## Solutions of Tutorial XII Discrete Structures (CS21001)

## Autumn Semester 2014

## November 12, 2014

- 1. Construct the separate truth tables for  $(p \leftrightarrow q)$  and  $(r \leftrightarrow s)$  and combine.
- 2. (a) Converse: I'll ski tomorrow only if snows today.

Contrapositive: If I do not ski tomorrow, then it will not have snowed today

Inverse: If it does not snow today, then I'll not ski tomorrow.

(b) Converse: If I come to class, then there will be quiz.

Contrapositive: If I do not come to class, then there will not be a quiz.

Inverse: If there is not going to be quiz, then I do not come to class.

(c) Converse: A positive integer is a prime if it has no divisor except 1 and itself.

Contrapositive: If a positive integer has a divisor other than 1 and itself, then it is not a prime.

Inverse: If a positive integer is not a prime, then it has a divisor other than 1 and itself.

- 3.  $\rightarrow (p \lor (\neg p \land q))$   $\equiv \neg p \land \neg (\neg p \land q))$   $\equiv \neg p \land (p \lor \neg q))$   $\equiv (\neg p \land p) \lor (\neg p \land \neg q))$  $\equiv (\neg p \land \neg q))$
- 4. (a) Every comedian is funny.
  - (b) Some comedian is funny.
- 5. Let P(w, f) is "w has taken f" and Q(f, a) is "f is a flight on a".  $\exists w \forall a \exists f (P(w, f) \land Q(f, a))$
- 6. Suppose that  $p_1, p_2....p_n$  is true. We want to prove  $q \to r$  is true. If q is false then we are done vacuously. Otherwise q is true, then by the validity of the given argument (that  $p_1, p_2....p_n, q$  are true then r must be true), we know that r is true.