1. Which of the following assertions is/are true? Give short justifications.

a. The set of all complex numbers of the form x + iy with x, y integers and
with x even is a group under addition of complex numbers.

b. Let G be a multiplicative group in which (ab)1=a1b1for all a,b € G.
Then G is Abelian.

c. Letf: Gl — G2 be a homomorphism of finite groups and a € G1. Then
ord f(a) is an integral multiple of ord a.

d. Let G be a group and m, n € N with ged(m, n) = 1. Assume that G
contains elements a, b with ord a = m and ord b = n. Then G is cyclic.

ANS:
a.
True: 1t suffices only to check closure and inverse. If x, y, 2, i/ are integers then = 4 2" and y + 3/ are also
integers. Moreover, if = and 2" are even, then so also is x + ', Finally, the inverse of x + iy is —z — iy.
Here —z, —y are also integers and —z is also even (if z is s0).

b.
True: Let a,b € G. By the given property (a~b71)~! = (a=1)~1(5=1)~! = ab. Moreover, in any group
(a7~ = (6711 (a~1)~! = ba. Thus ab = ba.

C.
False: Take 1 = (9 to be any finite group and the trivial homomorphism f : G1 — G5 that maps every
a € Gy tothe identity eg € Go. If e # a € Gy, then ord a > 1, whereas ord f(a) = ordeg = 1.

d.
False: Take m,n > Land G = Cypy, X Cypp, Where C'yyy 1s @ multiplicative cyclic group of order mn. Let
¢ be a generator of C'y,,,. Take a = (¢",¢) and b = (g™, €).

2. Prove that an infinite group has infinitely many subgroups.

Solution Let G be an infinite multiplicative group. If G has an element a of infinite order, then for every
n € N, G has a subgroup generated by ¢". These subgroups are different for different values of n.

Finally assume that all elements of G have finite orders. Let ay, as, ..., (y, ... be distinct elements of G.
Consider the subgroups H,, = (a,) for all n € N. Suppose that there are only finitely many different
subgroups in the family Hy, Hy, Hs, ... of subgroups. This means there exists an n € N such that
H, = Hy,.1 = Hyy9 = ---. Butay, is of finite order, i.e., H,, is a finite group and cannot contain all
of the infinitely many elements a, 11, ap+9, Gpe3, .. .. If a,, ¢ H, for some m > n, then H,, # H,, a
contradiction.



3. Let G be a multiplicative group and H, K subgroups of G with H N K = {e}.
Assume that G = HK = thk | h € H, k € K}. Prove that every element a € G
can be written as a = hk for some unique elements h € H and k € K.

Solution Let a € G be written as @ = hiky = hoky with hi.hg € H and ki, ko € K. The element

111_111-2 = kiky : belongs to H N K and is the identity element by hypothesis. But then iy = h9 and
1\'1 = l\").

4. Let G be an Abelian group. An element a € G is called a torsion element of G

if ord a is finite. Prove that the set of all torsion elements of G is a subgroup
of G.

Solution Denote by H the set of all elements of G of finite orders.

[Closure] Let a,b € H, orda = m and ord b = n. But then (ab)™" = a™"b™" = (a™)"(b")™ = ¢, ie.,
ord(ab) | mn. In particular, ord(ab) is finite, i.e., ab € H.

[Inverse] Leta € H. Since a* = eif and only if (a*) ™ = (a™)* = e, we have ord(a™!) = ord a.

5. Prove that for any integer n > 3 the multiplicative group Z*s" is not cyclic.
(Hint: You may look at the elements 201 + 1.) [ Here, Z*s» = (Z/277) i.e. group
of all the integer remainder values if the integer is divided by 2. For
example, Znis a group of {0, 1, 2, ..., n-1}. ]

Solution  For n > 3 the elements 2"~! = 1 are distinct modulo 2" and neither of them is the identity
element. Also (2““1 + 1]2 — 222 1 9n 1 1 — 1 modulo 2", since 2n — 2 > nforn > 3. Thus 21 — 1
and 2"~ 4 1 are distinct elements of Z3, of order 2. i.e.. G has two distinct subgroups {1,2"~! — 1} and
{1,271 £ 1} of the same size 2. We know that a finite cyclic group of order r has a unique subgroup of
order s for every divisor s of r. Therefore, Z3, cannot be cyclic.



