Discrete Structures (CS21001)

Quiz 1

20 marks

- A number p ∈ N is perfect if it equals the sum of its positive divisors less than itself. Examples:
 - The number 6 is perfect since 6 = 1+2+3.
 - The number 28 is perfect since 28 = 1+2+4+7+14
- a. Prove that if A = { $2^{n-1} (2^n 1) : n \in N$, and $2^n 1$ is prime } and P = { $p \in N : p$ is a perfect number }, then A \subseteq P. (4 marks)
- b. Using 31 as a prime, generate a perfect number. (1 mark)
- c. Using part (a) as result, prove that if $A = \{ 2^{n-1} (2^n 1) : n \in N, and 2^n 1 \text{ is prime} \}$ and $E = \{ p \in N : p \text{ is perfect and even} \}$, then A = E. (5 marks)
- 2. An isomorphism from a poset (S_1, R_1) to a poset (S_2, R_2) is a bijection $f:S_1 \rightarrow S_2$ such that, for all $x, y \in S_1 : (x, y) \in R_1$ iff $(f(x), f(y)) \in R_2$

When such an isomorphism exists, we say that (S_1,R_1) is isomorphic to (S_2,R_2) .

Prove that isomorphism relation is an equivalence relation. (6 marks)

3. Let (L, \leq) be a lattice in which \land and \lor denote the operations of meet and join, respectively. Prove that for any $a, b \in L$,

 $a \le b \iff a \land b = a \iff a \lor b = b$ (4 marks)