Assignment 2 — Discrete Structures

- 1. Prove that the relation defined by $R = \{(x, y) | 2x + y \text{ is divided by 3}\}$ is an equivalence relation.
- 2. Is the relation defined as $R = \{(x, y)|x y \text{ is an odd integer }\}$ where x, y are integers an equivalence relation give proper justification ?
- 3. Let G be the digraph representation of a relation R on set S where $a, b \in S$, Prove that there is a path between a, b of length $n \iff (a,b) \in R^n$
- 4. Let $A = \{0, 1, 2, 3\}$ and let $R = \{(0,1), (1,1), (1,2), (2,0), (2,2), (3,0)\}$ be a relation on R. Find the Reflexive, Symmetric and Transitive Closure of R.
- 5. Given a directed graph, find whether it is possible to reach x from y, where x and y are nodes of the graph. Can you extend this to find the smallest cost of the path (assume every edge cost is ≥ 0)?
- 6. If R and S are equivalence relations on a set A, then the smallest equivalence relation containing both R and S is $(R \cup S)^{\inf}$ where $B^{\inf} = B^1 \cup B^2 \cup \dots$