TUTORIAL 4

- 1) Given the poset ({1, 2, 3, 5, 6, 7, 10, 20, 30, 60, 70}, |)
 - a) Draw the Hasse Diagram for this poset.
 - b) Find the maximal elements.
 - c) Find the minimal elements.
 - d) Find the greatest element
 - e) Find the least element
 - f) Find all upper bounds of {2, 5}
 - g) Find the least upper bound of {2, 5} (if it exists)
 - h) Find all lower bounds of {6, 10}
 - i) Find the greatest lower bound of {6, 10} (if it exists)
 - j) is this poset a lattice? Justify your answer

Solution:-

ques14. http://web.mnstate.edu/jamesju/Fall2011/Content/M310Exam3F11PracSoln.pdf

2) Let S = {x, y, z}, and consider the set P(S) with relation R given by set inclusion. Is R a partial order?

Solution:

R is a partial order (i.e., R is reflexive, antisymmetric, and transitive). Recall elements A, B \in P(S) are subsets A, B \subseteq S. Then, ARB if and only if A \subseteq B. R is reflexive since A \subseteq A always. R is antisymmetric since if A \subseteq B and B \subseteq A, then A = B. R is transitive since if A \subseteq B and B \subseteq C, then A \subseteq C.

- 3) Prove that the direct product of any two distributive lattice is a distributive. Proof : Question 58 <u>http://iete-elan.ac.in/SolQP/soln/AC10_sol.pdf</u>
- 4) Prove that if l_1 and l_2 are elements of a lattice < L; V, $\Lambda >$ then $(l_1 \lor l_2 = l_1) \leftrightarrow (l_1 \land l_2 = l_2) \leftrightarrow (l_1 \le l_2)$

Proof: Let us use $b = l_1$ and $a = l_2$. It is given that a V b = b. Since a V b is an upper bound of a, $a \le a V b$. This implies $a \le b$.

Next, let $a \le b$. Since \le is a partial order relation, $b \le b$. Thus, $a \le b$ and $b \le b$ together implies that b is an upper bound of a and b. We know that $a \lor b$ is least upper bound of a and b, so $a \lor b \le b$. Also $b \le a \lor b$ because $a \lor b$ is an upper bound of b. Therefore, $a \lor b \le b$ and $b \le a \lor b \Leftrightarrow a \lor b = b$ by the anti-symmetry property of partial order relation \le . Hence, it is proved that $a \lor b = b$ if and only if $a \le b$.

5) If [L, Λ , V] is a complemented and distributive lattice, then the complement of any element a \in L is unique.

Proof :

Ans: Let I and 0 are the unit and zero elements of L respectively. Let b and c be two complements of an element $a \in L$. Then from the definition, we have

a $\land b = 0 = a \land c$ and a $\lor b = I = a \lor c$ We can write $b = b \lor 0 = b \lor (a \land c)$ = (b $\lor a$) \land (b $\lor c$) [since lattice is distributive] $= I \land (b \lor c)$ = (b ∨ c) Similarly, c = c ∨ 0 = c ∨ (a ∧ b) = (c ∨ a) ∧ (c ∨ b) [since lattice is distributive] = I ∧ (b ∨ c) [since ∨ is a commutative operation] = (b ∨ c)

The above two results show that b = c