F_1 \cdots F_n + 2 = F_0 \cdot F_1 \cdots F_{n-1} \cdot F_n + 2$ = $(F_n - 2) \cdot F_n + 2$ = $(2^{2^n} - 1) \cdot (2^{2^n} + 1) + 2$ = $2^{2^{n+1}} + 1$ = F_{n+1}
 - (b) Assume for contradiction that there exist F_i and F_j such that a > 1 divides both of them. Also, without loss of generality, assume that $F_j > F_i$.

Thus a divides both $F_0 \cdot F_1 \cdots F_{j-1}$ and F_j ; hence a divides their difference, 2. Since a > 1, this forces a = 2. This is a contradiction, because each Fermat number is clearly odd.

- 2. Let (S, \preccurlyeq) be a finite poset, and let A be a maximal chain. Because, (A, \preccurlyeq) is also a poset it must have a minimal element m. Suppose that m is not minimal in S. Then there would be an element a of S with $a \prec m$. However, this would make the set $A \cup a$ a larger chain than A. To show this, we must show that a is comparable with every element of A. Because m is comparable with every element of A and m is minimal it follows that $m \prec x$ when x is in A and $x \neq m$. Because $a \prec m$ and $m \prec x$, the transitive law shows that $s \prec x$ for every element of A.
- 3. Suppose that there are finitely many primes $p_1, p_2 \cdots p_k$. Let us take the number $P = p_1 \cdot p_2 \cdots p_k + 1$. If P is a prime number then we are done. Suppose, there is p which divides P, but p can't be any of $p_1, p_2 \cdots p_k$, otherwise p would divide the difference $P - p_1 \cdot p_2 \cdots p_k = 1$, which is impossible. Thus p is a new prime \Rightarrow a contradiction.

4. Let us prove this by contrapositive version.

Suppose $n = k^2$ for some k.

Case 1 : If $k \pmod{4} = 0$, then k = 4q, for some integer q. Then, $n = k^2 = 16q^2 = 4(4q^2)$, i.e. $n \pmod{4} = 0$.

Case 2 : If $k \pmod{4} = 1$, then k = 4q + 1, for some integer q. Then, $n = k^2 = 16q^2 + 8q + 1 = 4(4q^2 + 2q) + 1$, i.e. $n \pmod{4} = 1$.

Case 3 : If $k \pmod{4} = 2$, then k = 4q + 2, for some integer q. Then, $n = k^2 = 16q^2 + 16q + 4 = 4(4q^2 + 4q + 1)$, i.e. $n \pmod{4} = 0$.

Case 4 : If $k \pmod{4} = 3$, then k = 4q + 3, for some integer q. Then, $n = k^2 = 16q^2 + 24q + 9 = 4(4q^2 + 6q + 2) + 1$, i.e. $n \pmod{4} = 1$.

5. Suppose g, f are two one-to-one functions and there composition is $h = g \circ f$. Now, suppose for $a, b \ h(a) = h(b)$. Therefore, g(f(a)) = g(f(b)). Since, g is one-to-one it follows f(a) = f(b). But, as f is also one-to-one a = b i.e. h is also one-to-one.