TUTORIAL QUIZ II

 One day Akbar asked birbal to prove that he is the wisest man in his kingdom. Birbal thought it must be Akbar's trick so he challenged Akbar to give him a sequence of n randomly selected numbers arranged in any order which Akbar wants to and then he(Birbal) would find indices i and j such that the sum of numbers between i and j would be divisible by n. Akbar made a announcement that whoever can come up with such a sequence will be rewarded heavily. Can Akbar win? Justify your answer.

(Note-If yes, then give such a sequence which satisfies the above condition....)

2) Let $\tau \in S_n$ (symmetric group), and write τ as a product of disjoint cycles (including 1-cycles):

$$\tau = \tau_1 \tau_2 \cdots \tau_m$$

Let $(x_1 x_2 \cdots x_k)$ be a k-cycle in S_n . Prove that for any $\sigma \in S_n$, $\sigma(x_1 x_2 \cdots x_k)\sigma^{-1} = (\sigma(x_1) \sigma(x_2) \cdots \sigma(x_k)).$

Where, the symmetric group S_n on a finite set of n symbols is the group whose elements are all the permutations of the n symbols.

3) Let, h be a group homomorphism from a group G to a group H. We define kernel of h as follows

$$\ker(h) := \{ u \in G : h(u) = e_H \}.$$

Prove that h is one-to-one if and only if Ker (h) = {e}.