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Degree Distribution: The case of 
Citation Networks

 Papers (in almost all fields) refer to works done 
earlier on same/related topics – Citations

 A network can be defined as
Each node is a paper
A directed edge from paper                          

A to paper B indicates A cites B

 These networks are acyclic 
 Edges point backward in time!



 

Law of Scientific Productivity

 Alfred Lotka (1926) did some analysis of such a 
citation network and made a statement

 the number of scientists who have k citations falls off as k -α 
for some constant α.

 Considering each node in the citation network to be 
representative of scientists can you say what exactly 
did Lotka study???

The distribution of the degree of the nodes !!!



 

Degree Distribution: Formal Definition
 Let pk be the fraction of vertices in the network that 

has a degree k

 Hence pk is the probability that a vertex chosen 
uniformly at random has a degree k

 The k versus pk plot is defined as the degree 
distribution of a network

 For most of the real world networks these 
distributions are right skewed with a long right tail 
showing up values far above the mean – pk varies as 
k-α 



 

The Definition Slightly Modified 
 Due to noisy and insufficient data sometimes 

the definition is slightly modified

 Cumulative degree distribution is plotted

 Probability that the degree of a node is 
greater than or equal to k



 

A Few Examples

Power law: Pk ~ k-α 



 

Scale-free

For any function f(x)

the independent variable when rescaled f(ax)

does not affect the functional form bf(x)

Power-laws – are they scale-free??? 



 

Swedish sex-web

Nodes: people (Females; Males)
Links:  sexual relationships

Liljeros et al. Nature 2001

4781 Swedes; 18-74; 
59% response rate.



 

Friend of Friends are Friends

 Consider the following scenario

 Subhro and Rishabh are friends
 Rishabh and Bibhas are friends
 Are Subhro and Bibhas friends? 
 If so then …

 This property is known as transitivity

Subhro

Rishabh Bibhas



 

Measuring Transitivity: Clustering Coefficient
 The clustering coefficient for a vertex ‘v’ in a 

network is defined as the ratio between the total 
number of connections among the neighbors of ‘v’ 
to the total number of possible connections between 
the neighbors

 The philosophy – High clustering coefficient means 
my friends know each other with high probability – a 
typical property of social networks



 

Mathematically…
The clustering index of a vertex i is

The clustering index of the whole network 
is the average

Ci =
# of links between neighbors

n(n-1)/2

C=
1

N
∑Ci

Network C Crand L N

WWW 0.1078 0.00023 3.1 153127

Internet 0.18-0.3 0.001 3.7-3.76
3015-
6209

Actor 0.79 0.00027 3.65 225226

Coauthorship 0.43 0.00018 5.9 52909

Metabolic 0.32 0.026 2.9 282

Foodweb 0.22 0.06 2.43 134

C. elegance 0.28 0.05 2.65 282



 

The World is Small!

 All late registrants in the Complex Networks course shall 
get 10 marks bonus!!!!!

 How long do you think the above information will take to 
spread among yourselves

 Experiments say it will spread very fast – within 6 hops 
from the initiator it would reach all 

 This is the famous Milgram’s six degrees of separation



 

Milgram’s Experiment

Travers & Milgram 1969: classic study in early 
social science
 Source: Kharagpur stockbrokers
 Destination: A Kolkata stockbroker (Kharagpur & 

Kolkata are “randoms”)
 Job: Forward a letter to a friend “closer” to the 

target
 Target information provided:

name, address, occupation, firm, college, wife’s name 
and hometown



 

Findings

Most of the letters in this experiment were lost…

Nevertheless a quarter reached the target

Strikingly those that reached the target passed through  the hands of
six people on an average

In fact

- 64 of 296 chains reached the target

average length of completed chains: 5.2

Is our class a small-world???



 

Centrality measures are commonly described as indices of

– prestige, 

– prominence, 

– importance, 

– and power -- the four Ps

A measure indicating the importance of a vertex

 

Centrality



 

Degree Centrality

Degree Centrality – Immediate neighbors of a vertex 
(k) expressed as a fraction of the total number of 
neighbors possible

Variance of degree centrality – Centralization

Star network – an ideal centralized one

Line network – less centralized



 

Betweenness Centrality

Tries to determine how important is a node in a 
network

Degree of a node doesn’t only determine its 
importance in the network – do you agree???



 

Betweenness Centrality

Tries to determine how important is a node in a network
Degree of a node doesn’t only determine its importance 

in the network – do you agree???
The node can be on a bridge centrally between two 

regions of the network!!

 



 

Betweenness Centrality

Centrality of v: Geodesic path between s and t via v 
expressed as a fraction of total number of geodesic 
paths between s and t

 



 

Betweenness Centrality

Removal – what can this lead to??

 



 

Betweenness Centrality

Removal – what can this lead to??
Increase in the geodesic path – extreme case 

is infinity (network gets disconnected)
Can you visualize the impact of removal of 

the nodes with high betweenness in the 
following networks??

– Epidemic network

– Information network 

– Traffic network



 

Flow Betweenness
What if the nodes with high betweenness behave as 

reluctant brokers and do not allow two other nodes (of 
different regions) to establish a relationship. 

They must find other ways to establish relationship (may not 
be cost effective) 

– Something like “wanting to propose someone via a third party 
(say his/her friends) who is also (kind of) your friend – but 
this common friend is reluctant to pursue the proposal!”

This is the main idea of flow betweenness
Takes into account all paths (not only the shortest ones) 

from s to t via v – computationally quite intractable for large 
networks.



 

Eigenvector Centrality (Bonacich 1972)

In context of HIV transmission – A person x with 
one sex partner is less prone to the disease than 
a person y with multiple partners



 

Eigenvector Centrality (Bonacich 1972)

In context of HIV transmission – A person x with 
one sex partner is less prone to the disease than 
a person y with multiple partners

But imagine what happens if the partner of x has 
multiple partners

It is not just how many people knows me counts 
to my popularity (or power) but how many people 
knows people who knows me – this is recursive!

The basic idea of eigenvector centrality



 

Eigenvector Centrality

Idea is to define centrality of vertex as sum of 
centralities of neighbors.

Suppose we guess initially vertex i has centrality 
x

i
(0)

Improvement is x
i
(1) =  ∑

j 
A

ij
 x

j
(0)

Continue until there is no more improvement 
observed

So, x(t) = Ax(t-1) => x(t) = Atx(0) [Power iteration 
method proposed by Hotelling]



 

Eigenvector Centrality

Express  x(0) as linear combination of eigenvectors 
v

i
 of adjacency matrix A

x(0) = ∑
i 
c

i
v

i 
=> x(t) = At∑

i 
c

i
v

i 
=>x(t) = ∑

i 
λ

i
tc

i
v

i 

Or, x(t) = 
 
λ

1
t∑

i 
(λ

i
/λ

1
)tc

i
v

i 

In the limit of large number of iterations,

Lt 
t → ∞ 

(1/λ
1

t) x(t) = c
1
v

1

Limiting centrality should be proportional to leading 
eigenvector v

1



 

Eigenvector centrality for directed networks

Can be recast for directed networks (e.g., the link 
structure of the Web)

Problem of zero centrality in directed network
– A has centrality 0 as there are no  incoming edges 

(seems reasonable for web page)

– But B has one incoming edge from A; centrality of B 
is 0 because A has centrality 0

– centralities all 0 in acyclic network

A

B



 

Katz Centrality

Give every node small amount of centrality for 
free α, β  > 0     

x
i
 =  α∑

j 
A

ij
 x

j 
+ β

 

 Avoids problem of zero centrality
In matrix terms,  x = αAx + β1 where 1 = (1,1,…,1)T

So, x = β (Ι − α A)-11
Katz centrality: set β = 1 => x = (Ι − α A)-11
Compute Katz centrality by iterating x(t) = αAx(t-1) 

+ β
=> avoid inverting the matrix directly



 

PageRank

Link analysis algorithm → Assigns link popularity
Named after Larry Page
Google trademark
Variant of Katz similarity

 

C has less links than E but 
more popularity (derived from 
the popularity of B due to the 
in-link)



 

PageRank

How can you make yourself popular??

 



 

PageRank

How can you make yourself popular??

 



 

PageRank: Calculation

Variant of Katz similarity

x
i
 =  α∑

j 
A

ij
 x

j
/k

j
out + β

But if k
j
out  is 0??

Easy fix: since vertex with zero out-degree 
contributes zero to centralities of other vertices,  
set   k

j
out  = 1 in above calculation

Matrix terms,  x = αAD-1x + β1 => x = β (Ι − α AD-1)-11

D is the diagonal matrix such that D
ii
 = max(k

j
out,1)



 

PageRank
 Google uses β = 1, α = 0.85 (no theory behind this choice)

 Used in measuring impact factor → a measure reflecting the average number 
of citations to articles published in science and social science journals

 Eigenfactor → journals are rated according to the number of incoming 
citations, highly ranked journals make larger contribution to the eigenfactor 
than the poorly ranked journals

16.78 Nature

16.39 Journal of Biological Chemistry

16.38 Science

14.49 PNAS

8.41 PHYS REV LETT

5.76 Cell

5.70 New England Journal of Medicine

4.67 Journal of the American Chemical Society

4.46 J IMMUNOL

4.28 APPL PHYS LETT

http://en.wikipedia.org/wiki/Nature_(journal)
http://en.wikipedia.org/wiki/Journal_of_Biological_Chemistry
http://en.wikipedia.org/wiki/Science_(journal)
http://en.wikipedia.org/wiki/Proceedings_of_the_National_Academy_of_Sciences
http://en.wikipedia.org/wiki/Physical_Review_Letters
http://en.wikipedia.org/wiki/Cell_(journal)
http://en.wikipedia.org/wiki/The_New_England_Journal_of_Medicine
http://en.wikipedia.org/wiki/Journal_of_the_American_Chemical_Society
http://en.wikipedia.org/wiki/Journal_of_Immunology
http://en.wikipedia.org/wiki/Applied_Physics_Letters


 

Interpreting web surfing

Iinitially, every web page chosen uniformly at 
random

With probability α, perform random walk on web 
by randomly choosing hyperlink in page

With probability 1 - α, stop random walk and 
restart web surfing

PageRank → steady state probability that a web 
page is visited through web surfing



 

Interpreting web surfing

Iinitially, every web page chosen uniformly at 
random

With probability α, perform random walk on web 
by randomly choosing hyperlink in page

With probability 1 - α, stop random walk and 
restart web surfing

PageRank → steady state probability that a web 
page is visited through web surfing

??

??



 

Transition matrix

Adjacency matrix A Transition matrix P

1

1

1
1

1

1/2

1/2
1

Only probabilities 
--> stochastic 
matrix

A
ij
/∑iAij



 

What is a random walk

1

1/2

1/2
1

t=0



 

What is a random walk
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What is a random walk
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What is a random walk

1

1/2

1/2
1

1

1/2

1/2
1

t=0 t=1

1

1/2

1/2
1

t=2

1

1/2

1/2
1
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Steady State Calculations

Set β = 1 – α in the PageRank expression
x(t) = αAD-1x(t-1) + (1-α)1

Further, ∑i=1...n xi
(t) = 1

So, x(t) = αAD-1x(t-1) + (1-α)11Tx(t-1) = Px(t-1)
Where, P = αAD-1+ (1-α)11T

PT  is called the probability transition matrix 
(remember Mark Chain??)

Steady state probabilities: Lt
m→ ∞

(PT)m 



 

Hubs and Authorities

Each node has two types of centralities: hub centrality, 
authority centrality

authorities: nodes with useful (important) information 
(e.g., important scientific paper)

hubs: nodes that tell where best authorities are (e.g., 
good review paper)

Hyperlink-induced topic search (HITS) proposed by 
Kleinberg 1999 in J. ACM



 

Hubs and Authorities

Authority centrality of node (denoted by x
i
) 

proportional to sum of hub centralities of nodes 
(denoted by y

j
) pointing to it

– x
i
 = α∑

j 
A

ij
 y

j

Hub centrality of node proportional to sum of 
authority centralities of nodes pointing to it

– y
i
 = β∑

j 
A

ij
 x

j
 



 

Hubs and Authorities

In matrix terms, x = αATy, y = βAx
=> x = αβATAx (converges to the principal eigenvector of 

ATA)
=> y = αβAATy (converges to the principal eigenvector of 

AAT)
Assemble the target subset of web pages, form the graph 

induced by their hyperlinks and compute AAT and AAT.
Compute the principal eigenvectors of AAT and AAT to 

form the vector of hub and authority scores .
Output the top-scoring hubs authorities.

    



 

Co-citation Index

Consider the following (co-citation)
– Author 1 is cited by author 3

– Author 2 is cited by author 3

Either of 1 or 2 has never cited each other
Can there be any relationship between author 1 and 

author 2??

3

1

4

2Citation Network



 

Co-citation Index

Consider the following (co-citation)
– Author 1 is cited by author 3

– Author 2 is cited by author 3

Either of 1 or 2 has never cited each other
Can there be any relationship between author 1 and 

author 2?? Seems to be!! If you are not convinced 
consider that there are 1000 others  like author 3

There is a high chance that 1 and 2 work in related fields

3

1

4

2Citation Network 2

1
Co-Citation Index

A AAT



 

Bibliographic coupling

Mirror Image: Consider the following
Author 3 cites author 1
Author 4 cites author 1
Either of 3 or 4 has never cited each other
Can there be any relationship between author A 

and author B?? Agian it seems to be so!!
3 and 4 possibly works in the same field

3

1

4

2Citation Network 4

3
Bibliographic coupling

A ATA



 

Closeness Centrality

Measure of mean distance from node i to other nodes

d
ij
 - length of geodesic path from i to j

Mean geodesic distance from vertex i to other nodes l
i
 = 

(N)-1∑
j
d

ij

When j = i, d
ii
 = 0, better to use l

i
 = (N-1)-1∑

j≠i
d

ij
 

mean geodesic distance gives low values for more central 
vertices

=> C
i
= l

i
 = N(∑

j
d

ij
)-1  →values sparsely placed, problem with 

disconnected network → take harmonic mean →

   C
i
'= (N-1)-1∑

j
(d

ij
)-1    



 

Reciprocity

If there is directed edge from node i to node j in 
directed network and there is also edge from 
node j to i, then edge from i to j is reciprocated. 

pairs of reciprocated edges called co-links.

reciprocity r defined as fraction of edges that are 
reciprocated => r = m-1∑

ij 
A

ij
A

ji



 

Rich-club Coefficient

In science, influential researchers sometimes co-
author a paper together (something strongly 
impactful)

Hubs (usually high degree nodes) in a network 
are densely connected → A “rich club”

The rich-club of degree k of a network G = (V, E) 
is the set of vertices with degree greater than k, 
R(k) = {v V ∈ | k

v
>k}. The rich-club coefficient of 

degree k is given by: 

   (#edge(i,j)  | (i,j)  ∈ R(k)) (|R(k)||R(k) - 1|)-1



 

Entropy of degree distribution

The entropy of the degree distribution provides an 
average measurement of the heterogeneity of the 
network

H = ∑
k 
P(k)logP(k)

What is the H of a regular graph?
What if P(k) is uniform?



 

Matching Index

A matching index can be assigned to each edge 
in a network in order to quantify the similarity 
between the connectivity pattern of the two 
vertices adjacent to that edge

Low value → Dis-similar regions of the network → 
a shortcut to distant regions

Matching Index of edge(i,j):

μ
ij
 = (∑

k≠i,j 
a

ik
a

kj
)(∑

k≠j
a

ik 
+ ∑

k≠i
a

jk
)-1
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