
Memcached: A Distributed Memory Object caching
System

History
 Built by Brad Fitzpatrick;s company, Danga Interactive, around 2003, for

LiveJournal, a community based journaling platform
 First described in a Linux Journal paper “Distributed caching with

Memcached” in 2004
 Used extensively by almost all big companies like Facebook. Twitter (X),

Amazon. Google,. Microsft….in some form or other
 Available for download as open source software from

https://memcached.org

What is memcached
 High performance, distributed memory object caching system
 Designed to reduce load on backend DBs
 In memory caching of dynamic DB contents

 Pools together spare memory from your servers (or more often, has dedicated
memcached servers for caching only) to create a distributed cache

 What does it cache?
 (key, value) pairs, along with an expiration time and some other optional flags
 Value is a raw binary (serialized) data, does not understand any complex types/structures

 Main goal
 O(1) access to data
 Read latency of < 1 ms
 High end memcached servers able to serve millions of queries per second

Broad Architecture
 A set of memcached servers acting as cache
 A set of clients who wish to store/retrieve data from the cache
 A memcached implementation consists of
 A client part to choose which server to read and write for a specific data item
 A server part to store and retrieve items, and decide when to evict items from cache to

reuse
 Servers are disconnected from each other
 Completely unaware of each other, no synchronization needed, no replication (in basic

form)
 Simple cache invalidation
 Data deleted/overwritten in the server holding it directly by client

 Simple APIs to get/store/replace/delete data items

Eviction/reuse
 Cache is allowed to “forget”
 Data item evicted if
 Expiration time over
 Cache is full and new item needs to be added

 LRU based eviction policy

Accessing Data
 Clients know the list of servers involved in storing data of a service (IP, port)
 Mapping data to server
 Use hashing, just two-step
 One to find the server
 One to find data item within server

 Hash the key in the (key, value) pair using
 H(key) % no_of_servers

 Connect to the server to get the data

 Two completely different leys can map to the same server
 Server keeps the table of (key, value) pairs mapped to it in an internal hash table
 2nd level of hashing

Problem
 What happens when a server joins or fails?
 Hashing may need to be done again for all items, which is very expensive

 One scenario
 Fails but a spare server put up
 Same also for taking a server down temporarily for update

 Memcached provides mechanism for backup/restore of the cache

 Still does not solve cases when a server stays down ar anew server joins
 No. of servers change

Consistent Hashing
 Hash both the keys and the servers onto a given range
 Consider the range as a circular ring (Hash ring) with smallest and largest value

tied at the end
 Each key an server will be a point on this ring
 To find the server storing a key, start from the point corresponding to the key, go

clockwise (or anticlockwise, same for all keys) on the ring, and find the first server
hit

 Store the key in that server
 Advantage
 Deleting a server only affects the keys hashed in the range stored in that server
 Similar for adding a new server
 No need to rehash any other key in any other server

What is it good for?
 Modern DC networks are very fast (a few microsecond latency)
 However, data read delays from DRAM are still much faster
 Means that memcached is not good for caching small objects, like file blocks
 Network delay of getting to the server will be significant compared to data

transfer time
 The delay will start to show!
 Also, file systems typically have their own cache

 Good for large objects, like images, videos, large webpages
 Overhead of accessing server is small compared to the actual data transfer time

 An example use case
 An application needs to resize photos for different screen sizes
 Option 1: resize in specific device
 Energy-intensive for smaller devices

 Option 2: access from source, resizing each time
 Large resizing latency

 Use memcached
 Resize in cloud, store in memcached and access

 Note that memcached is
 A caching system, not a storage system, so not persistent
 Evicts data items, so does not guarantee that a get later gets what is stored earlier

even within expiration period
 In its simplest form, not replicated (to avoid inter-server synchronization

overhead) so data items may be lost on failure
 Ok as it is just a cache
 Can do replication also

Locating servers
 Assumed that all clients know all memcached server IPs for a specific service
 Does not scale. So?

	Memcached: A Distributed Memory Object caching System
	History
	What is memcached
	Broad Architecture
	Eviction/reuse
	Accessing Data
	Problem
	Consistent Hashing
	Slide Number 9
	What is it good for?
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Locating servers

