
  

Community Identification/Clustering

Groups of nodes that are densely connected 
amongst themselves while being sparsely 
connected to the rest of the network

Each 
component is a 

community
A densely-knit 
 community 

Definition of a community 
can be subjective.

Definition of a community 
can be subjective.



  

Examples
Communities ← Facebook Communities ← Flickr



  

Might not be easy to see through ...



  

Applications

Drug interactions
Disease spreading
CPU optimization
Recommendation
Layout optimization
Lexical analysis
Many others ....



  

Computational Metods

Agglomerative
– make an empty graph (N nodes, 0 edges)

– add edges into empty graph maximizing 
something in original network

Divisive
– cut edges in prescribed order until communities 

separate

Spectral
– split graph based on eigenvalues/eigenvectors of 

Graph Laplacian



  

Similarity Measures

Choosing (dis)similarity measures – a 
critical step in community finding/clustering

Recall that the goal is to group together “similar” 
data – but what does this mean?



  

Similarity Measures

Choosing (dis)similarity measures – a 
critical step in community finding/clustering

Recall that the goal is to group together “similar” 
data – but what does this mean?

No single answer – it depends on what we want to 
find or emphasize in the data; this is one reason 
why clustering is an “art”

The similarity measure is often more important 
than the clustering algorithm used – don’t overlook 
this choice!



  

Agglomerative Method

Start with every data point in a separate 
cluster

Keep merging the most similar pairs of data 
points/clusters until we have one big cluster 
left

This is called a bottom-up or agglomerative 
method



  

Agglomerative Method

 This produces a 
binary tree or 
dendrogram

 The final cluster is 
the root and each 
data item is a leaf

 The height of the 
bars indicate how 
close the items are



  

Linkages

We already know about distance measures 
between data items, but what about between a 
data item and a cluster or between two 
clusters?

We just treat a data point as a cluster with a 
single item, so our only problem is to define a 
linkage method between clusters

As usual, there are lots of choices…



  

Types of Linkages

Single Linkage: The minimum of all pairwise 
distances between points in the two clusters

Complete Linkage: The maximum of all 
pairwise distances between points in the two 
clusters

Average Linkage: Compute average of all 
pairwise distances between two clusters



  

Running Example

Clustering of distances in kilometers between some Italian 
cities



  

Problems

They do not scale: O(n3)
Steps once done cannot be undone
Arbitrary cut-offs need to set to arrive at a 

community structure



  

Local algorithm based on agglomeration
Bagrow, J. Stat. Mech., 2008, also: Bagrow, Bollt, Phys. Rev. E, 2005

Agglomerate nodes one at a 
time

Maintain two groups, the 
community C and the border 
B

nodes in B have been 
explored but are not yet in C

Move nodes from B to C in 
specfied order, Outwardness 
(Ω) 



  

Local algorithm based on agglomeration
Bagrow, J. Stat. Mech., 2008, also: Bagrow, Bollt, Phys. Rev. E, 2005

Ω
v
 = (# of neighbors of v outside C - 

# of neighbors of v inside C)/k
v

Ω
i
 = 2/3, Ω

j
 = -1

Algorithm
1. Choose starting node s: C = {s};  

 B = {neighbors of s};

2. Add v є B to C, where Ω
v
 = 

min{Ω};

3. Update B, Ω's, repeat from 2;



  

Local algo in execution



  

Local algo in execution



  

Local algo in execution



  

Local algo in execution



  

Divisive Method

Prototypical example: Edge 
betweenness based

betweenness(e
ij
) = number of 

times e
ij
 appears in all 

shortest paths
High betweenness edges are 

more “central”



  

In Execution

0 cuts 100 cuts

500 cuts120 cuts



  

Calculating Betweenness

Use BFS for shortest path
O(m) for each source node
O(mn) for all nodes
For m cuts O(m2n)
Sparse graph O(n3)



  

How good is a community

Communities are dense compared to 
random case

Measured in terms of modularity
Total number of in-community edges – 

expected number of edges if there is no 
community structure



  

Modularity Optimization (Blondel et al.)



  

On Execution



  

Infomap



  

In Execution



  

Spectral Bisection

Second eigenvector components
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In Execution

Neutra
l

Second eigenvector components
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In Execution

Neutra
l

Posit
ive 
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Negative 
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