CS267: Notes for Lecture 23, April 9, 1999

Graph Partitioning, Part 2

Table of Contents

e Partitioning Graphs Without Coordinate Information (continued)

e Spectral Partitioning

e Motivation for spectral bisection, by analogy with a vibrating strin
e Motivation for spectral bisection, by using a real approximation to a discrete optimization problem

e Computing lambda, and v, of L(G) using L.anczos

e Accelerating Graph Partitioning Using A Multilevel Approach

e Multilevel Kernighan-Lin
e Multilevel Spectral Partitionin

e Performance Comparison of Different Partitioning Algorithms
e Applying Spectral Ordering to Physical Mapping of DNA
e PARTI: Using Graph Partitioning in a High Level Language

Partitioning Graphs without Coordinate Information (continued)

Spectral partitioning

This is a powerful but expensive technique, based on techniques introduced by Fiedler in the 1970s, but popularized in
1990 by A. Pothen, H. Simon, and K.-P. Liou, "Partitioning sparse matrices with eigenvectors of graphs", SIAM J.
Matrix Anal. Appl., 11:430--452.

We will first describe the algorithm, and then give three related justifications for its efficacy. Let G=(N,E) be an
undirected, unweighted graph without self edges (i,i) or multiple edges from one node to another. We define two
matrices related to this graph.

Definition The incidence matrix In(G) of G is an |N|-by-|E| matrix, with one row for each node and one column for
each edge. Suppose edge e=(i,j). Then column e of In(G) is zero except for the the i-th and j-th entries, which are +1 and
-1, respectively.

Note that there is some ambiguity in this definition, since G is undirected; writing edge e=(i,j) instead of (j,i) is
equivalent to multiplying column e of In(G) by -1. We will see that this ambiguity will not be important to us.

Definition The Laplacian matrix L.(G) of G is an |N|-by-|N| symmetric matrix, with one row and column for each node.
It is defined as follows.

degree of node i if i=j

(number of incident edges)

-1 if i'=j and there is an edge (1i,])
(0] otherwise

(L(6))(1,3)

Here are some small examples. Note the similarity between the Laplacian graph of the mesh, and the matrix for the
discrete Poisson equation, introduced in Lecture 13. With a zero right hand side, we also called this discrete equation
Laplace's equation. We will pursue this physical analogy below.

Incidence and Laplacian Matrices

. Graph G Incidence Matrix In{G) Laplacian Matrix L{G)
12 3 4 1 2 3 4 5
1 /-1 1 1 -1
1 2 3 4 5 s |1 -1 2|-1 2 -1
R B B R S] 1.1 3 102 -1
4 1 -1 4 -1 2 -1
5 5 -1
1 2 3 4 & & 7 & 2 10 11 12 __ 1 2 3 4 5 & 7 8§ % _
1| -1 1 1] 2-1 -1
7 8 9 2 1-1 1 2|-13-1 -1
g 11 12lll 3 1 1 3 -12 -1
4 5 6 4 -1 -1 1 4| -1 3-1 -1
3 64 ':-'s 5 -1 1-1 1 5 -1 -14-1 -1
1 2 3 8 -1 1 1 8 -1 -1 3 -1
|) 7 -1 -1 7 -1 2-1
8 -1 1-1 8 -1 -13-1
? | -1 1] 9 L -1 -1 2]
Nodes monbered in hlack
Edges munbered in hiue

The following theorem state some important facts about In(G) and L(G). It introduces us to the idea that the eigenvalues
and eigenvectors of L.(G) are related to the connectivity of G.

Theorem 1. Given a graph G, its associated matrices In(G) and L(G) have the following properties.

1. L(G) is a symmetric matrix. This means the eigenvalues of L.(G) are real, and its eigenvectors are real and
orthogonal.

2. Lete=[1,...,1]', where ' means transpose, i.e. the column vector of all ones. Then L(G)*e = 0.

In(G)*(In(G))' = L(G). This is independent of the signs chosen in each column of In(G).

4. Suppose L(G)*v = lambda*v, where v is nonzero. Then

w

norm(In(G)'*v)?
lambda = -----------mmmo -

where norm(z)? = sumj z(i)?

= SUMrall edges e=(i,j)} (v(i)-v(j))?

5. The eigenvalues of L(G) are nonnegative: 0 <= lambda; <= lambda, <= ... <= lambda,
6. The number of of connected components of G is equal to the number of lambda;) equal to 0. In particular,
lambda, != 0 if and only if G is connected.

For a proof of this theorem, click here.
Part 6 of Theorem 1 motivates the following definition.

Definition (M. Fiedler, "Algebraic Connectivity of Graphs", Czech. Math. J. 23:298--305, 1973). lambda,(L(G)) is
called the algebraic connectivity of G.

Now we can state our algorithm for spectral bisection of a graph.

Compute the eigenvector v,
corresponding to lambda, of L(G)
for each node n of G
if vy(n) < 0O
put node n in partition N-
else
put node n in partition N+
endif
endfor

First we show that this partition is at least reasonable, because it tends to give connected components N- and N+:
Theorem 2. (M. Fiedler, "A property of eigenvectors of nonnegative symmetric matrices and its application to graph

theory", Czech. Math. J. 25:619--637, 1975.) Let G be connected, and N- and N+ be defined by the above algorithm.
Then N- is connected. If no vy(n) = 0, N+ is also connected.

For a partial proof, click here.

There are a number of reasons lambday is called the algebraic connectivity. Here is another.

Theorem 3. (Fiedler). Let G=(N,E) be a graph, and G;=(N,E;) a subgraph, i.e. with the same nodes and a subset of the
edges, so that G is "less connected" than G. Then lambda,(L(G)) <= lambda,(L(G)), i.e. the algebraic connectivity of
G is also less than or equal to the algebraic connectivity of G.

We will prove this later, after we introduce more machinery.
Motivation for spectral bisection, by analogy with a vibrating string

How does a taut string vibrate when it is plucked? From our background in either physics or music, we know that it has
certain modes of vibration or harmonics. If we were to take snapshots of these modes, they would look like this:

Modes of a Vibrating String

Lowest Fregquency lambda(l)

Sacond Frequeney larnbda(2)

Third Fraquencey lambda(3)

Note that we have also labeled each part of the string as to whether it is above the rest position (+), or below (-). In the
case of the second frequency lambda,, half the string is labeled +, and half is labeled -, effectively bisecting the string
into two equal sized, connected components. It turns out that if we build this vibrating string from a finite set of identical
masses (nodes) connected by identical springs (edges), write down Newton's Laws of motion for the masses, and solve

for the frequencies and shapes of the vibrational modes, we will get precisely the eigenvalues and eigenvectors of the
Laplacian L(G) of the graph G, where G consists of a chain of nodes with nearest neighbor connections. Therefore, the
second eigenvector of L(G) is the shape of the second mode of vibration, and divides the graph in half.

In the case of more complicated graphs than simple chains, the same intuition applies. It is easiest to understand in the
case of planar graphs, which we can think of as a kind of trampoline; again the second mode of vibration divides the
graph (trampoline) into two halves.

Let us perform this construction more explicitly in the case of a string. In the figure below, we let x(i) represent the
(small) displacement of mass i from the horizontal.

Vihrating Mass Spring Systam

If the displacement is small, the force on mass i is

force(i) k*(x(i-1)-x(1i)) + k(x(i+1)-x(1))

k*(x(i-1) - 2*x(1i) + x(i+1))

where k is a spring constant. We assume that the spring from x(i) to x(i+1) is stretched proportional to the distance
x(i+1)-x(i). If this difference is positive, so mass i+1 is higher than mass i, then the force is upwards, or positive.
Newton's law tells us F=ma or

d? x(i)
m* -------- = force(1i)
d t2
= k*(x(i-1) - 2*x(i) + x(i+1))

We need to be careful about what happens at the end masses. The simplest, and nearly correct, decision is to fix
x(0)=x(n+1)=0 (like a taut spring). This lets us write down the system of ODEs

[x(1)] [2*x(1)-x(2) 1
m* d2 [x(2)] [-x(1)+2*x(2)-%x(3)]
------ [... 1 =-k* [ce 1
d t2 [x(n-1)] [-x(n-2)+2*x(n-1)-x(n)]
[x(n)] [-x(n-1)+2*x(n) 1
[2 -1 1 [x(1) 1
[-12-1 1 [x(2) 1]
= -k * [. 10 1
[-1 2 -1] [x(n-1)]
[-12]1 [x(n)]
[x(1)]
[x(2)]
= -k *M*[....]
[x(n-1)]
[x(n)]
or yet more briefly,
dZ x(t)
-(m/K) * e = M * x(t)
d? t

where x(t) is a vector [x(1),...,x(n)]'. We seek solutions of the form x(t) = sin(a*t)*x0, where a and x0 are a scalar and
vector to be determined. Plugging in to the last equation yields

(m/k)*a2*sin(a*t)*x0 = M * sin(a*t) * x0
Canceling sin(a*t), which is (almost always) zero, yields
M * x0 = (m/k)*a? * x0 = e * x0
Thus x0 is an eigenvector of M and e=(-m/k)*a? is an eigenvalue. We know the eigenvalues and eigenvector of M

explicitly; as can be confirmed by simple trigonometry, the i-th pair is given by

[sin(1*i*pi/(n+1))]

[sin(2*i*pi/(n+1))]

x0 [......]
]

]

[sin((n-1)*i*pi/(n+1))
[sin(n*i*pi/(n+1))

e 2*(1-cos(i*pi/(n+1)))
In other words, we just get sine curves of varying frequencies, exactly matching the curves pictured above. Furthermore,
when n is large and i is small,

(m/k) * a2 = e
2*(1-cos(i*pi/(n+1)))
(i*pi/(n+1))?

l

so the frequency of vibration
a ~ sqrt(k/m)*pi/(n+1) * i

In other words, the frequencies of successive modes of vibrations are just multiples of the base frequency, thus providing
the harmonics we expect from a plucked string.

Unfortunately, M is not quite the Laplacian L.(G) of the simple graph G of n nodes connected in a chain; the (1,1) and
(n,n) entries are 2 instead of 1. To make the analogy between spectral bisection and the vibrating string exact, we need a
slightly different mass-spring system. This is shown in the figure below. There are n horizontal rods, and on each rod a
mass m can slide back and forth frictionlessly. These identical masses are connected with identical springs as before. x(i)
is the horizontal displacement from rest.

"Vibrating String" for Spectral Bisection

The only difference from before in the equations of motion is for masses 1 and n, the ones at the end. Since they are
only tied to one moving mass, rather than one moving mass and one fixed endpoint, we get

Mm* —ooeeeo- = force(1) = k*(x(2) - x(1))
and

d? x(n)
m* —-ooooo- = force(1) = k*(x(n-1) - x(n))

d t2

which leads to

[x(1) 1] [x(21)-x(2)]
m*d2 [x(2)] [-x(1)+2*x(2)-x(3)]
------ [... 1=-k*[ce]

d t2 [x(n-1)] [-x(n-2)+2*x(n-1)-x(n)]
[x(n)] [-x(n-1)+x(n)]
[1-1 1 [x(2) 1
[12 -1 1 [x(2) 1
= -k * [.. 1 *[... 1]
[-1 2 -11 [x(n-1)]
[-1 11 [x(n)]
[x(1)]
[x(2) 1]
= -k * L(G) *[....]
[x(n-1)]
[x(n)]

One can again confirm by simple trigonometry, that the i-th eigenvalue and eigenvector of L(G) are given by

[cos((0+.5) *(i-1)*pi/n)]
[cos((1+.5) *(i-1)*pi/n)]
[......]
[1
[1

X0 =
cos((n-1.5)*(1i-1)*pi/n)
cos((n-.5) *(i-1)*pi/n)
e = 2*(1-cos((i-1)*pi/n))

which are just simple cosine curves, the fist few of which are pictured below. Again, the second eigenvector effectively
divides the nodes in half.

Graph Partforning a Chain, n=50

& 10 15 20 25 an a5 40 45 &0

& 10 18 20 25 an a5 40 45 &0
2nd algenvastar
I

£ 10 18 s 28 an ag 40 48 £f
ard slgenvastor

The same analogy applies to other graphs. For example, here is the same approach applied to a planar graph, which is a
simple model of a plate with a crack in it. Physically, one expects the line along the crack to be the weak point, and lead
to the second lowest frequency of vibration as the object flexes along the crack, and the second eigenvector picks this
out.

Criginal FE mesh Plot of w2 from abowve

Plot of w2 head on

-10 0 10

From the above pictures, one might also expect higher order eigenvectors to be able to partition a graph into even more
parts at a time than 2. This is borne out by examing the 4th eigenvector of the cracked plate, show below. Indeed, many
of the results we discuss extend to higher eigenvectors, but we limit our discussion to the second eigenvector, which is
most widely used in practice.

Original FE mash Flot ofwvd from above

-10

Motivation for spectral bisection, by using a real approximation to a discrete optimization problem

We begin with a lemma which shows how to use L(G) to count the number of edges connecting N- and N+ in a
partitioned graph G=(N,E), N = N- U N+.

Lemma 1. Let G=(N,E) be a graph, and N = N- U N+ be an arbitrary disjoint partitioning of N. Define a column vector
x, with x(i) = +1 if i is in N+, and x(i) = -1 if i is in N-. Let L(G) be the Laplacian of G. Then

edges connecting N+ and N-
= .25 * x' * L(G) * x

= .25 * sumj 5 x(i) * L(G)(1i,3) * x(J)
This may also be written

edges connecting N+ and N-
= .25 * SUMfa11 edges e=(i,j)} (X(1) - x(3))2?

Proof of Lemma 1.

x'" * L(G) * x
= sumj § L(G)(1,3)*x(1)*x(])
= Sumi=jL(G)(i,i)*x(i)2 +
sumji=j L(G)(1,3)*x(1)*x(3)
= sumj=; L(G)(1i,1)
+ SUMgii=j, i, j both in N+ } L(G)(1,3)*X(1)*x(])
+ SUMgi1=§, i, j both in N- 3 L(G) (1, 3)*x(1)*x(])
+ SUMgir=j, i, j in N- and N+ 3 L(G)(1,J)*x(1)*x(J)
= sumj degree(1i)
+ SUMgi1=§, i, j both in N+ 3 (-1)*(+1)*(+1)
+ SUMgir=j, i, j both in N- 3 (-1)*(-1)*(-1)
+ SUMgii=j, i, j in N- and N+ 3 (-1)*(+1)*(-1)
2

= * (#edges in G)
2*(#edges connecting nodes in N+ to nodes in N+)
- 2*(#edges connecting nodes in N- to nodes in N-)
+ 2*(#edges connecting nodes in N- to nodes in N+)
= 4 * (#edges connecting nodes in N- to nodes in N+)

To prove the second expression in the lemma, use part 3 of Theorem 1 to note that

x' * L(G) * x

x' * In(G) * (In(G))' * x
SUM{edges e=(1,5)3 ((IN(G))' * X)e)?
SUMgedges e=(1,5)} (X(1) - x(3))2

This completes the proof. QED

Lemma 1 lets us restate the graph partitioning problem as finding N+ and N-, i.e. a vector X whose entries are +1 or -1,
so that

1. [N+ |=|N-|, ie.sum; x(1) =0
2. # edges connecting nodes in N- to nodes in N+ is minimized, i.e. X'*L(G)*x is minimized

or more briefly,

minimum #edges in a partition of N =
MiNngy(i) = +1 or -1, sum; x(i) = 0} -25*X'*L(G)*x

We will replace this discrete problem by a simpler continuous problem, by minimizing over a larger set of x's than just
+-1 vectors, namely all vectors x such that sum; x(i)2 = |N|. In other words, we will compute the z minimizing

MiNgsum z(i)2 = [N|, sum; z(i) = 0} -25"Z2"*L(G)*z
Given z, we will "round it" by computing x(i) = sign(z(i)) to get an assignment.

To see how this is connected to eigenvalues of L(G), we state without proof the following result from linear algebra,
which is a special case of the Courant Fischer Minimax Theorem (R. Horn and C. Johnson, "Matrix Analysis", 1988).

Theorem 4. If A is a symmetric matrix with eigenvalues lambda; <= lambda, <= ... and eigenvectors vy, v», ..., then
lambda, = ming, 1=, vi*y, =0}y V'*ATV / V'V
and the minimizing v is vy.

For a proof of this special case, click here.

To apply this to graph partitioning, recall that lambda; = 0 and v; = [1,...,1], so the condition v'*v;=0 is the same as
sum; v(i) = 0. Substituting v = z/sqrt(|N|) above yields

MiNgsum z(i)2 = [N|, sum; z(i) = 0} -25%Z2"*L(G)*z
= Mingeum; v(i)? = 1, sum; v(i) = 0} -25%[N[*V'*L(G)*V
L25% [N|*V' *L(G)*v

min{sumi v(i)? = 1, sumy v(i) = 0}

v'*v
since v'*v = sum; v(i)? = 1
= .25 * [N| *
V'*L(G)*v
min{sumi V(i)2 =1, v'*vyy =0} "o
v'*v

.25 * |N| * lambda,
We have nearly proven

Theorem 5. The minimum # edges connecting N+ and N- in any partitioning of G=(N,E) into equal parts N = N+ U N-
, is at least .25 * |N| * lambda,.

So the larger the "algebraic connectivity" lambda,, the more edges we need to cut to separate the graph.

Proof of Theorem 5. The minimum number of edges is

MiNgx(i) = +1 or -1, sumy x(i) = 0} -25*X'*L(G)*x
>= MiNgsum x(i)2 = |N|, sum; x(i) = 0} -25"X"*L(G)*X
since we are minimizing over
a larger set of vectors x
= .25 * |[N| * lambda,

QED

In the case of a chain of n nodes, we stated earlier that lambda, = 2*(1-cos(pi/n)) ~ (pi/n)2 so the lower bound in

Theorem 5 is about .25 * p12 / n, which is low by a factor of n. For an d-dimensional grid with nd nodes, it turns out
lambdaj is exactly d times as large as lambda, for a chain, and again the lower bound of Theorem 5 is about n times too

low (O(nd'2) instead of nd'l). For a star graph (n-1 nodes all connected to a single, n-th node) or a complete graph (all
nodes connected to all other nodes), the lower bound is nearly exact.

Now we return to the proof of Theorem 3. It is easy using part 3 of Theorem 1 and Theorem 4. Let G be a graph, and
G, a subgraph with the same nodes but a subset of the edges. Let G, be another subgraph with the same nodes and the

complementary set of edges. Let In(G;) and In(G») be the incidence matrices of G; and Gy, respectively. It is easy to
see that In(G) = [In(G) , In(G») 1, if we number the edges in G; before the edges in G,. Therefore, by part 3 of
Theorem 1,

L(G) = In(G) * (In(G))'
= [In(Gq) , In(Gp) 1 * [In(Gy) , In(Gp)]'
= In(Gy) * (In(Gy))' + In(Gz) * (In(Gz))'
= L(Gy) + L(Gp)
Thus, by Theorem 4,
lambda,(G)

= mingy 1= 0, sumy v(i) = 0y V' *L(G)*V / v'*v

= mingy 1= 0, sumy v(i) = 03 V' *(L(G1)*+L(G2))*V / v'*v

>= mingy 1= o, sum v(i) =0} V'* L(Gy) *v / v'*v

+ mingy 1= 0, sum v(i) =0} V'* L(G2) *v / v'*v

since we are minimizing over
a larger set of vectors

= lambday(G1) + lambdas(G,)

>= lambdaz(Gl)

This completes the proof of Theorem 3.

Computing lambda, and v, of L(G) using Lanczos

We need a method for computing v, of L(G). We do not need a particularly accurate answer, because we are only going
to use the sign bit of each component to perform the partitioning. If we treat L(G) as a dense matrix, there are algorithms

that run in (4/3)*|N|3 time (for example, routine eig in Matlab, or dsyevx in LAPACK or pdsyevx in ScaLAPACK).
Since we started with a graph with relatively few connections compared to a complete graph (which corresponds to a
dense L(G)), this is clearly not cost effective.

The algorithm of choice for this problem is Lanczos. Given any n-by-n sparse symmetric matrix A, Lanczos computes a
k-by-k symmetric tridiagonal matrix T, whose eigenvalues are good approximations of the eigenvalues of T, and whose
eigenvectors can be used to get approximate eigenvectors of A. Building T requires k matrix-vector multiplications with
A; this is typically the most expensive part of the algorithm. One hopes to get a good enough approximation with k
much small than n. This means one only approximates a small subset of k of A's n eigenvalues. Fortunately, the ones
which converge first are the largest and the smallest, including lambda,.

There are many variations on Lanczos. We present the simplest possible version below, and refer the reader to the
literature for details. See, for example, "The Symmetric Eigenvalue Problem", B. Parlett, Prentice Hall, 1980. Y ou may
also see on-line help page for Lanczos, which is experimental and is likely to move in the future.

Choose an arbitrary starting vector r
b(0) = norm(r) = sqrt(sumy r(i)?)

i=0

repeat
i=1i+1
v(i) = r / b(i-1)
r=A%*v(i) ... matrix-vector multiply,

. the most expensive step

r =r - b(i-1)*v(i-1) ... "saxpy", costs 2n flops
a(i) = v(i)' *r ... dot-product, costs 2n flops
r=r - a(i)*v(i) ... "saxpy", costs 2n flops
b(i) = norm(r)

until convergence ... details omitted

At each step i, the algorithm computes a tridiagonal matrix

a(1) b(1)
b(1) a(2) b(2)
b(2) a(3) b(3)

b(i-2) a(i-1) b(i-1)

]
J
]
J
]
b(i-1) a(i) 1]

[
[
[
[
[
[

whose eigenvalues approximate the eigenvalues of A. Let w(2) be the second eigenvector of T. Then the corresponding
approximate eigenvector of A is

sumj=q,...,i W(2)(3) * v(J)

The reader may already have noticed an irony of using this algorithm to compute v,. One of the major motivations of
graph partitioning was to accelerate matrix-vector multiplication by a symmetric matrix M. We are proposing to form the
graph G(M), then its Laplacian L(G(M)), and then multiply by L(G(M)) repeatedly in the Lanczos algorithm. But M and
L(G(M)) have the same pattern of nonzero entries, so multiplying by L(G(M)) is as hard as multiplying by M.
Therefore, spectral partitioning via Lanczos is of use only when one expects to multiply by M many more times than by
L(GM)).

Accelerating Graph Partitioning Using A Multilevel Approach

As mentioned in Lecture 20, many of the previously discussed methods can be accelerated by using the same idea that
made multigrid such a fast algorithm for solving the Poisson equation: we will replace the problem of partitioning the
original graph G(= (N,E() by the simpler problem of partitioning a coarse approximation G; = (N1,E;) to G. Given

a partitioning of G1, we will use that to get a starting guess for a partitioning of G), and refine it by an iterative process,
like Kernighan-Lin. The problem of partitioning G (or more generally G;) is solved recursively, by approximating it by
a yet coarser graph G, (or Gj1).

To summarize, we may use divide-and-conquer to partition Gy = (Ng,E() as follows: G=(N,E) as follows:

(N+, N-) = Recursive_partition(N, E)
recursive partitioning routine returns N+ and N-
. where N = N+ U N-
If |N| is small
Partition G=(N, E) directly to get N = N+ U N-
Return (N+, N-)

else
(1) Compute a coarse approximation G. = (N, E¢)
(2) (Ng+ , Ng-) = Recursive_partition(N, E¢)
(3) Expand (Ngt, Ng.-) to a partition (N+, N-)
(4) Improve the partition (N+, N-)
Return (N+, N-)
endif

Steps (1), (3) and (4) in the above algorithm require further explanation. We describe two approaches to implementing

these steps. The first approach is described in A fast and high quality multilevel scheme for partitioning irregular
graphs", by G. Karypis and V. Kumar; a software package implementing this method (among others) is called METIS.
A similar algorithm is available in Chaco, and described in A multilevel algorithm for partitioning graphs, B.
Hendrickson and R. Leland, Proc. Supercomputing '95.

The second approach is described in " A fast multilevel implementation of recursive spectral bisection for partitioning
unstructured problems" by Barnard and Simon, Proceedings of the 6th STAM Conference on Parallel Processing for
Scientific Computing, 1993.

Multilevel Kernighan-Lin

G, is computed in step (1) of Recursive_partition as follows. We define a matching of a graph G=(N,E) as a subset E
of the edges E with the property that no two edges in E, share an endpoint. A maximal matching is one to which no
more edges can be added and remain a matching. We can compute a maximal matching by a simple random algorithm:

let E, be empty
mark all nodes in N as unmatched
for 1 = 1 to |N| ... visit the nodes in a random order
if node i has not been matched,
choose an edge e=(i,j) where j is also unmatched,
and add it to Ey
mark i and j as matched
end if
end for

Given a matching, G is computed as follows. We let there be a node r in N.. for each edge in E,;,. Then we construct E.
as follows:

for r =1 to |Ey| ... for each node in Ng¢
let (i,j) be the edge in E, corresponding to node r
for each other edge e=(i,k) in E incident on 1i
let e be the edge in E, incident on k, and
let ri be the corresponding node in N¢
add the edge (r,rg) to E.
end for
for each other edge e=(j,k) in E incident on j
let e be the edge in E, incident on k, and
let ri be the corresponding node in N¢
add the edge (r,rg) to E.
end for
end for

if there are multiple edges between pairs of nodes of
Nc, collapse them into single edges

Note that we can take node weights into account by letting the weight of a node (i,j) in N be the sum of the weights of
the nodes i and j. We can similarly take edge weights into account by letting the weight of an edge in E. be the sum of

the weights of the edges "collapsed" into it. Furthermore, we can choose the edge (i,j) which matches j to i in the
construction of N above to have the large weight of all edges incident on i; this will tend to minimize the weights of the
cut edges. This is called heavy edge matching in METIS, and is illustrated below.

How to coarsen a graph using a maximal matching

G=(N,E) G¢ =(N¢, E¢)

E¢ is shown in red Ng is shown in red

Edge weights shown in blue Edge weights shown in blue
Node weights are all one Node weights shown in black

Given a partition (N.+,N.-) from step (2) of Recursive_partition, it is easily expanded to a partition (N+,N-) in step (3)
by associating with each node in N+ or N- the nodes of N that comprise it. This is again shown below:

Converting a coarse partition to a fine partition

Partition shown in green

Finally, in step (4) of Recurive_partition, the approximate partition from step (3) is improved using a variation of
Kernighan-Lin.

Multilevel Spectral Partitioning

Now we turn to the divide-and-conquer algorithm of Barnard and Simon, which is based on spectral partitioning rather
than Kernighan-Lin. The expensive part of spectral bisection is finding the eigenvector v,, which requires a possibly

large number of matrix-vector multiplications with the Laplacian matrix L(G) of the graph G. The divide-and-conquer
approach of Recursive_partition will dramatically decrease the cost.

Barnard and Simon perform step (1) of Recursive_partition, computing G. = (N,E.) from G=(N,E), slightly differently
than above: They find a maximal independent subset N, of N. This means that

e N contains N and E contains E,
e no nodes in N, are directly connected by edges in E (independence), and
e N_ is as large as possible (maximality).

There is a simple "greedy" algorithm for finding an N

Nc = empty set
for 1 = 1 to |N|
if node i is not adjacent to any node already in N¢
add i to N¢
end if
end for

This is shown below in the case where G is simply a chain of 9 nodes with nearest neighbor connections, in which case
N, consists simply of every other node of N.

Maximal Independent Subset N, of N

& and & - nodesof ™

& — hodes “ch

To build E., we proceed as follows: We will loop through the edges in E, growing "domains" D; around each node i in
Nc. In other words, a domain consists of the subgraph of G connected to i by the edges examined so far. We will add an
edge to E. whenever an edge in E would connect two of these domains.

Ec = empty set
for all nodes i in N¢

Di = ({ 1 }, empty set) ... build initial domains
end for
unmark all edges in E
repeat

choose an unmarked edge e=(i,j) from E
if exactly one of i and j (say i) is in some Dy
mark e
add j and e to Dy
else if i and j are in different Dys (say Dy, and DM)
mark e
add an edge (kji, kj) to E¢
else if both i and j are in the same Dy

mark e

add it to Dy
else

leave e unmarked
endif

until no unmarked edges

For example, suppose we start with G being a chain of nodes as above, with nodes and edges numbered from left to
right. Then domain D; for node i will just contain its neighbor to the right, and the edges in E. will simply connect
adjacent nodes in N, so G, is just the chain of length n/2.

Computing G¢ from G

& and & - nodesofMN

& - nodes of N,
- adges in E
- edgesin E,

<. - encloses domain D;

This completes the discussion of Barnard and Simon's implementation of step (1) of Recurive_partition.

Here is how Barnard and Simon implement step (3). Recall that the partitioning is done by using the signs of the
components of the second eigenvector of the Laplacian. Assuming that we have computed an approximate second
eigenvector vy (G,) of G, we must compute an approximate second eigenvector v, (G) of G. This is done by

interpolation:

for each node i in N

if i is also a node in N, then

V2(G) (1) = va(6Gy) (1),

i.e. use the same eigenvector component

else

Vo(G) (1) = average of vy(Gq)(])

for all neighbors j of 1 in Ng.

end if

end for
This is shown below in the case of the chain of 9 nodes. The black line is the exact v,(G) (normalized so the sum-of-
squares is one). The dashed blue line is the exact vy(G_), also normalized, and which only connects every other node.
The red +'s are the approximate v,(G) computed by interpolation as above, which by construction lie on top of the blue
line. The magenta x's are the red +'s normalized, to better see how well they approximate the black line.

2nd Elgenvestors 8f G = ehaln of nodas

1 T T T T T T T
i ;.raewr of 9 node chaliﬂ I
Sy T SR e, S, S R T i
- = -r - = i.rer.wr of 5 node sub&haln ; ; ;

o0&

Step (4) of Recursive_partition involves refining this approximate second eigenvector to be more accurate. Refining the
approximate second eigenvector can be done in several ways. (The unrefined approximate second eigenvector is not
always as good as in the case of the chain!). One possibility is that the Lanczos algorithm mentioned above benefits
from having a starting vector which mostly points in the direction of the desired eigenvector. More aggressively, one can
use a technique called Rayleight Quotient Iteration, which uses the fact that the iteration

choose a starting vector v(0)
. we use Vy(Gg)
v(0) = v(0) / norm2(v(0))
norm2(x) = sqrt(sum; x(i)?)
i=0
repeat
i=1i+1
rho(i) = v(i-1)"' * L(G) * v(i-1)
rho(i) = Rayleigh Quotient
v(i) = (L(G) - rho(i)*T)™ * v(i-1)
v(i) = v(i) 7/ norm2(v(i))
until convergence

converges asymptotically cubically to an eigenvalue-eigenvector pair (rho(i),v(i)); this means the the error cubes at every

step, so that for example an error of 10 turns into an error of (10)3 = 10712 after one step. rho(i) costs one matrix-
vector multiply. Computing v(i), i.e. solving the linear system (L(G) - rho(i)*I) * v(i) = v(i-1), is done using an iterative
method (called SYMMLQ) which requires yet more matrix-vector multiplications. But since cubic convergence is so
fast, very few steps are needed. This speedy convergence is illustrated below by the example of the chain, where the
black line is the error in the approximate eigenvector v(i) and the dashed blue line is the error in the approximate
eigenvalue rho(i), as functions of i. One can see the cubic convergence between iterations i=2 and i=3, where the

eigenvector error goes from 10 to 10712, Cubic convergence is only visible for this one step before hitting the accuracy
limit of 10716 due to roundoff.

B Convergenze of Raylelgh Quatlent [taratkn
10 T T T T T

1m*

TN

1*

Ermror
o

Elgenveeta? afrar : : :
-18 I I I I I

1 15 2 25 a 3E 4
[teratlon Number

Experiments report a 10x speedup over the basic spectral bisection algorithm.

Performance Comparison of Different Partitioning Algorithms

Several authors have performed extensive numerical experiments to compare various algorithms based both on

1. the quality of partitions produced (the number of edges cut), and
2. the time taken to compute the partition.

For example, see "Geometric Mesh Partitioning: Implementation and Experiments", by J. Gilbert, G. Miller, and S-H.
Teng, and A fast and high quality multilevel scheme for partitioning irregular graphs", by G. Karypis and V. Kumar.
In addition, a large number of test graphs are available on-line for testing purposes (supplied by Gilbert et al, and

Karypis and Kumar).

Recall that there are two classes of algorithms: geometric algorithms, that use coordinate information associated with
nodes of the graph, and coordinate-free algorithm, that do not use this information. Accordingly, we present two studies
comparing geometric algorithms, as well as coordinate-free ones.

We begin with geometric algorithms. The following data is taken from "Geometric Mesh Partitioning: Implementation
and Experiments". Table 1 below describes the 7 graphs being partitioned. All are meshes in 2 or 3 dimensional space,
rather than completely general graphs. The first four are 2-dimensional, and the last two are 3 dimensional. The fifth
graph, PWT, is sometimes called "two-and-a-half dimensional", because it is a thin ("almost 2D") surface lying in 3D
space. The last two columns give the number of vertices and edges in the graphs. The columns labeled "Grading" says
how much larger the longest edges in the graph are than the shortest edges. For example, TRIANGLE is a regular
tesselation of the place by identical equilateral triangles, so its grading is 1. AIRFOIL2 is similar to the NASA Airfoil
we have seen so often, which has some large and some tiny triangles, the largest 1.3e5 times larger than the smallest.

Mesh

Description

Mesh Type

TAPIR Cartoon animal 2-D acute triangles
AIRFOIL2 Three-element airfoil 2-D triangles

TRIANGLE Equilateral triangle 2-D triangles/same size
AIRFOIL3 Four-element airfoil 2-D triangles

PWT Pressurized wind tunnel Thin shell in 3-space
BODY Automobile body 3-D volumes and surfaces
WAVE Space around airplane 3-D volumes and surfaces
Mesh Grading Vertices Edges

TAPIR 8.5e4 1024 2846

AIRFOIL2 1.3e5 4720 13722

TRIANGLE 1.0e0 5050 14850

AIRFOIL3 3.0e4 15606 45878

PWT 1.3e2 36519 144794

BODY 9.5e2 45087 163734

WAVE 3.9e5 156317 1059331

Table 1: Test problems. "Grading" is the ratio of

longest to shortest edge lengths.

Table 2 below describes the quality of the partitioning into two subgraphs obtained by four algorithms. Quality is
measured by the number of edges crossing the partition boundary, where fewer is better. The four algorithms are

1. Spectral -- use the second eigenvector as described above

2. Inertial Partitioning -- coordinate bisection as described in Lecture 20

3. Default Random Circle -- as described in Lecture 20. Recall that this is a randomized algorithm, that involves
picking a random circle. The more circles chosen, the better the partitioning (i.e. the fewer edges cut). In this
default implementation, a small, fixed number of circles are chosen.

4. Best Random Circle -- In this case circles are repeatedly chosen until no more progress is made. It is more
expensive than the Default Random Circle algorithm just described, but gives a better partitioning.

From the table, one sees that the methods are largely comparable, with spectral somewhat better on the largest graphs.
(Spectral is also much more expensive to run, although we present no data on this here.) Also, we see that our intuition,
that a 2D mesh-like graph with n nodes should have a partition with just sqrt(n) edge crossings, is approximately true.
Also, our intuition that a 3D mesh should have n”(2/3) edge crossings is also approximately true.

Mesh Spectral Inertial Default Best
Partitioning Random Random
Circle Circle
TAPIR 59 55 37 32
AIRFOIL2 117 172 100 93
TRIANGLE 154 142 144 142
AIRFOIL3 174 230 152 148
PWT 362 562 529 499
BODY 456 953 834 768
WAVE 13706 9821 10377 9773
Table 2: Number of edge crossings

for two-way partitions

Finally, we use the partitioning algorithms 7 times recursively in order to partition the graphs into 2A7 = 128 separate
partitions, which one would do on a 128-processor machine. Again, the quality of the partitions is largely comparable.

Mesh Spectral Inertial Default

Partitioning Random

Circle
TAPIR 1278 1387 1239
AIRFOIL2 2826 3271 2709
TRIANGLE 2989 2907 2912

AIRFOIL3 4893 6131 4822

PWT 13495 14220 13769
BODY 12077 22497 19905
WAVE 143015 162833 145155

Table 3: Number of edge crossings for 128-way partitions.

Now we consider coordinate-free algorithms more briefly. According to tests done by Kumar and Karypis, their
implementation of multilevel Kernighan-Lin and Leland and Hendrickson's implementation provide partitions of quite
similar quality, as does a hybrid multilevel method using both spectral partitioning and Kernighan-Lin. However, theirs
is usually twice as fast (or more) s Leland and Hendrickson's, and many times faster than spectral partitioning.

Applying Spectral Ordering to Physical Mapping of DNA

The following material is based on A spectral algorithm for seriation and the consecutive ones problem, by J. Atkins, E.
Boman (boman@sccm.stanford.edu) and B. Hendrickson (bahendr@cs.sandia.gov), submitted to STAM J. of

Computing (1995).

Here is a very simple version of the physical mapping problem for DNA. A molecule of DNA is a very long string
consisting of a particular sequence of amino acids chosen from a set of four, which may be called A, C, T and G. For
example, one might have the sequence ACCTGACTCGAGACTCG, but many millions long. The sequencing problem
is to determine this sequence for a given molecule of DNA. Current biochemical technology permits the following
algorithm to be used. One can break up this long DNA string into a great many shorter fragments, which can be
separated according to their amino acid sequences. The goal is to represent the original DNA as a sequence of these
possibly overlapping fragments in some order. Given the sequences making up each fragment, one then knows the
sequence making up the original DNA. To extract this representation in terms of fragments, the following experiments
are performed. Each fragment F is allowed to bond to the DNA at a point P where the amino acid sequences match.
This point is called a probe, and is typically a set of amino acids at one end of the fragment. If the probe is long enough,
it will match at a unique point along the DNA. One records this information in a matrix B, which has one row for each
fragment and one column for each probe, by putting a 1 at entry (F,P). One can perform the same kind of experiment to
see which other fragments bond to fragment F at the same probe P, implying that they overlap. Each such bond between
fragment F' and fragment F at probe P is recorded by storing a 1 at location (F',P) of the matrix B. In this way, looping
through all the fragments, the matrix B is eventually filled in with ones (and zeros elsewhere), where B(F,P)=1 means
that fragment F matches the DNA at probe P. This is shown below, where we have labeled the fragments in sorted order
from left to right, and the probes in sorted order from left to right.

DNA Sequencing
P F1 P2 P2 P4 P5 P&

FL P2 P3 P5 Pé B M
11 F2
11 F3
B = 111 F4
F1 F2 F3 F4 F5 Fa F7 11 F5
11 |Fa
L 1 _1F7

Fragiments shown in blue

Probes shown in red

Notice that when the probes and fragments are sorted, B is a band matrix, or more precisely a consecutive-ones matrix,
which means that for each row all the ones are consecutive (consecutive-ones matrices are not necessarily band matrices
in the usual since, but they often are). In practice, one constructs Bp with probes and fragments in some random order,
as shown below. The DNA Sequencing problem is to find the ordering of the rows and ordering of the columns of Bp
which expose the underlying band matrix B, because this will say what in what order the fragments appear along the
DNA.

DMNA Unsequenced

PS5 P3 P2 P4Pe Pl

11 F3
1 1 F5
1 1 F2

Bp = |11 1 Fd
1 F7

1 |Ff1

1 1 AFs

If there were no errors in Bp, this could be done by procedure like breadth first search. But in practice, the laboratory
procedure for determining entries of Bp is quite error prone, so we need a method for making Bp "close to" a band
matrix in some sense. This is where spectral ordering comes in.

Let G=(N,E) be an undirected graph, and L(G) its Laplacian. Let N = N- U N+ be an arbitrary partition of the nodes,
and let x be a column vector, where x(i) = +1 if i is in N+, and x(i) = -1 if i is in N-. In Lemma 1 of the last lecture, we
showed that the number of edges connecting N+ and N- was equal to

.25 * Sumedges e:(i,j) (X(l) - X(J))z

Therefore, the partition N = N- U N+ which minimizes the number of connecting edges is given by the solution x of the
minimization problem

MiN[x(i) = +1 or -1, sumy x(i) = 0]
.25 * SUMeqdges e=(i,j) (X(1) - x(3))?

The spectral partitioning algorithm involved solving the following approximation:

MiNgum i v(i)A2 = |N|, sum i v(i) = ©
.25 * SUMeqges e=(i,j) (V(1i) - v(j))?

and then choosing x(i) = sign(v(i)).

One can think of this algorithm as embedding the graph G into the real axis, putting node i at location v(i). If e=(i,j) is an
edge, then we draw a line segment from v(i) to v(j), which has length |v(i) - v(j)|. The spectral bisection algorithm
chooses this embedding into the real axis so as to minimize the sum of squares of the lengths of these line segments,
subject to the constraints sum_i v(i)A2 = |N|, and sum_i v(i)=0.

Suppose we start with a symmetric matrix H, form its graph G(H), and apply the above algorithm, yielding a second
eigenvector v of L(G(H)). Let P be a permutation matrix, i.e. the identity matrix with its columns permuted, such that
the entries of P*v, which are the the entries of v permuted the same way, are in sorted order. Now form K = P*H*P'. K
is the matrix H with its rows and columns reordered in the same way that sorts v. The fact that the sum of all (v(i)-
v(j))\2 is minimized, means that there are few edges connecting distant v(i) and v(j). In other words, if v(i) and v(j) are
widely separated in the sorted list of entries of v, they are unlikely to have an edge connecting them. In the matrix K, this
means that there are few nonzero entries far from the diagonal, because these would correspond to an edge from a v(i) to
a v(j) widely separated in the sorted list. In other words, K is close to a band matrix.

For example, consider the matrix M = L(G), where G is a chain of n nodes. M is a tridiagonal matrix as shown in the
figure below. Now perform a random permutation of the rows and columns of M to get H. H has nonzeros uniformly
distributed off the diagonal. Apply spectral partitioning to H as described above to get K. As shown below, K is
tridiagonal again. (The label nz under each graph is the number of nonzeros entries in the matrix.)

Origlnal Mamlx M

H =M with Randem Parmutatihn of Rows, Cols

u I'.
T
20} fy, 2qf
a0} amr
4ar 40
EQL EQk T
a 20 40 o] 40
nz=148 nz=148
K = Hreorderad using Spectral Paridoning
0 . .
iy
1af ,
ity
20t
Ei!:
aar
4ar
5ot it
a 20 40

nz=148

This bandwidth narrowing property (or, more precisely, "consecutive-one-ifying" property) is what we need to reorder
the rows and columns of Bp to make it a band (or consecutive-ones) matrix. But reordering Bp requires two
permutations, one for the rows and one for the columns, while spectral bisection computes just one permutation. We get
around this as follows. We can write Bp = Pf*B*Pp’, where Pf and Pp are two unknown permutation matrices we wish
to compute; Pf shuffles the rows of B, and Pp shuffles the columns. Now consider the symmetric matrix

Tp = Bp'*Bp = (Pf*B*Pp')'*(Pf*B*Pp') = Pp*(B'*B)*Pp'

Note that Tp only depends on Pp and B, but not on Pf. If B is a band matrix, one can confirm that B"*B is too, although
with a larger bandwidth. (If B is a consecutive-ones matrix, B'*B shares a similar property; see A spectral algorithm for
seriation and the consecutive ones problem for details.) Thus, Pp can be determined just by using spectral bisection to
find the single permutation of rows and columns of Tp that makes Pp*Tp*Pp (nearly) a band matrix. Similarly one can
apply spectral bisection to

Tf = Bp*Bp' = (PF*B*Pp')*(Pf*B*Pp')' = Pf*(B*B')*Pf’

to independently determine Pf. An example is shown below, where we start with a perfect band matrix and add a few
other random entries to get B, and randomly permute its rows and columns to get Bp. The bottom row of three matrices
shows Tp, Tf and Bp after permuting them to make them close to band matrices. One can see that the construction is far
from "perfect”, and in fact degrades more if the random entries added to B are farther from the diagonal. The physical
mapping of DNA remains a hard problem.

0 — 0
100 Hw:igﬁ'lyﬂ,luu-“
150 ST\ Y

0 100

a +]4]
nz = 2540 nz=2472 nz =B85

PARTT: Using Graph Partitioning in a High Level Language

The graph partitioning software described so far, and listed in Lecture 20, consists of libraries to which one passes a
graph, and is returned a partitioning. There have also been attempts to embed graph partitioning in a higher level
language, so as shield the user from having to construct the graph, partition it, (re)distribute the data across the machine,
and set up the communication. The goal of this work is to be able to take an existing serial code which traverses a sparse
data structure, and modify the language and compiler to permit the user to say

1. Inspect the following section of code (a loop nest, say), and determine the underlying graph G describing how
data items depend on other data items, partition G, and redistribute the data accordingly.
2. Execute the code with the redistributed data.

The system we will describe is called PARTI, and has more recently been renamed CHAOS. This material is taken
from "Distributed Memory Compiler Methods for Irregular Problems -- Data Copy Reuse and Runtime Partitioning," by
J. Saltz, R. Das, R. Ponnusamy, and D. Mavripilis, ICASE Report 91-73, NASA Langley Research Center, Hampton
VA, 1991.

PARTT is an extension of HPF (High Performance Fortran), and uses the features of HPF for describing array layouts
across processors. We begin by reviewing data layouts.

At the end of Lecture 5, we discussed data layout in CM Fortran, where for example the declaration (KEYWORDS are
capitalized)

REAL a(64,8), b(64,8), c(64,8)
CMF$ LAYOUT a(:NEWS, :SERIAL), b(:NEWS, :SERIAL),
CMF$ LAYOUT c(:SERIAL, :NEWS)

indicated that A(i,j) was to be stored in the j-th memory location of processor i, the same for B(i,j), and that C(i,j) was
instead to be stored in the i-th memory location of processor j. This would mean that the assignment A=B could occur in
parallel without communication, but that A=C would require a great deal of communication.

These simple layout directive are not enough for all purposes. In the beginning of Lecture 13, we discussed the more
complicated data layouts required to do Gaussian elimination (or other dense linear algebra problems) efficiently on a
distributed memory machine, and said the the first four of the following layouts were declarable within the HP Fortran
language:

1) Colamnn Blocked Layout 23 Colunn Cwclic Layout

beol
e

brow) [B] L [B]L [B71 [G]1

23|23 (23|23

G911 [0 61

2|3 2151213121312 |3

G 1 B BT Bl

23|z (3(2(312]|3

G111 G

23|z (3(2(312]|3

3) Colamn Block Cwelic Layout 4) Row and Colunn Block Cyolic Lagyout

3 Block Skewed Layout

Here, very briefly, is how HPF permits users to declare these kinds of layouts. Rather than saying how each matrix entry
maps to a processor location, two levels of indirection are used. The first level declaration declares how many of the
available processors are to be used in the layout. A simple example is the following, which declares mygrid to be a
linear array of 4 processors.

PROCESSOR mygrid(4)
The second level declares a template, or "virtual array", and says how to lay it out on mygrid. For example
TEMPLATE template_blocked(100), template_cyclic(100)

DISTRIBUTE template_blocked(BLOCK) ONTO mygrid
DISTRIBUTE template_cyclic(CYLIC) ONTO mygrid

declares that template_blocked(0:24) is mapped to processor 0, template_blocked(25:49) is mapped to processor 1, and
so on, in general with template_blocked(i) mapping to processor floor(i/25). Also, template_cyclic(i) is mapped to
processor i mod 4. Block cyclic layouts are also available. Multi-dimensional arrays can have each subscript mapped

independently, as preferred for Gaussian Elimination.

A template has no memory allocated for it; it just describes a layout. The final level of declaration actually allocates
memory for arrays. For example

REAL a(100), b(100), c(100)

ALIGN a(i) WITH template_block(1i)
ALIGN b(i) WITH template_block(1i)
ALIGN c(i) WITH template_cyclic(i)

declares 3 arrays of 100 entries each. a(i) and b(i) are declared to be stored at the same place as the template entry
template_block(i), in this case floor(i/25). However template_block is DISTRIBUTEGJ, a(i) and b(i) will always be on
the same processor. c(i) is declared to be stored at the same place as template_cyclic(i), that is i mod 4.

The reason for these levels of indirection is that one can independently control the amount of parallelism (via
PROCESSOR), the layout (via DISTRIBUTE) and which variables are local with which other (via ALIGN).

The same mechanism can be used for more irregular layouts, but we need one more level of indirection to specify the
irregularity. For example

TEMPLATE irregular(100)
INTEGER map(100)
DATA map/3,2,2,1,1,1,3,0,1,2,... /

. 100 values from O to 3
DISTRIBUTE irregular(map) ONTO mygrid
REAL d(100)

ALIGN d(i) WITH irregular (i)

These declarations specify that irregular(i) is mapped to processor map(i), i.e. irregular(1) is mapped to processor
map(1)=3, irregular(2) is mapped to processor map(2) = 2, and so on. The ALIGN statement in turn says d(1) is stored
on processor 3, d(2) is stored on processor 2, and so on.

In this example, map is specified at compile-time, and the decision about where to store d(i) is specified at compile-time.
This is very limiting, since we probably won't know the actual data structure we need to partition until run-time. The
extensions in PARTT to this approach are to allow map to be computed at run time (by examining some user specified
loops and doing graph partitioning), and DISTRIBUTE to be executed at run-time as well, in effect recompiling the
code at run-time. This is likely to be quite expensive, and so is done only when the user wants to.

Here is an example, taken from a computational fluid dynamic (CFD) application. The data structure is a two-dimension
triangular mesh, made up of nodes (numbered in blue), edges (numbered in black) and faces (numbered in red). The
mesh data is stored in two arrays. The edge_list array stores a pair of nodes for each each edge: the nodes numbers for
the i-th edge are stored at edge_list(i) and edge_list(i + n_edge), where n_edge is the number of edges. The face_list
array stores a triple of nodes for each face: the nodes for the i-th face are stored at face_list(i), face_list(i + n_face), and
face_list(i + 2*n_face), as shown below. For example, face 1 has corners at nodes 1, 2 and 3. face 2 at nodes 2, 3 and 4,
and so on.

Computational Mesh and Data Stractures to [llustrate PARTI

adge lict face list

1

1

2 . n_face
2 n_edge

3

n_face

MNode INumbers
Edge MNumbers
Face Mumbers . N

n_edge 3
. n_face

edge lict = list of paire of node numbers determining each edge
face list =list of triples of node numbers determining each face
n_node = rumber of nodes

n_edge = number of edges

n_face =rnumbers of faces

The original sequential program has two data arrays, x and y, which store data associated with each node. In other
words x(i) and y(i) are data about the fluid flow at node i. The algorithm has two loops. Loop L1 below loops over all
edges, and for each edge updates the data at both nodes determining that edge. Loop L2 loops over all faces, and for
each face updates the data at the three nodes determining the face. The functions fool, foo2, etc, are simple scalar
functions of their scalar arguments, whose details do not concern us.

REAL x(n_node), y(n_node)

C Loop over all edges
L1: DO i = 1, n_edge
nl edge_list(1)
n2 edge_list(i + n_edge)
y(n1) = fool(y(n1),y(n2),x(n1),x(n2))
y(n2) = foo2(y(n1),y(n2),x(nl),x(n2))
END DO

C Loop over all faces
L2: DO i = 1, n_face

nl = face_list(i)

n2 = face_list(i + n_face)

n3 = face_list(i + 2*n_face)

y(n1) = foo4(y(nl),...,x(n3))

y(n2) = foo5(y(nl1),...,x(n3))

y(n3) = foo6(y(nl),...,x(n3))
END DO

Here is the parallel version of this program using PARTTI:

REAL x(n_node), y(n_node)

TEMPLATE coupling(n_node)

DISTRIBUTE coupling(BLOCK) ONTO mygrid
ALIGN x(1i), y(i) WITH coupling(i)

C Decide whether to redistribute data
IF (time_to_remap) THEN
DISTRIBUTE coupling(IMPLICIT USING L1)
END IF
C Loop over all edges

IMPLICITMAP(x,y) L1
L1: DO i = 1, n_edge
ni edge_list(1)
n2 edge_list(i + n_edge)
y(n1) = fool(y(nl),y(n2),x(nl),x(n2))
y(n2) = foo2(y(n1),y(n2),x(nl1),x(n2))
END DO

C Loop over all faces
L2: DO i = 1, n_face

nl = face_list(i)

n2 = face_list(i + n_face)

n3 = face_list(i + 2*n_face)

y(nl) = foo4(y(n1),...,x(n3))

y(n2) = foo5(y(nl1),...,x(n3))

y(n3) = foo6(y(nl),...,x(n3))
END DO

Initially, the TEMPLATE coupling is laid out in a blocked fashion onto the processor grid mygrid. Arrays x and y are
aligned with coupling. Later, perhaps after the arrays edge_list and face_list have been set up, the user sets
time_to_remap to true, and executes the DISTRIBUTE statement following the IF statement. At this point, the system
begins the "Inspection phase": It will examine loop L1, which is identified later with the IMPLICITMAP statement. The
arguments x and y of IMPLICITMAP tell the system to compute the graph G of data dependencies among the
references to x and y in the subsequent loop L 1. This is done by executing loop L1 "symbolically", i.e. running through
thg loop from i=1 to n_edge, computing the subscripts n1 = edge_list(i) and n2 = edge_list(i + n_edge), seeing that y(n1)
depends on y(n1), y(n2), x(nl), and x(n2), and adding nodes n1 and n2, and edge (n1,n2), to graph G, which is initially
empty. Functions fool and foo2 are not evaluated, and y(n1) and y(n2) are not changed. After computing G, a graph
partitioning routine is called to break G into as many pieces as there are processors in mygrid. The partitioning
information is stored in the TEMPLATE coupling, with coupling(i) = j if the partition algorithm puts node i onto
processor j. All arrays ALIGNed with coupling (namely x and y) are redistributed according to the newly updated
coupling. Finally, all parts of the program that reference arrays x or y are "recompiled" to insert the necessary
communications to continue to access the data they need.

After completing the "IF (time_to_remap)" block, one reaches loop L1. At this point, the "Execute phase", the newly
recompiled code is executed and array y updated. Loop L2 is executed similarly.

