Assignment 4 Solutions

- 1. Let P(n) be the proposition that H $_2^n \ge 1 + \frac{n}{2}$
 - P(0) is true as H₂⁰ = H₁ = 1 \geq 1 + $\frac{0}{2}$

The inductive hypothesis is the statement that P(k) is true that is $H_2^k \ge 1 + \frac{k}{2}$ ($k \in \mathbb{N}$)

We must show that if P(k) \Rightarrow P(k+1) i.e H $_2^{(k+1)} \ge 1 + \frac{k+1}{2}$ H $_2^{(k+1)} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2} + \frac{1}{4} + \frac{1}{4}$

=
$$H_2^k + 1/(2^k + 1) + \dots 1/2^{(k+1)}$$

 $\geq (1 + \frac{k}{2}) + 1/(2^k + 1) + \dots 1/2^{(k+1)}$
 $\geq (1 + \frac{k}{2}) + 2^k \cdot \frac{1}{2^{(k+1)}}$ (there are 2^k terms)
 $\geq (1 + \frac{k}{2}) + \frac{1}{2}$

$$\geq 1 + (k+1)/2$$

This establishes the proof

- 2. Lets formalise the problem in the following way
 - a $2^n \times 2^n$ board has 4^n squares. A domino has 3 squares in it. A
 - 2×2 board with 1 square removed can be tiled by a single domino.

So the entire problem boils down to whether a $4^n - 1$ square board can be tiled by 3n squares i.e whether $4^n - 1$ is divisible by 3

base case
$$4^1 - 1 = 3$$
 is divisible by 3

let $4^k - 1$ is divisible by 3 is given by P(k) we need to show whether we can imply $4^{k+1} - 1$ is divisible by 3

 $4^{(k+1)}-1=4^k.4-4+3=4(4^k-1)+3=4P(k)+3$ which is clearly divisible by 3 . This establishes the proof

3. We attempt proof by contradiction

lets assume $\sqrt{5}$ is rational hence it can be expressed as fraction $\frac{m}{n}$ where m,n $\in \mathbb{Z}$

 $m^2/n^2 = 5 \implies m^2 = 5 \, n^2$ Now LHS m2 must have even no of prime factors (counting each prime factors as many times as it occurs) but RHS has odd number of prime factors. Thus a product of even prime factors is equal to a product of odd prime factors which is a contradiction . hence $\sqrt{5}$ is not rational.

4. n is a positive integer

to prove
$$n^2 > 100 \implies n > 10$$

Let n not greater than 10 hence $1 \le n \le 10$

we know if
$$x \le y$$
 and $c \ge 0$ then $cx \le cy$
 $n.n \le n.10 \le 10.10 = 100$
hence max value of n^2 is 100 thus $\neg n > 10 \Rightarrow \neg n^2 > 100$
hence the premise is proved by contraposition

5. The statement P(n) is $n^2 + 3n + 2$ is even

$$P(1) = 6$$
 which is true

Consider P(k) is true

$$P(k+1) = (k+1)^2 + 3(k+1) + 2 \Rightarrow (k^2 + 3k + 2) + (2k+4)$$
$$\Rightarrow P(k) + 2(k+2)$$

P(k+1) sum of two even terms and clearly is even.

6. P(1) i.e base case is true because a set of 1 element has 2^1 subsets which are empty set and the set itself

Suppose P(n) is true . Now consider a set A with n+1 elements which is given by A $_{(n+1)} = A_n \cup (n+1)^{th}$ element . Now A $_n$ has 2 n subsets which are also subsets of A $_{(n+1)}$. The additional subsets are obtained by adjoining $(n+1)^{th}$ element to each of the subsets of A $_n$ which gives us additional 2 n elements . hence total number of subets is 2 n + 2 n = 2 $^{n+1}$. This completes the inductive step.