Answers Tutorial 1

a) $x \in (A \cup B)' \Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \Leftrightarrow A \in A' \text{ and } x \in B' \Leftrightarrow x \in A' \cap B'$

b) Let $S = \{a, b, c, d\}$ Let $R_1 = \{(a, b), (b, c), (a, c)\}, R_2 = \{(b, c), (c, d), (b, d)\}$ be two transitive relations on S Consider $R_1 \cup R_2$, $(a, b) \in R_1 \cup R_2$ and $(b, d) \in R_1 \cup R_2$ however $(a, d) \notin R_1 \cup R_2$ hence it is not transitive

c) Let R, S be a relation on a set of natural numbers N a R b $\Rightarrow a < b$ and a S b $\Rightarrow a > b$, Both R and S are antisymmetric relations. Then $R \cup S = \{(a, b) : a \neq b\}$ This relation is cannot be antisymmetric

d) According to definition of R, $x \equiv (b \mod n)$ if (a-b)/n, $(x-x)/n \forall x \in \mathbb{Z}$ hence R is reflexive; if (x-y) is divisible by n then (y-x) is also divisible by n, hence R is symmetric. Since $(x, y) \land (y, x) \in R \mid x \neq y$ the relation is not antisymmetric. If $(x, y) \in R \land (y, z) \in R \Rightarrow x - y + y - z = x - z$ is also divisible by $n \rightarrow (x, z) \in R$ hence R is transitive. Thus R is a equivalence relation.

e) $(A \cup B) - (C - A)$ $\Rightarrow (A \cup B) \cap (C - A)'$ $\Rightarrow (A \cup B) \cap (C \cap A')'$ $\Rightarrow (A \cup B) \cap (C' \cup A)$ $\Rightarrow (A \cup B) \cap (A \cup C')$ $\Rightarrow A \cup (B \cap C')$ $\Rightarrow A \cup (B - C)$

f) The distance of any point in a set from itself is zero i.e. less than 1 hence R is reflexive. If a_1Ra_2 exist then a_2Ra_1 also exist because they both are less than 1, hence R is symmetric. If a_1Ra_2 exist and a_2Ra_3 exist $\Rightarrow a_1Ra_3$ because distance between a_1 and a_3 need not be less than 1, hence R is not transitive.