
Discrete Structures - Tutorial 6

Inclusion-Exclusion Principle

1. Call a number “prime-looking” if it is composite but not divisible by 2,
3, or 5. The three smallest prime-looking numbers are 49, 77, and 91.
There are 168 prime numbers less than 1000. How many prime-looking
numbers are there less than 1000? [BONUS]

Soln: For any positive integers N and m, the number of integers divisible
by m which are less than N is given by ⌊(N − 1)/m⌋. Turning to the
problem, below 1000 there are ⌊999/2⌋ = 499 numbers divisible by 2,
⌊999/3⌋ = 333 numbers divisible by 3,
⌊999/5⌋ = 199 numbers divisible by 5,
⌊999/6⌋ = 166 numbers divisible by 6 = 2×3,
⌊999/10⌋ = 99 numbers divisible by 10 = 2×5,
⌊999/15⌋ = 66 numbers divisible by 15 = 3×5, and
⌊999/30⌋ = 33 numbers divisible by 30 = 2×3×5.
According to the Inclusion-Exclusion Principle, the amount of integers
below 1000 that could not be prime-looking is 499+ 333+ 199− 166−
99− 66 + 33 = 733.

There are 733 numbers divisible by at least one of 2, 3, 5. Note that this
count includes (prime) 2, 3, and 5. What can be said of the remaining
999− 733 = 266 numbers?
These are the numbers that are not divisible by either 2, 3, or 5. Are
these prime-looking? No, not all of them. Some are really prime, not
just appearing so. As was stated in the problem, there are 168 are
primes below 1000. We have to exclude those. But number 2, 3, 5
have been discounted before, which leaves us with 165 primes extras.
Subtracting gives 266−165 = 101. Now, a final observation. Number 1
is not divisible by any greater number, 2, 3, 5 in particular. Thus it was
not counted among the 733 composite numbers above. So, it is counted
among the remaining 266 and, not being a prime, among the last group
of 101 numbers. These are the numbers that are not divisible by either
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2, 3, or 5, which trivially includes 1. But 1 is not composite and thus is
not prime-looking. To get the total of prime-looking numbers we have
to remove 1 from the count, leaving 101− 1 = 100.

2. In how many ways can a poker hand (5 cards) be selected from a regular
deck (52 cards) such that the hand contains at least one card in each
suit?

Soln: Let si be the property that the hand does not have any card of suit
i, i = ♣,♦,♥,♠.
N = 52C5

N(si) =
39C5

N(sisj) =
26C5

N(sisjsk) =
13C5

N(sisjsksl) = 0
N = N−(4C1)N(si)+(4C2)N(sisj)−(4C3)N(sisjsk)+(4C4)N(sisjsksl)
N = 52C5 − 4× 39C5 + 6× 26C5 − 4× 13C5 + 0 = 685, 464

3. How many integer solutions are there to the system x1 + x2 + x3 =
12; 0 ≤ xi ≤ 5, i ∈ {1, 2, 3}?

Soln: We know that x1 + x2 + · · ·+ xk = n has n+k−1Ck−1 solutions in non-
negative integers. Let A be the set of integer solutions to the system
x1 + x2 + x3 = 12; xi ≥ 0, there are 14C2 = 91 solutions. We want
to throw out the ones with xi ≥ 6 for some i, so for i = {1, 2, 3} let
Ai = {(x1, x2, x3) ∈ A : xi ≥ 6}. Thus, the question is now asking us
for the size of A1 ∪A2 ∪ A3.

The first step is to find the size of the sets Ai. Now, |A1| is the number
of integer solutions to x1 + x2 + x3 = 12 with x1 ≥ 6 and x2, x3 non-
negative, which (letting x′

1 = x1 − 6) is the same as the number of
solutions to x′

1 + x2 + x3 = 6 in non-negative integers. We know from
above that there are 6+2C2 of these, so by symmetry |A1| = |A2| =
|A3| =

8C2 = 28.
Next, we need to know the size of the pairwise intersections Ai ∩ Aj .
Of course, the only solution in A satisfying (for example) x1, x2 ≥ 6
is x1 = x2 = 6, x3 = 0, so these intersections all have size 1. Lastly,
we need to know the size of A1 ∩ A2 ∩ A3. Clearly this set is empty
(there are no solutions to our equation with each variable at least six),
so finally the answer we want is 91− 3× 28 + 3× 1− 0 = 10.
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Pigeonhole Principle

4. There are several people in the room. Some are acquaintances, others
are not. (Being acquainted is a symmetric, non-reflexive relationship.)
Show that some two people have the same number of acquaintances.

Soln: If there are N people in the room and each has a different number
of acquaintances then one person (A, say) is bound to have N − 1
and one person (B, say) 0 acquaintances. However, if A were to have
N − 1 acquaintances, then he must know every other person in the
room including B; but then B cannot have 0 acquaintances (since being
acquainted is a symmetric relationship). — This is a contradiction.

5. Show that among any n + 1 numbers one can find 2 numbers so that
their difference is divisible by n.

Soln: Since there are only n possible remainders on division by n, and we
have n+1 numbers, by the pigeonhole principle some two of them have
the same remainder on division by n. Thus we can write these two
numbers as n1 = nk1+ r and n2 = nk2+ r where r is the remainder on
division by n. Then, their difference is n1−n2 = (nk1+r)−(nk2+r) =
nk1 − nk2 = n(k1 − k2) which is divisible by n.

6. Show that for any natural number n there is a number composed of
digits 5 and 0 only and divisible by n. (Hint: Use the claim of the
above problem.) [BONUS]

Soln: We will use the previous problem. We want to find a number divisible
by n; the previous problem tells us that given any set of n+1 numbers,
some two of them have a difference that is divisible by n. So we should
try to find a set of n + 1 numbers with the property that for any two
of them, the difference is a number composed of digits 5 and 0 only.
One possibility is the sequence of numbers 5, 55, 555, 5555, . . ., since the
difference of any two of these will be some number of 5’s followed by
some number of 0’s. So we can take the first n+1 numbers whose only
digits are 5, and there must be some pair whose difference is composed
of only 5’s and 0’s, and divisible by n.

7. Consider a chess board with two of the diagonally opposite corners
removed. Is it possible to cover the board with pieces of domino whose
size is exactly two board squares?
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Soln: No, it’s not possible. Two diagonally opposite squares on a chess board
are of the same color. Therefore, when these are removed, the number
of squares of one color exceeds by 2 the number of squares of another
color. However, every piece of domino covers exactly two squares and
these are of different colors. Every placement of domino pieces estab-
lishes a 1-1 correspondence between the set of white squares and the
set of black squares. If the two sets have different number of elements,
then, by the Pigeonhole Principle, no 1-1 correspondence between the
two sets is possible.
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