Discrete Structures Tutorial 1

1. Prove the following set identity using the element method (prove X = Y by proving $X \subseteq Y$ and $Y \subseteq X$).

$$(A \cup B)' \cap C = C - (A \cup B)$$

Solution:

Let $X = (A \cup B)' \cap C$ and $Y = C - (A \cup B)$

• Claim: $X \subseteq Y$.

Proof:

Let $x \in X$. $x \in (A \cup B)' \cap C$.

By definition of set intersection, $x \in (A \cup B)'$ and $x \in C$.

By set complement, x not \in (A \cup B).

By definition of set difference, $x \in C - (A \cup B)$.

Thus $x \in Y$, and $X \subseteq Y$.

• Claim: $Y \subseteq X$.

Proof:

Let $y \in Y \cdot y \in C - (A \cup B)$

By definition of set difference, $y \in C$ and y not $\in (A \cup B)$.

By definition of set complement, $y \in (A \cup B)'$.

Then, by definition of set intersection, $y \in (A \cup B)' \cap C$.

Therefore $y \in X$, and $Y \subseteq X$.

Since $X \subseteq Y$ and $Y \subseteq X$, X = Y.

2. Prove that $(A \times A) \cup (B \times C) = (A \cup B) \times (A \cup C)$

Solution:

take $A = \{0\}$, $B = \phi$, $C = \{0,1\}$

LHS : $\{(0,0)\} \cup \phi$

RHS: $\{0\}x\{0,1\} = \{(0,0),(0,1)\}$

3. Prove that $(A \times A) \cap (B \times C) = (A \cap B) \times (A \cap C)$

Solution:

If $(x,y) \in (A \times A) \cap (B \times C)$ then $(x,y) \in (A \times A)$ and $(x,y) \in (B \times C)$. Thus, $x \in A$, $y \in A$, $x \in B$, $y \in C$. So, $x \in (A \cap B)$, $y \in (A \cap C)$

similarly the reverse way

4. If $2^A \subseteq 2^B$, what is the relation between A and B?

Solution:

 2^A is the set of all subsets of A, including A itself. The condition tells us that every subset of A is also a subset of B, and in particular A itself is a subset of B. So A \subseteq B.

5. If a(t), b(t) and c(t) are the lengths of the three sides of a triangle

t in non-decreasing order (i.e. $a(t) \le b(t) \le c(t)$), we define the sets:

- $X := \{Triangle t : a(t) = b(t)\}$
- $Y := \{Triangle t : b(t) = c(t)\}$
- T := the set of all triangles

Using only set operations on these three sets, define:

- (a) The set of all equilateral triangles (all sides equal)
- (b) The set of all isosceles triangles (at least two sides equal)
- (c) The set of all scalene triangles (no two sides equal)

Solution:

- (a) We require a(t) = b(t) and b(t) = c(t) (this obviously implies a(t) = c(t)), so the set is $X \cap Y$.
- (b) An isosceles triangle t can have

i.
$$a(t) = b(t)$$
, or

ii.
$$b(t) = c(t)$$
, or

iii.
$$a(t) = c(t)$$
.

Now we have assumed that a(t), b(t) and c(t) are in non-decreasing order, so the last condition holds if and only if both the first two do. So the required set is $X \cup Y \cup (X \cap Y)$, which simplifies to just $X \cup Y$.

(c) A scalene triangle has its two smaller sides a(t) and b(t) unequal (set $T\setminus X$) and its two larger sides b(t) and c(t) unequal (set $T\setminus Y$). Since the sides are listed in nondecreasing order, either of the above conditions guarantees a(t) \neq c(t). So the required set is $(T\setminus X) \cap (T\setminus Y)$.

An alternative argument is: A triangle is scalene if and only if it is not isosceles. So using the result of the previous part, the set of scalene triangles is $T\setminus (X \cup Y)$.

6. Let us define pairwise addition: A \oplus B := {a + b : a \in A, b \in B} and pairwise

multiplication: $A \otimes B := \{a \times b : a \in A, b \in B\}$. Under the definition of such set operations, answer the following questions:

- a) If E is the set of all positive even numbers, what is the shortest way to write the set of all positive multiples of 4? Of 8?
- b) Let $S := \{n^2 : n \in N^+\}$. A Pythagorean triple consists of three positive integers x, y and z such that $x^2 + y^2 = z^2$. Construct the set of all possible z^2 such that z is the last element of a Pythagorean triple using only the set S and the set operations you have been taught so far and the pairwise addition and multiplication operations defined above.

Solution:

- a) Let F be the set of multiples of 4. We claim that $F = E \otimes E$. Every positive even number can be written as 2k for some $k \in N +$, so $E \otimes E$ consists of elements of the general form $2j \times 2k = 4jk$, for $j, k \in N +$. In other words, every element of $E \otimes E$ is a multiple of 4, so $E \otimes E \subseteq F$. Also, every multiple of 4 is of the form $4k = 2 \times 2k$, for $k \in N +$, so $F \subseteq \{2\} \otimes E \subseteq E \otimes E$. This proves the claim.
- A virtually identical argument shows that T, the set of positive multiples of 8, is $E \otimes E \otimes E$.
- b) The set of all possible numbers of the form $x^2 + y^2$, where x and y are positive integers, is $S \oplus S$. If such a number is also the square of a positive integer z, it must be in $(S \oplus S) \cap S$, which is the required set.