
Dynamic Voting Algorithms for Maintaining
the Consistency of a Replicated Database

SUSHIL JAJODIA
George Mason University
and
DAVID MUTCHLER
The University of Tennessee

There are several replica control algorithms for managing replicated files in the face of network
partitioning due to site or communication link failures. Pessimistic algorithms ensure consistency at
the price of reduced availability; they permit at most one (distinguished) partition to process updates
at any given time. The best known pessimistic algorithm, uoting, is a “static” algorithm, meaning
that all potential distinguished partitions can be listed in advance. We present a dynamic extension
of voting called dynamic uoting. This algorithm permits updates in a partition provided it contains
more than half of the up-to-date copies of the replicated file. We also present an extension of dynamic
voting called dynamic uoting with linearly ordered copies (abbreviated as dynamic-linear). These
algorithms are dynamic because the order in which past distinguished partitions were created plays
a role in the selection of the next distinguished partition. Our algorithms have all the virtues of
ordinary voting, including its simplicity, and provide improved availability as well. We provide two
stochastic models to support the latter claim. In the first (site) model, sites may fail but communication
links are infallible; in the second (link) model the reverse is true. We prove that under the site model,
dynamic-linear has greater availability than any static algorithm, including weighted voting, if there
are four or more sites in the network. In the link model, we consider all biconnected five-site networks
and a wide variety of failure and repair rates. In all cases considered, dynamic-linear had greater
availability than any static algorithm.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems-reliability, availability, and seruiceability; D.4.3 [Operating Systems]: File Systems Man-
agement-distributed file systems; H.2.4 [Database Management]: Systems-distributed systems,
transaction processing

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Consistency, dynamic voting, network partitioning, pessimistic
algorithms, replica control, replication, serializability

Preliminary versions of this paper appeared in the Proceedings of the ACM International Conference
on Management of Data (San Francisco, Calif., May 1987) and the Proceedings of the 13th Znternu-
tionul Conference on Very Large Data Bases (Brighton, England, September 1987). Much of this work
was performed while the authors were at the Naval Research Laboratory, Washington, D.C. 20375-
5000.
Authors’ addresses: S. Jajodia, Department of Information Systems and Systems Engineering, George
Mason University, Fairfax, VA 22030-4444; D. Mutchler, Department of Computer Science, The
University of Tennessee, Knoxville, TN 37996-1301.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0362-5915/90/0600-0230 $01.50

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990, Pages 230-280.

Dynamic Voting Algorithms for Maintaining a Replicated Database 231

1. INTRODUCTION

A partitioning of a distributed database (DDB) occurs when the sites in the
network split into disjoint groups of communicating sites due to site or commu-
nication failures. The sites in each group can communicate with each other, but
no site in one group is able to communicate with sites in other groups. We refer
to each such group as a partition.

The files in a distributed database may be replicated at various sites. When
partitioning occurs, a dangerous situation begins: sites in one partition might
perform an update to a file, while at the same time sites in another partition do
a different update to the same file. If these two updates conflict, it may be
difficult or impossible to resolve the conflict satisfactorily. Thus, the partitioned
database is faced with a choice: either it accepts updates in more than one
partition, in which case conflicts among copies of the replicated files are inevi-
table, or it accepts updates in at most one partition, in which case the availability
of the replicated file is diminished.

The algorithms that select the first choice, accepting transactions at more than
one partition, are called optimistic, since it is hoped that the inevitable conflicts
among transactions are rare [ll, 16, 40, 42, 44, 53, 541. These algorithms take
the approach that the database must be available even when the network
partitions. Since the data of the partition might then diverge, the algorithms
require a strategy for conflict detection and resolution. Usually, rollbacks are
used as a means for preserving consistency; conflicting transactions are rolled
back when partitions are reunited. Since coordinating the undoing of transactions
is a very difficult task, optimistic algorithms are most useful in a situation in
which the number of files in a particular database is large and the probability of
conflicts among transactions is small.

The second class of algorithms share the philosophy that mutual consistency
is of considerably greater importance than availability. These algorithms are
called pessimistic algorithms, because they maintain the consistency of the file
even if transactions arrive at sites in different partitions at the worst possible
moment [2, 6-8, 15, 19-22, 26, 27, 30-33, 35, 37-39, 46, 511. Consistency is
enforced by permitting files to be updated only in a single distinguished partition
at any given time. (This partition is often called the majority partition, because
the most common pessimistic algorithms use voting.) As a consequence, any
updates that are permitted in a partition do not conflict with updates in other
partitions, assuring mutual consistency of files when partitions are reunited.

There are algorithms (see [23, 29, 44, 491, for example) that do not belong to
either of the preceding two classes; however, they require a priori knowledge of
the kind of updates to be made to the file. We make no such assumption in this
paper.

In this paper, we consider only the pessimistic algorithms. Since these methods
permit updates only in the single distinguished partition, they must reject updates
arriving elsewhere. Furthermore, all pessimistic algorithms operating in networks
subject to partitioning share the drawback that failures can occur in such a way
that no updates can be performed anywhere in the system until these failures are
repaired [43, 481. Thus, the challenge is to devise replica control algorithms that

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

232 l S. Jajodia and D. Mutchler

preserve mutual consistency of replicated files and that, at the same time, provide
improvement in the availability of files over that of existing schemes.

Voting [27, 46, 50, 511 is the best known example of a pessimistic scheme. In
its simplest form, a file can be updated in a partition if and only if the partition
contains more than half of the sites where the file is replicated. Thus, if a file is
replicated at 100 sites, a distinguished partition will have to contain at least 51
of these sites. In the event that there does not exist such a partition, no updates
can occur anywhere in the system.

In this paper we propose two generalizations to the voting scheme: called
dynamic voting and dynamic voting with linearly ordered copies (abbreviated to
dynamic-linear). These algorithms have several advantages over those of ordinary
voting:

(1) In our dynamic algorithms, unlike ordinary voting, the number of sites
necessary for an update is a function of the number of up-to-date copies in
existence at the time of the update.

(2) A file can be updated in a partition if it contains more than half of the up-
to-date copies. As a consequence, a file may be replicated at 100 different
sites, yet it is possible for dynamic-linear to allow updates with only a
single copy accessible.

(3) Changes to the quorum occur dynamically without any manual
intervention.

(4) Like ordinary voting, our algorithms are simple to state as well as imple-
ment. They require only slight modifications to the voting scheme.

(5) Our algorithms do not require a complicated message-based coordination
mechanism. The messages required are only a fraction more than that
required by ordinary voting, and no more complicated.

(6) Under two different stochastic models, dynamic-linear provides greater
availability than that provided by any static algorithm, including ordinary
voting, if there are four or more sites with copies of the replicated file.

This paper differs from our prior publications in this area [31, 321 in several
respects:

(1) The a!gorithms presented improve upon those reported previously by
distinguishing between the physical and logical versions of the file.

(2) Sections 6 and 7 contain many details not published previously.
(3) Theorems 2 and 4 in Section 8 have not appeared previously, nor have any

of the proofs given in that section.

This paper is organized as follows. The first half of the paper presents our
dynamic algorithms, while the second half gives a stochastic analysis of them.
The contents of the sections are as follows. In Section 2, we list the assumptions
we make about the network. In Section 3, we introduce our own algorithms,
followed by a more detailed description in Section 4. Section 5 contains a proof
of correctness of our algorithms. In Section 6, we discuss the relationship between
our algorithms and previous pessimistic algorithms. Section 7 contains some
extensions to our algorithms. In Section 8, we present a stochastic analysis of
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 233

our algorithms and several versions of ordinary voting. The analysis is done
twice, once for a model in which sites are subject to failure but links are infallible,
and once for a model in which the reverse is true. Finally, in Section 9 we list
our conclusions and suggestions for further work.

2. SPECIFICATION OF THE PROBLEM

A DDB system consists of a collection of independent computers, called nodes or
sites, connected via communication links. Both the nodes and the communication
links may fail, but Byzantine failures [41] are ruled out. The sites failures are
clean, that is, nodes stop executing without performing any incorrect actions
[45]. Site or communication failures may separate the sites into more than one
connected component of communicating sites. We call each connected component
a partition.

There are several logical files in a DDB, and a physical copy of each logical
file is stored at one or more sites. We assume that all sites run a concurrency
control protocol that ensures that the execution of all transactions at any site is
serializable [9, 341. A replica control protocol ensures that the replicated files are
managed correctly in the presence of failures. (An excellent survey of several of
these strategies is given by Davidson et al. [17].) In a pessimistic replica contro1
protocol, mutual consistency of a replicated file is maintained by making sure
that all files are updated in at most one partition at any given time: We call such
a partition the distinguished partition. Different pessimistic protocols use differ;
ent rules and different mechanisms to define the distinguished partition. Wh&
site or communication link recoveries cause partitions to unite, the nodes form
a new partition and obtain, if necessary, all updates that they have missed. If
there does not exist a distinguished partition, all sites in the system must wait
until enough sites and communication links are repaired so that there is once
again a distinguished partition in the system. Since this wait is unavoidable [43j
481, the challenge is to come up with a pessimistic replica control algorithm that
not only preserves mutual consistency of various copies of a file, but at the same
time achieves high availability.

We assume for ease of exposition that there is a single file f that is replicated
at n sites. The extension to transactions that update multiple files is straightfor-
ward. Any such transaction will require that a distinguished partition, as de-
scribed below, exists for every file in the read and write set of the transaction.
Further, since read requests alone cannot damage the mutual consistency of the
replicated file, we focus only on updates. In Section 7.5 we explain how our
approach can be generalized to handle read requests with different quorums from
write requests.

3. THE ESSENTIALS OF OUR DYNAMIC VOTING ALGORITHMS

3.1 High-Level Statement of the Algorithms

In this section, we present an informal description of two new pessimistic
algorithms: dynamic voting and dynamic voting with linearly ordered copies
(called dynamic-linear for short). These algorithms are presented in their simplest
form in this subsection, with an example of their conduct appearing in the next

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

234 l S. Jajodia and D. Mutchler

subsection. Succeeding sections present the algorithms in full detail, provide a
correctness proof, and describe extensions to the algorithms.

We assume throughout this section that for the purposes of voting each file is
assigned an equal weight (of one). It is possible to permit copies having different
weights; this generalization is explained in Sections 7.3 and 7.4. Also, since our
protocol does not depend on the number of files that are replicated, we assume
for ease of exposition that there is a single file f that is replicated at n sites
Sl, ss, * * * , sn.

For static voting [27,46,50,51] in its simplest form, the distinguished partition
is the partition, if any, that contains more than half of the sites. Clearly, this
ensures that there cannot exist more than a single such partition at any instant.
There is a version number associated with each copy of the file. This version
number is set to zero initially and is incremented by one each time the copy is
updated. Thus, a version number represents up-to-dateness of a copy. Any copy
in the distinguished partition whose version number is maximal is a current copy
of the file. Before a new update is committed, a current copy is used to propagate
missing updates to each site in the distinguished partition whose copy is not
current. (Alternatively, one can use the notions of physical and logical copies, as
described for our dynamic algorithms in Section 3.3.)

Simple voting is a static algorithm. Such algorithms are those for which one
could, in principle, provide a list of groups of sites such that a group of sites is a
distinguished partition if and only if it is on the list [5, 261. We convert simple
voting into a dynamic algorithm by associating with each copy of the file f not
only the copy’s version number but also a second integer variable called the
update sites cardinality. This new algorithm, which we call simply dynamic voting,
maintains the update sites cardinality of copy fi in such a way that it is always
the number of sites that participated in the most recent update to fia Thus, if the
copy at site A has version number 12 and updates sites cardinality 7, then 7 sites
participated in the update to version 12. The distinguished partition is defined
to be the partition, if any, that contains more than half of the up-to-date copies
of the file.

The basic operation of dynamic voting is simple. When a site S receives an
update request, the site sends a message to all other sites, requesting certain
information. Those sites belonging to the partition P to which S currently belongs
(that is, those sites with which S can communicate at the moment) lock their
copies of the file and reply to the inquiry sent by S. From the replies, S learns
the biggest (most recent) version number VN among the copies in partition P,
and the update sites cardinality SC of the copies with that version number.
Partition P is the distinguished partition if and only if the partition contains
more than half of the SC sites with version number VN. If partition P is the
distinguished partition, then S commits the update and sends a message to the
other sites in P, telling them to commit the update and unlock their copies of
the file too. For each of these sites, at the same time that the site commits the
update, the site increments its version number and changes its update sites
cardinality to equal the number of sites in partition P, that is, the number of
sites participating in the update. A two-phase commit protocol [25, 28, 363 is
used to ensure that transactions are atomic. The details of the communication
protocol for dynamic voting are given in Section 4.
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 235

Incrementing the version number has the effect of reassigning votes in such a
way that sites not participating in the update receive no votes. At each other site
(those with votes), the update sites cardinality is the total number of votes
currently available, that is, the number of sites that participated in the most
recent update. Thus the update sites cardinality is maintained as promised. A
site with no vote (i.e., a site with an old version of the file) can regain its vote
when it rejoins a distinguished partition and participates in an update within
that partition.

Our next algorithm, dynamic-linear, extends dynamic voting by adding a third
variable, the distinguished site (DS). When there are an even number (say SC)
of sites participating in an update (say to version VN), each site sets its
distinguished site entry to name one of the participating sites. (They can select
this site by any mechanism desired [24], but all the participating sites must select
the same site. For example, one might order the sites linearly and select whichever
participating site is biggest according to the linear order.) Suppose a subsequent
partition finds that version number VN is the most current version among its
copies. If this partition contains exactly SC/2 sites with version WV, dynamic
voting cannot accept the update, for nothing would then prohibit the other half
of the SC sites from doing an update themselves at the same time, if they too
were grouped in a single partition. Dynamic-linear accepts an update when
dynamic voting does, plus also in the case when the partition contains exactly
SC/2 sites and includes the distinguished site. That is, the distinguished site is
used to “break the tie” when a partition contains exactly half of the sites with
the up-to-date version of the file.

3.2 An Example of Dynamic-Linear

Assume there are five sites A, B, C, D, and E that have copies of the file f, where
these sites are initially connected and form a single partition. We linearly order
the sites lexicographically: A > B > C > D > E and use this order to determine
the distinguished site. Now, suppose the tile f has been updated nine times, so
the initial state can be represented as follows. The DS entry has significance
only when the SC value is even; we use the symbol “-” in a DS entry to indicate
that the DS value is immaterial.

At this point suppose site C receives an update, and it finds that it can
communicate with sites D and E only. Since C still belongs to a distinguished
partition, it can process the update. The state then changes to

$j-/i+

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

236 l S. Jajodia and D. Mutchler

Suppose now that site C receives yet another update, and it discovers that it
can communicate with site E only. The novelty here is that since sites C and E
together contain more than half of the current copies of the replicated file, they
form a distinguished partition even though there are only two sites (out of five)
in this partition. Thus site C can process the update, after which the database
state will be

Suppose sites C and E perform four additional update operations and subse-
quently become isolated from each other. The system state changes to the
following:

The novelty of dynamic-linear is that at this point the partition consisting of
the single site C is a distinguished partition and can process updates.

This example shows that site and link failures can occur in such a way that
dynamic voting and dynamic-linear can process updates that must be rejected by
simple voting. The reverse is true also. Suppose that the above example continues
like this: site C fails and the remaining four sites regroup into a single partition.
Then updates are blocked under both of the dynamic algorithms, while simple
voting permits updates in the four-site partition. The evaluation of which is
better, a static voting algorithm or a dynamic voting algorithm, is a stochastic
question to which Section 8 is devoted.

3.3 Physical and Logical Version Numbers

It is desirable that, within any single partition, all copies of the replicated file be
identical. As presented so far, our algorithm lacks that property-when a site
joins a partition that is not a distinguished partition, the site cannot “catch up”
from a more current version within the partition. This drawback is easily removed
by associating a logical version number and physical version number with each
copy of the file, instead of just the single version number used earlier. Here we
sketch how these variables are used with dynamic-linear and give an example to
show their usefulness. The next section describes these variables, along with the
protocols for dynamic-linear, in more detail.

Each copy of the file has associated with it four integers: logical version
number, physical version number, update sites cardinality, and distinguished site
entry. When a site S wishes to do an update, it communicates with other sites in
its partition P. Site S learns the biggest (most recent) logical version number LN
among copies in P as well as the update sites cardinality SC and distinguished
site entry DS of the copies with that version. As before, for partition P to be a
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 237

distinguished partition, it must contain more than half of the SC sites with
logical version number LN, or exactly half of the SC sites including the site
named by the DS entry. However, there is now an additional requirement: at
least one of the SC sites must have a physically current copy of the file, for
without this the update cannot be physically performed! The physical version
number is incremented each time a physical update to the copy OCCUYG. Thus
partition P contains a physically current copy of the file if one of the sites in P
has a copy whose physical version number equals the maximal logical version
number LN.

To show why it is useful to distinguish the logical version number from the
physical version number, we consider again the scenario in the previous section.
The last database state pictured in the example will now be repesented as follows.
(Note: we have renamed the sites from the earlier example in order to simplify
the depiction of partitions in this example.)

LN:
PN:
SC:
DS:

LN:
PN:
SC:
DS:

- -

Now, suppose that sites D and E resume communication with site C. Because of
the distinction between physical and logical copies, sites D and E may receive
missing updates although CDE is not a distinguished partition. That is, sites D
and E can safely change their physical version numbers to 15 after doing the six
missing updates obtained from site C. This illustrates one benefit of the intro-
duction of logical/physical copies: all sites within a partition will have the same
physical version of the file, except for a brief period after each recovery. Note
that although it is always safe to do updates and change physical version numbers,
it is not safe to change logical version numbers without going through the
protocol to verify that a distinguished partition exists. In particular, changing a
logical version number without changing the corresponding update sites cardi-
nality would destroy the invariant that all copies within a given logical version
number have identical update sites cardinalities. We use this fact in our proof of
correctness of our algorithms.

After D and E make their copies current (using routine Make-Current in
Section 4.3), the new database state would become

A B C D E

15 10 15 9 9
15 10 15 15 15
2 3 2 5 5

A - A - -

Suppose that at this point site A receives an update and A finds that it can
communicate with sites B and C. Site A determines that it has both of the copies
with maximal logical version number 15 and that both of these copies are

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

238 l S. Jajodia and D. Mutchler

physically current. Site A therefore performs the update and sends to B and C
the new data structures: LN = 16, SC = 3, and DS is immaterial. Site A also
sends the update to site C. All these messages are received properly. Finally, site
A sends the five missing updates, plus the new update, to site B. Before this last
(lengthy) message is delivered, site A becomes isolated from B and C. The
database state is now as follows.

m

D E

LN:
PN:
SC:
DS:

9 9
15 15
5 5

- -

LN:
PN:
SC:
DS:

I I 3 3 3
I -(- -

The site B becomes a site with a logically current copy, and so updates may
continue to occur in the distinguished partition BC. Note that under similar
circumstances, but without the distinction between physical and logical copies,
site B would still be waiting for the missing updates and hence could not
participate in an attempt to form a new distinguished partition. Thus sites B
and C would not form a distinguished partition, and no updates would take place
anywhere in the system. This illustrates a second advantage of the introduction
of logical/physical copies: it permits us to remove from the locking portion of our
protocol certain time-consuming actions (like the transfer of missing updates)
that can conveniently be placed outside of this portion.

Suppose that there is one update in partition BC, but that B and C become
isolated before C has a chance to bring the copy at B up-to-date, leading to the
following state:

Notice that the partition consisting of the single site B does not form a
distinguished partition since even though it does not have a “logical majority,” it
does not contain a physically current copy. Now suppose that site A can com-
municate with site C and obtains its missing update from C, after which site C
fails and sites A and B join together. Now the database state is

A B C

LN: 16 17 1’7 -l---r PN: 17 10 17
SC: 3 2 2
DS: - B B

D E

9 9
15 15
5 5

- -

At this point the partition AB is a distinguished partition since it has a “majority”
of logically current copies and a copy that is physically current.
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 239

4. DETAILED DESCRIPTION OF OUR DYNAMIC VOTING ALGORITHMS

In the previous section, we said that the coordinating site sends a message to the
other sites and awaits a reply. Because a distributed environment is subject to
site and link failures, such message-passing requires more attention than would
otherwise be necessary. Consider a site S that receives an update request. Our
algorithms, like simple voting, must permit site S to inquire which sites are in
its partition. The sites that admit to being in this partition must not respond to
another such inquiry until they know that the first such inquiry has been
concluded, lest two update protocols be occurring simultaneously. Whatever
protocols simple voting might employ for such purposes, our dynamic algorithms
can employ as well. The only extra communication cost incurred is the negligible
cost caused by appending three integers to each message: the update sites
cardinality, distinguished site entry, and the logical version number.

We now present one way to accomplish the communication protocol required
by dynamic-linear. The protocol for dynamic voting can easily be gleaned from
the protocol given for dynamic-linear.

4.1 Data Structures

We associate with each copy of the file f four variables’: logical version number,
physical version number, update sites cardinality, and distinguished site, defined
as follows. We continue to assume that sites are assigned a priori a linear
ordering, denoted by >, and use this ordering to determine the distinguished
sites.

Definition 1. The logical version number of a copy fi at site Si is an integer LNi
that counts the number of successful updates to the file fat or prior to the most
recent time that site Si participated in an update to f as a member of a
distinguished partition. The site Si sets LNi to zero initially and updates it each
time an update to f occurs with Si as a member of a distinguished partition.

Definition 2. The physical version number of a copy fi at site Si is an integer
PNi that counts the number of successful updates to fi. We set PNi to zero
initially and increment it by one each time an update to fi occurs.

Thus the physical version number counts the actual updates performed to the
copy, while the logical version number counts those updates plus any others to
which the site has agreed but not yet actually performed. For example, suppose
a site A has a copy of the replicated file with physical and logical version number
13. Suppose another site B has a copy with logical version number 17 and B
informs site A that they are both permitted to do a new update. (The mechanism
for this will be described shortly.) Then site A may change the logical version
number of its copy to 18, but will not change the physical version number until
the missing four updates and the new update show up.

Definition 3. Associated with each copy fi at site Si is another integer called
the update sites cardinality, denoted by Sci. This variable always reflects the

1 These variables need not be physically attached to the file.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

240 l S. Jajodia and D. Mutchler

number of sites participating in the most recent update to fi that site Si partici-
pated in as a member of a distinguished partition. We set Sci to n (number of
sites) initially, and whenever site Si participates in an update as a member of a
distinguished partition, then SCI is set to the total number of sites that partici-
pated in that update.

Definition 4. We associate with each copy fi at site Si a variable called
distinguished site, denoted by DSi. The value of DSi is important only if the
corresponding Sci is even. When SC, is even, DSi identifies the site that is greater
(in the linear ordering for the file f) than all other sites that participated in the
most recent update to fi.

Before we can state what we mean by a distinguished partition, we need
additional terminology.

Definition 5. The current version number of a replicated file f is the maximum
version number of all copies off.

Definition 6. A copy is said to be logically current if its logical version number
equals the current version number of the replicated file.

Definition 7. A copy is said to be physically current if its physical version
number equals the current version number of the replicated file.

Definition 8. A copy is called current if it is both logically and physically
current.

Definition 9. A partition P is said to be a distinguished partition if either of
the following two conditions holds:

(a) the partition P contains more than half of the logically current copies and
at least one physically current copy, or

(b) the partition P contains exactly half of the logically current copies and at
least one copy that is physically current, and moreover, contains a site S
such that (i) the copy of S is logically current, and (ii) S > S’, where S’ is
any other site containing a logically current copy off.

4.2 Protocol under Normal Operation

In this subsection, we describe our protocol, assuming first that no sites or
communication links fail during the execution of the protocol; in the next
subsection, we describe how our scheme adjusts in the face of failures.

Suppose a site S receives an update to the tile f. S initiates execution of the
protocol consisting of the following steps. All messages in this protocol (e.g.,
LOCK-REQUEST and VOTE-REQUEST) are with reference to tile f, as are all
data structures (e.g., LNi).

6) S issues a LOCK-REQUEST to its local lock manager. When the lock request is
granted, S sends a VOTE-REQUEST message to all sites.

(ii) When a site S; receives a VOTE-REQUEST, it issues a LOCK-REQUEST to its
local lock manager. When the lock request is granted, Si sends to S the values LN,,
PN;, Sci, and DSi.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 241

(iii)

6)

(VI

(vi)

(vii)

(viii)

The site S collects the responses from the various sites and decides whether it is
a member of a distinguished partition (see routine Is-Distinguished in this sub-
section). Henceforth, we refer to S as the coordinator and the respondents as
subordinates.
If S does not belong to a distinguished partition, it aborts the update, issues a
RELEASE-LOCK request to its local manager, and sends ABORT messages to all
the subordinates. When a subordinate receives the ABORT message, it too issues a
RELEASE-LOCK message to its local lock manager. Steps (v) through (viii) do not
apply if step (iv) is invoked.
If S does belong to a distinguished partition, it determines whether its copy is
current; if it is not current, S determines what subordinates have current copies of
the file f (see routine Catch-Up in this subsection). If the copy at site S is current,
S proceeds with the next step. Otherwise, S acquires the missing updates from any
subordinate that has a current copy and then continues with the next step.
Once the copy at S is current, S reads its copy of the file f and performs the update.
Then S commits the update to the file f together with the modifications to its LN,,
PN;, Sci, and DSi and sends to each Si the COMMIT message and the new values
for LNi, SC, and DSi (see the procedure Do-Update in this subsection). There is
no need to send PN; since it equals LN,. Also, S sends the new update to each Si
whose copy fi was current. Finally, S issues a RELEASE-LOCK request to its lock
manager.
Each Si acts on the message received from S (aborting or committing the update
and associated data structures) and then issues a RELEASE-LOCK request to its
lock manager.
S sends the missing updates to each subordinate whose copy fi was not current (see
the procedure Send-Missing-Updates that appears later in this subsection).

The three phases of our protocol are the voting phase (steps (i)-(iii)), the
catch-up phase (step (v)), and the commit phase (steps (iv), (vi), and (vii)). Note
that the collection and dissemination of votes are attached to the first and last
phases of our protocol, respectively. These two phases also act as the two-phase
commit protocol used to insure atomicity of transactions. Thus, collection and
dissemination of votes require no extra rounds of communication. The middle
(catch-up) phase is not necessary if the copy at S is current. Also note that the
final step lies outside of the window of uncertainty [14] for each subordinate Si.
That is, each subordinate Si is locked out from other updates during steps (i)
through (vii) (its window of uncertainty), but may participate in other updates
while step (viii) is being performed.

We now describe in more detail each of the three phases in turn. To initiate
the voting phase, the site S executes the following Is-Distinguished procedure.

Is-Distinguished

(1) The site S asks all sites that have a copy off to send their values LN,, PN,, Sci, and
DSi. Let P denote the set consisting of the coordinator S and all the subordinates
(sites that respond to the inquiry S sends). Each site in P locks its copy of the file f.

(2) The site S then calculates: the value A4 = max(LNi: Si E P), the set Logical =
(Sj E P: LNj = Ml, and the set Physical = {Sk E P: Plv, = Ml. M denotes the largest
version number that is in P, the set Logical consists of those sites in P that have the
logical version number M, and the set Physical contains those sites in P that have the
physical version number M.

(3) If card(Physical) = 0, then S does not belong to a distinguished partition (since in
this case P does not have any copy that is physically current).2 Therefore, the site S

’ Notation: For a set X, card(X) denotes its cardinality.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

242 l S. Jajodia and D. Mutchler

(4)

(5)

(6)

aborts the update, sends ABORT messages to the subordinates, and releases the lock
on its copy. Upon receiving the abort message, the subordinates release all locks on
their copies.
Otherwise, S takes the update sites cardinality of any site in the set Logical. (Any site
in Logical will do; the choice is arbitrary, because all sites in Logical will have the same
update sites cardinality.) Denote this by N. If card(Logical) > N/2, then S is a member
of a distinguished partition.
Otherwise, if card(Logical) = N/2, then select any site Si in Logical. (Again the choice
of Si is arbitrary.) If DSi E Logical, then S also belongs to a distinguished partition.
Otherwise, S does not belong to a distinguished partition. In this case, the site S
aborts the update, sends ABORT messages to the subordinates, and releases the lock
on its copy. Upon receiving the abort message, the subordinates release all locks on
their copies.

As we mentioned, a site S initiates the second phase if it has determined that
it belongs to a distinguished partition. We continue to use the same notation as
in the Is-Distinguished procedure.

Catch-Up

All the sites in the set Logical possess the logically current copy of the file f, and the
sites in the set Physical have copies that are physically current. If the site S is not a
member of the set Physical, it requests the missing updates from some site in Physical
and processes those updates.

We note that at the end of this phase, the copy off at the site S is physically
current. Once this is done, the third and final phase commences.

Do-Update

(I) During this phase, the sites commit the update. First, the coordinator S reads its
copy of the file f and performs the update. Next, S commits the update together with
the new values for the four variables associated with each copy:

LNi=M+l
PN,=M+l
Sci = card(P)
DS; = S ’ if card(P) is even and S’ - S” for all S n in P.

The site S sends to each subordinate the following: the COMMIT message and the
new values for LNi, Sci, and DS; (if card(P) is even). There is no need to send PNi
since it equals LN,. Also, S sends the new update to the file to each site in the set
Physical. The site S then releases the lock on its copy of the file.

(II) Each subordinate &, upon receiving the message from S, processes it as follows: Each
Si commits the new values for LN,, SC, and DSi (if received). Moreover, if S; receives
the new update as well, it commits the update together with its new PNi which is
equal to the new LN,. Once this is done, S, unlocks its copy of the file.

Although the update has been committed by all participants, the coordinator
S is aware that sites in P-Physical have copies that require updating. Therefore,
S executes the following steps:

Send-Missing-Updates

(i) The site S sends each subordinate in P-Physical the physical version number PNi
and the missing updates.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 243

(ii) When a site Sj receives the message from S, Sj compares its local PN, with PN;. If
PN, > PNj , Sj applies the missing updates and sets PN, equal to PN,.

Finally, note that our protocol may cause deadlocks to occur. There are several
ways to handle deadlocks, and we refer the reader to Bernstein et al. [lo] or Ceri
and Pelagatti [12] for additional details.

Here is an example to illustrate the routines described in this section. Suppose
the current state is as follows. This state might arise naturally in a manner
similar to the example of Section 3.3.

A B C D E F G

LN: 16 17 9 17 17 17 9
PN: 17 10 15 12 17 10 15
SC: 3 4 5 4 4 4 5
DS: - B - B B B -

At this point, site C initiates the protocol to process an update by locking its
file and sending a VOTE-REQUEST message to all sites. Prompt replies arrive
from sites A, B, and D with their logical and physical version numbers, update
sites cardinalities, and distinguished site entries. However, no replies arrive from
the other sites. After a while, site C decides (perhaps because a timeout has been
exceeded) to proceed with the protocol. If late replies arrive after this point from
any of sites E, F, or G, site C must send an ABORT message to those sites. In
the next subsection we see how sites E, F, and G can acquire up-to-date copies
of the file.

Site C executes the Is-Distinguished routine. Here the partition P is
(A, B, C, D}. The maximal version number A4 that C receives is 17, and sites B
and D form the set Logical of sites with that logical version number. The set
Physical of sites with 17 as their physical version number is the set containing
only site A. The update sites cardinality N of the sites in Logical is 4. Since set
Physical is not empty, site C compares the cardinality of Logical, which is two,
versus N/2, which is also two. Since these are equal, site C checks the distin-
guished site entry of sites in Logical; this is site B. Since B is a member of
Logical, a distinguished partition exists.

Site C then notices that its own copy is not physically current, since it is not
a member of the set Physical. Site C executes the Catch-Up routine and acquires
the two updates it is missing from site A, the sole member in Physical. Then site
C executes the Do-Update routine. It sets its logical and physical version
numbers to M + 1, here 18. It sets its update sites cardinality to 4, the number
of sites in the partition. Since this is an even number, it selects a new distin-
guished site entry, say A. It commits the update together with the new values of
these variables. Then site C sends the COMMIT message and the new values of
these variables to sites A, B, and D. Site C also sends the new update to site A,
which is the only other site ready to perform that update. After these messages
are sent, site C releases the lock on its copy of the file.

When sites A, B, and D receive the COMMIT message, they commit the values
sent. Site A also receives the new update and so performs the update and

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

244 - S. Jajodia and D. Mutchler

increments its physical version number. At this point, the database state is as
follows:

*

Finally, site C executes the Send-Missing-Updates routine. Sites B and D
receive the missing updates and the new update and commit those updates along
with physical version number 18.

4.3 Protocol when Failures Occur

In this subsection, we describe how our protocol adjusts to site and communica-
tion link failures. We describe a restart protocol which is executed by a site when
it recovers from a failure.

Our restart protocol works as follows. When a site recovers from failure, it
takes steps to ensure that its copy is brought up-to-date. We next describe how
a site S can do this.

Make-Current
(a) The site S contacts all sites in its partition, call it P, and asks for their physical

version numbers PnT,.
(b) S calculates the value V = max(PNi: Si E P). If the physical version number of the

copy at S is less than V, then S can request missing updates from any site Si in P
such that PNi = V. Upon receiving the missing updates from &, S applies them to its
copy and modifies its physical version number to equal V as well.

Notice that a recovering site can obtain missing updates even it is not a
member of a distinguished partition. it might be desirable, however, for the
recovering site to also become a voting member of the distinguished partition, if
it can. The site can wait for the next update to come along in its partition, at
which time the site will be included in the new distinguished partition if one is
formed. Alternatively, the site can instigate the normal-operation protocol by
processing a null update. That is, the site can run the following procedure.

Rejoin-Distinguished-Partition
A recovered site S can attempt to regain voting status in the distinguished partition
by running the three-phase normal-operation protocol, but using a special null update.
This update does not change the contents of the file. If the null update is aborted
(because S does not belong to a distinguished partition), then S cannot regain voting
status at this time but can try again later. Otherwise, the null update causes the
current logical and physical version numbers of the file to be incremented and a new
distinguished partition (containing site S) to be formed.

Section 7.2 discusses whether a site should run the Rejoin-Distinguished-
Partition procedure or simply wait for an update to occur in its partition.

It is straightforward to formulate a termination protocol which is invoked to
correctly terminate transactions when the three-phase update procedure is inter-
rupted by failures (see, for example, [lo, chap. 71 or [12, sect. 9.2.2.21). Here is
one way to do so.
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 245

Definition 10. We say a site S is blocked with respect to a file being updated if
it has responded to a VOTE-REQUEST message for that file from the coordi-
nator, but has not received a COMMIT or ABORT message in return.

Suppose a site Si is blocked. There are three ways in which a blocked site may
become unblocked (i.e., correctly terminate the pending transaction). First,
suppose a blocked site Si receives a VOTE-REQUEST from some site 5’ ‘. Then
Si sends the following values for its data structures: LNi = -w, the actual value
for PNi, Sci = -co, and DSi = -CQ, where -co is some value much smaller than
any actual values for each of these variables. If Si later receives a COMMIT from
S ‘, then Si may commit the update sites cardinality, distinguished site entry,
and logical version number sent by S ’ (and Si is no longer blocked).

The second way for a blocked site Si to become unblocked is by running the
following termination protocol.

Termination-Protocol

(I) The initiator S sends a DECISION-REQUEST message to all sites, along with the
unique id and timestamp of the VOTE-REQUEST message that is blocking S.3

(2) A site S ’ upon receiving the DECISION-REQUEST message sends COMMIT to S
if S ’ committed the update, sends ABORT to S if S ’ aborted the update, and otherwise
does nothing.

(3) If S receives a COMMIT or ABORT from any responder, it too can do likewise;
otherwise it must wait for some period of time and run this protocol again.

The above termination protocol can be modified into one that is more elaborate
(see, for example, [12, Sect. 9.2.2.21). The initiator S can further ask how many
sites had responded to the VOTE-REQUEST message. If S determines that the
sites that did not (and will not) respond to the VOTE-REQUEST message form
a distinguished partition, it can go ahead and abort the update.

Note that a blocked site can obtain at any time missing updates from any site
by running the procedure Make-Current. This provides a third way in which
a site may become unblocked: it can unblock if it obtains any updates whose
physical version number is greater than the current logical version number at
the blocked site.

Continuing the example from the previous subsection, suppose that site E joins
the partition containing sites F and G. Here is the current state of the database.

IA B C DIE F G

LN: 18 18 18 18 17 17 9
PN: 18 18 18 18 17 10 15
SC: 4 4 4 4 4 4 5
DS: A A A A B B -

Suppose that sites F and G now recover from a failure. They each execute the
Make-Current routine, thereby acquiring missing updates from site E and
changing their physical version numbers to 17. The three sites E, F, and G would
then periodically try the Rejoin-Distinguished-Partition routine. When one
of these succeeds, after the link separating the two partitions is repaired, then

3 We assume that, as is typical in distributed message-passing, all messages are uniquely identified to
permit subsequent references to them.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

246 l S. Jajodia and D. Mutchler

all 7 sites will change to logical version number 19 and update sites cardinality
7. The site which coordinated the update to logical version 19 will then execute
Send-Missing-Updates and bring all sites to physical version number 19.

4.4 Addition and Deletion of Sites

In this subsection, we show how we may add or delete copies of the replicated
file f dynamically, without any special intervention. Suppose a site S that does
not have a copy of file f wishes to have one. The site S sets the logical and
physical version numbers of its copy to -03, where --co is some value much smaller
than any actual values for the version numbers. Then, it may execute the Make-
Current routine to obtain as many updates as are available, or the most recent
version of the file if that is more convenient. Afterward, it will join the distin-
guished partition when its partition forms a new distinguished partition, or it
can initiate said regrouping by executing the Rejoin-Distinguished-Partition
routine. The site S should also notify all other sites having copies off that S now
has a copy too, so that S is included in the sites polled when an update arrives
in those sites. Also, the linear ordering of sites used to select the distinguished
site entry should be modified to include S.

It is equally easy for copies to be deleted from the system. Suppose a site S
decides that it no longer wants to have its own copy of the file f. It executes the
Rejoin-Distinguished-Partition routine (that is, it submits a null update to
the normal-operation protocol), but with two changes.

Case 1. Suppose that after the first phase of the protocol, some copy in the
partition to which S belongs is found to have a copy more logically current than
the copy at S. In this case, site S can delete its copy any time it desires and send
an ABORT message to the other sites in the partition, concluding the protocol.

Case 2. Otherwise, site S simply continues the protocol in the usual way, except
that S omits itself from the count of sites in the partition, if a distinguished
partition exists. If no distinguished partition exists, or if S is the sole site with a
physically current copy of the file, then S should not delete its copy of the file
yet and should try this procedure again later.

If site S succeeds under either case, it may delete its copy of the file. The site
must not participate in further updates to the deleted file, of course. For this
reason, it is desirable that S notify all other sites having the copies that it no
longer maintains a copy and should be excluded from their future attempts at
forming a distinguished partition.

5. PROOF OF CORRECTNESS

THEOREM 1. Dynamic voting and dynamic-linear are correct, that is, they
maintain consistency of a replicated file.

PROOF. We give the proof for dynamic voting. The extension for dynamic-
linear is trivial.

To show correctness of a replica control algorithm, one must show that it
produces one-copy serializable logs [3, lo]. However, every pessimistic algorithm
with all reads from the current copy produces such logs [30], so it suffices to
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 247

show that dynamic voting is pessimistic and that reads are from the current
copy. That is, we must show that dynamic voting (1) permits at most one
distinguished partition at any one time; (2) keeps all copies within a distinguished
partition logically identical; and (3) insures that any two consecutive distin-
guished partitions have a copy in common.

First note that the two-phase commit protocol which our algorithms embed
ensures that the coordinator and its subordinates act in consensus. This keeps
all copies within a distinguished partition identical and permits us to focus on
the coordinator in the rest of the proof. One must check that the termination
protocols we suggest do not invalidate the coordination provided by two-phase
commit; we leave this to the reader.

For dynamic voting, as for ordinary voting, the set of sites with the most
current logical version forms the single current distinguished partition. Consider
an update from logical version number A4 to logical version number M + 1. First
note that all k sites with logical version number M will have lz as their update
sites cardinality (see the Do-Update routine). (A formal proof of this claim is
by induction on current logical version number.) To permit the update from M
to M + 1, more than half of these,iz sites must be participating in the update (see
the Is-Distinguished routine). After the update, fewer than half of these k sites
will remain with logical version number M. We conclude that two updates in
different partitions cannot be committed from logical version M. Thus the file
versions form a sequence. Any two successive logical versions will have at least
one copy in common; see the Catch-Up routine and note that step (3) of the
Is-Distinguished routine requires that at least one participating site be physi-
cally current. This suffices to show that dynamic voting is a pessimistic algorithm
with all reads from the current. copy, and hence is correct. Cl

6. RELATIONSHIP OF OUR ALGORITHM TO OTHER
PESSIMISTIC ALGORITHMS

Perhaps the most common pessimistic algorithm is weighted voting [27]. Here
site k is given vk votes. The distinguished partition is the partition, if any,
containing sites whose votes sum to more than half of the total votes. Simple
voting [50, 51, 461 is the instance of weighted voting in which each site receives
a single vote. The primary site algorithm [2] is another instance of weighted
voting: the primary site gets all the votes. Voting-primary (see [32], for example)
is an extension of simple voting, applicable when the number of sites is even.
Voting-primary uses one vote per site, except that the primary site gets two votes,
to “break the tie” and distinguish two partitions each of which contains exactly
half of the sites.

Weighted voting provides a rule for determining whether a partition is distin-
guished. A more general way to describe the partitions that form potential
distinguished partitions is simply to list them. For example, the list ((A, B, C),
{A, D), (B, D), (C, II)) says that if a partition contains sites A, B, and C, then
that partition is a distinguished partition and can perform an update. Likewise,
site D plus any of sites A, B, or C would also form a distinguished partition
according to this list, as would any superset of the four groups of sites in the list.
The correctness of the pessimistic algorithm places only one restriction on such

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

248 l S. Jajodia and D. Mutchler

a list: any two groups in the list must have a site in common, for if they did not,
then updates could occur in two different partitions at the same time. (This is
called the intersection property.) Furthermore, since supersets of a distinguished
partition are themselves distinguished partitions, we can omit from the list all
sets that are supersets of another set on the list. (This is called the minimality
property.) Lists with the intersection and minimality properties were labeled
coteries by Garcia-Molina and Barbara [5, 261; their use was first suggested by
Lamport [35]. Surprisingly, there are coteries that cannot be specified by a
weighted vote assignment [26].

Coteries (and the special case of weighted voting) need a commit mechanism
to discover what sites are participating in the update and to coordinate the
update among those sites. The most popular choice is distributed two-phase
commit, as is used in Section 4. Whatever mechanism coteries might use, dynamic
voting and dynamic-linear can use the same mechanism. The difference between
coteries (or weighted voting) and our dynamic algorithms is that our algorithms
react to changing conditions of the network. We show in Section 8 that, under
two stochastic models, this yields increased availability of the replicated file. Our
algorithms achieve this by adding only a few extra bytes to each message.4

Other dynamic pessimistic algorithms have been proposed. In the remainder
of this section, we briefly describe these other algorithms, explain how they differ
from our algorithms, and offer an informal discussion of their advantages and
disadvantages.

In the true-copy token algorithm [37], there is a token asociated with each file,
and a partition is a distinguished partition if it contains a site that has the file
token. The token may be passed from site to site. This algorithm is the dynamic
analog of the primary site algorithm. It shares the drawback of the primary site
algorithm that the available choices for potential distinguished partitions are
quite limited.

The missing writes algorithm [19] makes use of the fact that read-only trans-
actions can sometimes “run in the past” without compromising correctness. It
uses the read-one, write-all algorithm under normal operation, but converts to
weighted voting when failures occur. The algorithm is particularly useful if reads
are frequent and failures are rare. It has two drawbacks. First, the weights it uses
for voting in failure mode are fixed, while all the vote reassignment algorithms
(including ours) allow these weights to change dynamically. Second, it requires
many more data structures than our algorithms do. Several files must be main-
tained to keep track of updates that were made while the network is partitioned-
the so-called “missing write” information-so they may be propagated to other
sites later. These files need not be maintained during normal operation, but can
grow rapidly during failures [17, p. 3551.

‘ Using the coteries or weighted voting, one can choose to update only as many sites as it takes to
form a distinguished partition, even if there are additional sites with which one can communicate.
For example, simple voting with 99 sites could choose to update 50 of the sites, even if all 99 are in a
single partition. The advantage of this is that it reduces the number of messages needed to do an
update. The disadvantage is that many sites will have out-of-date copies of the replicated file, which
can degrade performance when they later need to be updated. We could do the same but choose not
to. We assume in this section that all algorithms that use coteries or weighted voting choose to update
all the sites with which they can communicate, if those sites form a distinguished partition.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 249

Dynamic voting and the Davcev-Burkhard algorithm [151 both seek to reassign
votes in such a way that sites with out-of-date copies receive no votes.5 The
algorithms are very similar in their selection of partitions in which updates can
occur. In fact, if communication were instant and updates arrived frequently (see
Section 8.3.1), then dynamic voting and the Davcev-Burkhard algorithm would
permit updates in exactly the same partitions. In both algorithms, the reassign-
ment occurs dynamically and automatically. However, the Davcev-Burkhard
algorithm uses a special mechanism that monitors the network continuously.
Whenever a failure or recovery of a node of communication link occurs, the new
network status must be reflected instantaneously in special data structures at
the sites. This mechanism is unrealistic and the data structures unduly compli-
cated. Our algorithms do not require such monitoring. They detect partitioning
simply by the failure of sites to respond promptly during the update itself.
Inability to detect failures does not invalidate the correctness of our algorithms,
although it may affect availability.

Group consensus vote reassignment [6-81 uses weighted voting to do the updates
themselves. At various times (presumably upon noticing a failure or repair), the
members of a distinguished partition (defined according to the current vote
assignment) elect a coordinator [24]. The coordinator chooses a new vote assign-
ment and installs it by using version numbers, just as our algorithms do. The
choices for the new vote assignment are exactly the same as the choices available
to a suitable generalization of our algorithms (see Section 7.4). There are two
differences between our algorithms and group consensus. First, the simplest form
of our algorithms (dynamic voting) uses just a single integer (the update sites
cardinality) stored at each site to describe implicitly the new vote assignment.
Second, we piggyback the vote reassignment onto the two-phase commit protocol
already being used to perform the update itself, while group consensus uses a
separate election protocol. Thus group consensus uses more messages than our
algorithms do (because of its separate election protocol), while the messages of
our algorithms are slightly longer than those of group consensus (because the
messages contain the update sites cardinality, for instance). Also, group consensus
does not automate the decision of when to do the vote assignment, while our
algorithms do an implicit vote reassignment at each update. Finally, the use of
an election algorithm to do the reassignment presents an additional opportunity
for deadlock. The management of replicated data requires a two-phase commit
protocol to perform the updates. So why not use two-phase commit to reassign
votes at the same time the update is done? This is what our algorithms do.

In autonomous vote reassignment [6-81, each site can increase its own votes.
Site S does this by first notifying other sites of its vote increase. These other
sites record the new vote assignment for S as soon as they hear about it and send
an acknowledgement back to S. Site S records its new vote assignment after it
receives acknowledgements from a majority of sites, where the “majority” is
determined according to the vote assignment currently in force at S. As with
group consensus, the failure to piggyback the vote reassignment to the two-phase
commit already being used for updates is the source of several drawbacks. First,
extra messages are required for the vote reassignment. If some sites that form a

’ Before our use of the phrase, Davcev and Burkhard labeled their algorithm, “dynamic voting.”

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

250 l S. Jajodia and D. Mutchler

distinguished partition all wish to change their votes, they must each communi-
cate with each other. Thus autonomous vote reassignment adds O(n’) messages
per vote reassignment. Contrast this with the O(n) messages that accomplish an
update (and thus also a vote reassignment under our algorithms). The second
drawback of autonomous vote reassignment occurs because the sites reassign
votes autonomously, instead of using the information available from the two-
phase commit used to do the update. This means that the vote assignments
probably will not reflect the status of the network as clearly as they can in our
dynamic voting. We emphasize that these drawbacks exist only because, for
management of replicated data, there already is a need for two-phase commit to
do the updates. For other applications, the autonomous nature of autonomous
vote reassignment may prove very useful.

The views approach of El Abbadi and Toueg [22] is a generalization of the
uirtuulpartitions algorithm [20] and the algorithm in [21]. (The algorithm in [20]
was perhaps the first to suggest vote reassignment. However, it required a two-
phase protocol for the reassignment, a flaw corrected in the later versions.) The
views algorithm provides dynamic read quorums as well as write quorums. (See
the discussion in Section 7.5 of how our algorithm can be extended to include
read quorums.) The notable advantage of the views algorithm is that it sometimes
permits reads to “run in the past” without compromising correctness. For
example, the following is possible under the views algorithm but not under our
dynamic voting: a group of sites has all the votes; that group is using read-one,
write-all; yet a vote reassignment can occur even if some of the sites in that
group fail. The disadvantages of the views algorithm are as follows. First, each
vote reassignment involving a fixed fraction of the sites generates O(n’) messages
that our algorithms avoid by piggybacking them onto the updates. Second, the
vote reassignment provides additional opportunity for deadlock. Finally, the
views algorithm will never allow an update in a partition that contains fewer
than one-fourth of the sites. This stands in contrast to dynamic-linear, which
will permit an update in a partition that contains only a single site, if updates
arrive frequently and sites fail one by one.

Voting with witnesses [38, 391 is an interesting idea that can be applied to all
of the vote reassignment algorithms, including our own. Here certain sites are
witnesses: they have full voting rights but do not maintain a physical copy of the
replicated file. Used with simple voting, this means that a distinguished partition
requires a majority of votes plus a nonwitness whose copy is as current as any of
those in the partition. The hope is that inexpensive witnesses can replace ordinary
sites with only a small degradation in availability [la]. To incorporate witnesses
into our algorithms, one simply creates sites whose physical version number (as
described in Section 4.1) is fixed at --to.

7. OPTIONS AND EXTENSIONS

Dynamic voting has two essential features. First, it uses the version number to
make obsolete the old assignment of votes. In particular, it assigns no votes
to sites with old copies of the file. Second, it uses the update sites cardinality to
count the number of sites that have votes, that is, those sites whose copy of the
file is up-to-date. Dynamic-linear adds a third feature: the distinguished site
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 251

entry to break the tie when the distinguished partition splits into two equal-sized
pieces. The detailed description of the algorithm in Section 4 specified certain
facets of the algorithms that could easily have been handled in other ways. One
of these is our choice to distinguish the physical state of a copy, which reflects
the updates actually processed, from the logical state of the copy, which reflects
the updates that the copy has agreed to process. This section makes explicit
certain other options we have chosen and offers several extensions to the
algorithms.

7.1 When to Do New and Missing Updates

We could have easily incorporated the Send-Missing-Updates procedure
inside the Do-Update procedure. However, we have chosen not to do so in order
to make the window of uncertainty shorter. The example in Section 3.3 provides
an instance in which the shortened window of uncertainty permitted updating to
continue that would otherwise have been blocked. Indeed, we could have narrowed
the window of uncertainty even further by treating the new update as a missing
update. That is, the transmission of the new update to subordinates in Physical
could have been removed from the Do-Update procedure and placed in the
Send-Missing-Updates procedure instead. This seems unlikely to be an effi-
cient choice, however, since it fails to piggyback the update to the vote reassign-
ment. We could also have removed the Catch-Up procedure from the window
of uncertainty. Or we could have chosen to have the coordinator abort and release
all locks, do a Catch-Up, and then start the protocol again. The optimal choice
for all of these concerns depends on the details of the local installation.

7.2 When Should a Recovered Site Instigate a New Distinguished Partition?

When a site recovers from a failure, it certainly should run the Make-Current
procedure to obtain missing updates. This procedure uses no locking and hence
is not bothersome. To regain its vote in the distinguished partition, however, the
site must either wait for an update to come along in its partition, or run the
Rejoin-Distinguished-Partition procedure (that is, create a null update and
run the normal-operation protocol). The advantage of doing the latter is that the
new distinguished partition will more accurately reflect the actual state of the
network, which may increase availability. The disadvantage of running this
procedure is its expense. It requires locking and thereby increases the likelihood
of deadlock. If the recovered site obtains the missing updates but regains its vote
by simply waiting for a new update to arrive in the partition, no extra locking
occurs.

7.3 Weighted Dynamic Voting

In the simplest form of static voting, each site has a single vote. In weighted
voting, site Sk has vk votes and a partition P is the distinguished partition if the
sum of the votes in P is more than half of the sum of the votes of all sites. The
idea of weighted voting extends directly to dynamic voting and dynamic-linear,
with no additional data structures or messages, as follows. Each site Sk is assigned
vk votes. Each site knows how many votes each other site is assigned. When a
new distinguished partition is formed, the update sites cardinality is set to the
sum of the preassigned votes of the sites in the new partition (instead of just the

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

252 l S. Jajodia and D. Mutchler

number of such sites). To determine if a certain group of sites (all with the same
logical version number) forms a distinguished partition, one sums the preassigned
votes of the members of the group (instead of just counting how many sites are
in the group). The group forms a distinguished partition if this sum is more than
half of the update sites cardinality of these sites. If the update sites cardinality
is even, one can use a distinguished site entry to “break the tie” when the sum is
exactly half of the update sites cardinality, just as in dynamic-linear.

The advantage of weighted static voting over simple static voting is that one
can tailor the votes to suit characteristics of individual sites and links in the
network. For example, one might want to assign more votes to sites that are
particularly reliable, or to sites that have a high degree of connectivity. The
advantage of weighted dynamic voting over dynamic voting lies likewise in the
additional flexibility of the former algorithm. What vote assignment is optimal
in a heterogeneous network, and how much advantage one obtains by such
optimization are unresolved questions even for weighted static voting, much less
for weighted dynamic voting.

Note that although the preceding scheme permits an arbitrary initial assign-
ment of votes, it does not permit arbitrary reassignment of votes. If a site begins
with, say, five votes, then it will always have either five votes (if its copy is
logically up-to-date) or none (if its copy is old). The voting power of a site with
an up-to-date copy of the file, relative to the other sites, depends on which other
sites have up-to-date copies.

7.4 Dynamic Coteries

The weighted dynamic voting algorithm described in the preceding subsection is
the best one can do with the data structures given (logical version number,
physical version number, update sites cardinality, and distinguished site entry).
The role of the logical version number is to make obsolete the old vote assignment
when a new distinguished partition forms. By having more elaboration data
structures, one can obtain any vote reassignment desired (and simplify the
algorithm as well). As an extreme, suppose one carries with each file in addition
to its version number, the entire coterie, that is, the list of potential distinguished
partitions.‘j By doing so, we need not have two version numbers-physical and
logical. When an update arrives at a site, the site uses the normal operation
protocol to learn which sites are in its partition P, as usual, plus the coterie of
the sites whose version number is maximal. The partition P is a distinguished
partition if some set in the coterie is a subset of P. When an update is committed,
the coordinator of the update selects a new coterie and sends the new coterie to
each site in the partition processing the update. The coordinator can use whatever
reasoning it wishes and whatever information it has available to select the new
coterie. In particular, the coordinator can give sites outside its partition voting
power or not, as it sees fit. Whenever a site S finds that another site S ’ has a
copy with a larger version number, S asks S ’ for the missing updates, and S
replaces its version number and coterie by those of S ‘.

’ Alternatively, each site can maintain a table with all possible coteries and pass around the coterie
index in place of the coterie.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 253

The above algorithm is the dynamic analogue of coteries. Just as coteries
permit maximal flexibility in the static selection of potential distinguished
partitions, dynamic coteries permits maximal flexibility in the dynamic selection
of potential distinguished partitions.

7.5 Read Requests

We have chosen to focus on update requests in this paper instead of distinguishing
between read and write requests. There are two ways to augment our algorithms
to include separate read and write quorums. First, each site can maintain a static
table that indicates the read and write quorums for each possible value of the
update sites cardinality. These tables (which are bounded in size by the number
of sites) would be maintained along with the tables that implement weighted
dynamic voting, as described in Section 7.3. For instance, suppose the update
sites cardinality is 9 and each site has 1 vote. The read quorum for this situation
might be 3, with a write quorum of 7. As usual, the read and write quorums must
sum to more than the number of sites involved. Here, that means the read and
write quorums for update sites cardinality SC must sum to more than SC.

The second way to incorporate read and write quorums is more dynamic.
Each site maintains not only the update sites cardinality (or whatever
structure maintains the current vote assignments), but also two more integers:
the current read and write quorums. At each update, the coordinator sets these
however it chooses, but with the sum of the quorums greater than the update
sites cardinality.

8. STOCHASTIC ANALYSIS OF THE DYNAMIC AND
STATIC ALGORITHMS

8.1 Why Do a Stochastic Analysis?

Recall that simple voting is weighted voting with each site receiving a single vote
and that voting-primary is the same as simple voting except that one site (the
primary site) gets two votes if there are an even number of sites. It is clear that
voting-primary dominates simple voting in this sense: If an update request can
be accommodated by simple voting, then that same request can also be accom-
modated by voting-primary. Dynamic-linear dominates dynamic voting in the
same way. However, no single algorithm dominates, in the above sense of the
word, the class of all static algorithms. Further, no single algorithm dominates
the class of all dynamic algorithms. That is to say, a sequence of failures, repairs,
and update requests can occur in such a way that dynamic voting (for instance)
can accommodate requests that simple voting (for instance) cannot, and vice
versa. For example, suppose a five-site network splits into two partitions,

ABCIDE

and an update appears at site A. Simple voting, dynamic voting, and dynamic-
linear all permit the update to be processed. If site C thereafter forms a third
partition by itself,

ABJCIDE
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

254 l S. Jajodia and D. Mutchler

the two dynamic algorithms permit subsequent updates arriving at sites A or B
to be processed, while simple voting rejects all update requests. On the other
hand, if the two-site A-B partition now splinters into two single-site partitions,
while site C joins sites D and E,

AIBICDE

simple voting would permit subsequent updates arriving at sites C, D, or E to be
processed, while dynamic-linear would permit only those updates arriving at the
single site A, and dynamic voting would reject all update requests in this state.
If site A then fails, only simple voting permits updates to be processed.

The preceding example shows that at some times under some scenarios one
algorithm is better, while at other times under other scenarios another algorithm
is better. The real question is this: which algorithm is more lilzely, in the long
run, to be able to handle any given update request? That is, which algorithm has
greater availability?

In Sections 8.3 and 8.4 we develop two stochastic models to make precise what
is meant by the phrase “more likely” in the preceding paragraph. In the first of
these two models, sites are subject to failure and repair but communication links
are infallible, while the reverse is true in the second model. The first model will
permit proof of a stronger result. In both models we compare dynamic voting
and dynamic-linear to the class of all static algorithms. Both models demonstrate
the superiority of dynamic-linear over all static algorithms.

8.2 Two Measures of Availability
There are many measures by which one might evaluate and compare the virtues
of pessimistic algorithms for maintaining the consistency of a replicated database.
Deterministic measures like node vulnerability and edge vulnerability [5] are
useful as worst case indicators. The reliability of a pessimistic algorithm tells how
long, on average, the algorithm will permit updates before it reaches a halted
state in which no updates are permitted. Note that all pessimistic algorithms
must reach such a state if sites are subject to failure and partitioning is possible
[43,48]. However, reliability does not indicate how long the algorithm will remain
in the halted state. A more meaningful stochastic measure is the availability of
the algorithm: the steady-state probability that an update request will be satisfied.
The higher the availability, the better the algorithm.

The standard measure of availability (see [11, [7], [39], and [47], for example)
is the limit as t goes to infinity of the probability that a distinguished partition
exists at time t, where the definition of “distinguished” depends on the algorithm
used. An alternative measure is the limit as t goes to infinity of the probability
that an update arriving at an arbitrary site at time twill succeed. This alternative
measure requires not only that a distinguished partition exist, but also that the
update arrive at a functioning site within the distinguished partition. For example,
suppose that we are using simple voting in a system of 11 sites, of which 3 sites
are down during a certain time period. Under the traditional definition, the
availability of the system during this time period is 1.0, since more than half of
the sites are available throughout the time period. Under the alternative measure,
with the further assumption that any given update has probability * of arriving
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 255

at any given site, the availability during this period is A, since only this fraction
of the updates succeed (by arriving at a functioning site).

The traditional measure is appropriate if updates are viewed as arriving
at the system; the alternative measure is more appropriate if updates arrive
at an individual site. We term these two measures system availability and
site availability, respectively.

It is our view that the nontraditional measure, site availability, is by far the
more meaningful measure of availability for a replicated file in a network subject
to partitioning. To see this, imagine first a network whose links fail (so that
partitioning is possible), but whose sites do not fail. In such a network, the simple
primary-site algorithm has system availability 1.0, since the primary site is
always available for updates. Yet no one would claim that this trivial fact has
established that the primary-site algorithm is an optimal (indeed, perfect) algo-
rithm in such a network! For networks whose sites can fail, the argument is less
strong but still persuasive. Given a choice between a single-site distinguished
partition and a multisite distinguished partition, we would all choose the latter,
if updates arrive uniformly.

We report results for site availability, but also mention in passing how matters
change if one uses the traditional measure (system availability) instead. Each
formula in this paper requires only a trivial modification to use the traditional
measure. Interestingly, the two measures do not coincide in their advice, as we
will see in Section 8.3.5. However, use of the traditional measure only increases
the superiority of our two dynamic voting algorithms over static algorithms. That
is, the measure of availability that we use in this paper shows our dynamic voting
algorithms in their least favorable light. This is a consequence of the following
theorem.

THEOREM 2. Assume that the update requests arrive at sites uniformly, that
is, any given update request has probability l/n of arriving at any given site,
independently of whatever partitioning is occurring, where n is the number of sites.
Let X be any pessimistic algorithm, static or dynamic. If X has greater site
availability than simple voting, then X also has greater system availability than
simple voting. The same statement remains true if “simple voting” is replaced by
“voting-primary.”

PROOF. Suppose that X has greater site availability than simple voting. This
means that the difference between the two algorithms’ site availabilities is
positive. Another way to express this statement is to sum over disjoint cases
whose union is the entire sample space:

,{l~PrtXh as a size j dist. part. and Voting has no dist. part.)

-kioiWXh as no dist. part. and Voting has a size k dist. part.)

+i i-i-k
- Pr(X has a size jdist. part. and Voting has a size k dist. part.) > 0

j=lk=l n

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

256 l S. Jajodia and D. Mutchler

where “Voting” means “simple voting” and “dist. part.” stands for “distinguished
partition.” The first assumption in the statement of the theorem (uniform arrival
process) justifies the j/n and k/n. factors that reflect the probabilities the update
arrives at the given size j and size k partitions, respectively. Site availability is
differentiated from system availability precisely by the presence of these factors.

Simple voting has a distinguished partition if and only if there is a partition
that contains more than half of the sites. Thus the first sum above, in which
simple voting has no distinguished partition, runs only up to Ln/2J. Similarly,
the second sum above runs from t (n/2) + 11. In the third term above (the double
sum), both X and simple voting have a distinguished partition. Again, the
distinguished partition for simple voting is at least half of the sites, so the
distinguished partition for X cannot be any larger than simple voting’s partition.
Thus each entry in the third term above (the double sum) is nonpositive and
hence can be discarded. All this yields

Ln/2J .
jZIo i WX h as a size j dist. part. and Voting has no dist. part.)

’ ,=ji,+1:
Pr(X has no dist. part. and Voting has a size k dist. part.)

n

Now replace the coefficients of each of the left-hand-side terms by their upper
bound and replace the coefficients of each of the right-hand-side terms by their
lower bound to see that

il
% Pr(X has a dist. part. and Voting has no dist. part.)

> f + 1 Pr(X has no dist. part. and Voting has a dist. part.)
L I

from which the result follows. (The difference in the system availabilities is just
the unweighted difference between the above two probabilities.) The proof for
voting-primary is the same as the above proof for simple voting, except that
L(n/2) + 1J is replaced by Ln/21. Cl

One other measure for pessimistic algorithms deserves mention. We have been
assuming that rejected updates are aborted; in this case, availability is the most
meaningful measure. Ahamad and Ammar [l] have suggested a different measure
to be used if rejected updates wait until the site at which they arrive joins a
distinguished partition. They suggest that, for this case, one can use the mean
response time for updates. Although their measure is reasonable, it appears
difficult to obtain analytic expressions for it. We consider only availability in
this paper.

8.3 The Site Model

8.3.1 Specification of the Model. In this subsection we state the first of our
two stochastic models, the site model. The following are key aspects of the site
model: no attempt is made to model changes to the network topology (sites fail
and are repaired but links are infallible); updates are assumed to be frequent
relative to site failures and repairs; and communication delays in the commit
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 257

protocol are ignored. The next three subsections show how to compute the site
availabilities of simple voting/voting-primary, dynamic voting, and dynamic-
linear. We then state and prove two theorems that compare the site availabilities
of our two dynamic algorithms against that of static algorithms. The main result
is this: under the assumptions of the site model, dynamic-linear provides greater
site availability than any static algorithm if there are four or more sites.

We now introduce the assumptions of the site model. The first four assumptions
duplicate assumptions that Paris uses to analyze the availability of his voting
with witnesses scheme [38, 391. The fifth assumption, however, causes our model
to deviate from his. Below are the assumptions; their justification comes next.

(1) The communication links between sites are infallible. Only sites go up and
down. Any site that is up can send a message to any other site that is up.

(2) The failures at the various sites form independent Poisson processes with
failure rate X. For any given site that is up (functioning), the probability that it
does down (fails) at or before the next t time units is 1 - ebxt.

(3) Similarly, the repairs at the various sites form independent Poisson proc-
esses with repair rate p.

(4) Updates are instantaneous. We ignore communication delays in the commit
protocol.

(5) Updates arrive frequently: after any failure or repair, an update always
arrives at a functioning site and is processed before the next failure or repair. An
alternative assumption that yields the same model is frequent polling: after any
failure or repair, the functioning sites communicate to determine the new status
of the system before the next failure or repair.

We hasten to remark that the algorithms require none of these assumptions
to operate properly. The assumptions are made only to provide a model whose
analysis is tractable.

The first assumption seems rather odd: the model prohibits precisely the
phenomenon-partitioning-that the algorithms in this paper are designed to
tolerate! We make this assumption in order to sidestep the countless network
topologies that might occur as links fail. Lest our results appear to hinge on this
admittedly odd assumption, we present in Section 8.4 a second stochastic model
that does allow partitioning.

As Paris notes [39, p. 6081, the third assumption is less reasonable than the
second, but both are necessary if we wish to model the network’s behavior by a
Markov process. The fourth assumption (instantaneous updates) is another
simplification necessary to maintain the Markovian model. Because we are
interested in a comparison of static versus dynamic voting algorithms, and
because both classes of algorithms face similar communication delays in the
commit protocol, the fourth assumption does not seem unreasonable.

On the other hand, the fifth assumption is not necessary to force a Markovian
model. Indeed, the assumption presents a bias in favor of our dynamic algorithms,
since it permits them to prepare themselves for the next failure. In either of its
forms, the fifth assumption permits great reduction in the number of states in
the Markov process that describes the network’s behavior. This simplifies the

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

258 l S. Jajodia and D. Mutchler

analysis and led to the discovery of Theorem 3 in Section 8.3.5. Further, in many
applications updates arrive frequently with respect to both failures and repairs.

We justify the utility of the site model on three accounts. First, the site model
properly emphasizes the features of the network most important to a comparison
of the availabilities of static and dynamic voting algorithms, namely, failures and
repairs. For purposes of comparison, we believe that ignoring link failures is
reasonable. This belief is supported by the fact that the results under the link
model, in which link failures are permitted, are qualitatively the same as the
results under the site model. Second, all the assumptions of the site model are
either reasonably true-to-life (e.g., the frequent update assumption), or treat
static and dynamic algorithms equally. For example, the communication needs
of the static and dynamic voting algorithms are quite similar, so treating com-
munication as instantaneous is fair for purposes of comparison. Finally, we note
that no other analytic results that compare static and dynamic algorithms with
more than five sites have been obtained under any model even as sophisticated
as the site model.

Because the site model treats updates as if they were instantaneous, a site’s
physical version number will always equal its logical version number. Thus we
can ignore the distinction between logical and physical version numbers. This is
the case for simple voting and voting-primary as well as for our dynamic
algorithms. Throughout the analysis of the site model, we will speak simply of
“the version number.”

Under the assumptions of the site model, our dynamic voting algorithm is
available for updates exactly when the Davcev-Burkhard algorithm is available.
Hence the analysis of dynamic voting in this section applies equally well to the
Davcev-Burkhard algorithm.

8.3.2 Analysis of Simple Voting and Voting-Primary. The mean time to failure
of a functioning site is l/h. The mean time to repair of a failed site is l/p. It
follows that for the Poisson process describing the behavior of the sites, the
probability that any given site is up to any particular time is

l/X
l/X + l/p ’

that is, --EL-
X+/JCL

The well-known site availability of simple voting is

,-$,+I n k x + “(n)[q[&J-k

where n is the number of sites in the network. The k/n term in the summation
reflects the fact that an update request can be processed only if the site at which
the request arrives is one of the k sites in the distinguished partition. Note that
we need not assume that update arrivals are uniformly distributed over the sites,
since voting and the site model treat the sites uniformly.

The voting-primary algorithm retains a majority when exactly half of the sites
are functioning, if the functioning sites include the primary site. Thus the site
availability of voting-primary is exactly the same as the site availability of simple
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 259

voting when there are an odd number of sites and contains the additional term

if n is even. Here we are assuming that the primary site is selected at random,
thereby avoiding any reliance upon assumptions about the sites to which updates
arrive.

These same formulas could also be obtained by drawing the state diagram for
the birth-death process that describes the number of failed sites and solving the
resulting balance equations. We use just such a procedure to analyze the dynamic
voting algorithms.

8.3.3 Analysis of Dynamic Voting. The system begins with all n sites in the
distinguished partition. Eventually one site fails. Our fifth assumption insures
that before another failure occurs or the failed site is repaired, an update arrives
at a functioning site. The distinguished partition finds that it now contains n -
1 of the n sites with up-to-date copies of the file-still a majority. The update
sites cardinalities are adjusted to n - 1 at the n - 1 functioning sites. If a second
failure then occurs, the distinguished partition will soon thereafter discover that
it contains n - 2 of the n - 1 sites with up-to-date copies of the file-still a
majority, so the update sites cardinalities will be adjusted to n - 2 at the n - 2
functioning sites. The process continues, with update sites cardinalities always
increasing or decreasing by one, until there are only two sites in the distinguished
partition and a failure then occurs. The subsequent update is rejected-one out
of two sites is not a majority. Of these two sites in the most recent distinguished
partition, call the one still up site U and the one now down site D. From this
state, one of three events can occur.

(1) Site D might be repaired. The two-site distinguished partition is restored
and the action of the network continues in the fashion described thus far.

(2) One or more of the other n - 2 failed sites might be repaired. If sometime
later site D is repaired and an update arrives, the functioning sites include both
(hence a majority) of the sites with up-to-date copies of the file. In this case,
however, the newly formed distinguished partition will also include the other
sites that have meanwhile been repaired.

(3) Site U might fail. Now both site U and site D must be repaired before a
new distinguished partition will be formed. Again any such newly formed distin-
guished partition will also include any other sites that have meanwhile been
repaired.

The state diagram we have just described is shown in Figure 1. State (X, Y, 2)
is the state in which

(1) the update sites cardinality of each up-to-date copy of the tile is Y;
(2) X of the Y sites with update sites cardinality Y are up;
(3) 2 of the n - Y other sites are up.

Arcs in the state diagram indicate the rate at which the system moves from state
to state.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

260 l S. Jajodia and D. Mutchler

3x 4x

(n 491 (n -3)lJ -

21 P P

x 2x

(fl -VP (n -3)P
.

)c 2P 2 a

h 23.

(n-m (n -3)w *

P P

(n-3)%. (n -2)A

2P 1

1 2P 1 2P

(II-3)h (n-2)X

2P P

Fig. 1. The state diagram for dynamic voting.

An update request will be accepted if it arrives at a functioning site and the
network is in any of the states on the top row of Figure 1. Label the top-row
states AO, Al, . . . , A,,+, from left to right. Label the middle-row and bottom-row
states B, through Bnma and C, through CnTz, respectively, again left to right. In
an abuse of notation, we also let Ak denote the steady-state probability of state
Ak, and similarly for the Bk and Ck. The site availability of the network is

ni2 k + 2 A k.
k=O n

The (k + 2)/n term reflects the fact that the site at which the update request
arrives must be one of the k + 2 functioning sites in state Ak.

To find the steady-state probabilities of the states in Figure 1, set flow-out
equal to flow-in to obtain the following balance equations, one equation per state.
(See Trivedi [52], for example, for the justification for obtaining the balance
equations from the state diagram.) The three leftmost states have special
equations:

[2X + (n - 2)p]Ao = 3L4, + pBo
[A + (n - l)p]B, = XB, + 2pCo + 2xAo

npCo = XC, + xBo.

For the remaining top-row states (k = 1, 2, . . . , n - 2),

[(k + 2)h + (n - k - 2)p]Ak = (k + 3)&+l + (n - k - l)pAkml + pBk.

For the remaining middle-row states (k = 1, 2, . . . , n - 2),

[(k + 1)X + (n - k - l)~lB~ = (k + l)xB,+, + (n - k - l)pBk-i + 2&k.

For the remaining bottom-row states (k = 1, 2, . . . , n - 2),

[kX + (72 - k)p]C, = (k + l)xCk+l + (n - k - 1)&k-l + &&.
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 261

Fig. 2. The state diagram for dynamic-linear.

By defining A,-l = Bnvl = I?,,-~ = 0, the above equations are seen to be correct
for the right-boundary states.

One of these 3n - 3 equations is redundant. Replace it by the equation that
says the probabilities sum to one:

n-2

C (Ah + B, + C,) = 1.
k=O

We have not found a simple expression for the solution to the above system of
equations. However, for fixed n and repair/failure ratio p/X, the system is easily
solved by any numerical technique for systems of linear equations. Furthermore,
for fixed small values of n, a symbolic manipulator like MACSYMAe or MAPLE
[13] can solve the system in terms of the repair/failure ratio p/X. Results for
arbitrary n are given by Theorem 3 in Section 8.3.5.

8.3.4 Analysis of Dynamic-Linear. The analysis of dynamic-linear is similar
to that for dynamic voting. Figure 2 shows the state diagram for dynamic-linear.
It uses the same notation as was used in the figure for dynamic voting. State
(n, n, 0) is the start state: all n sites belong to the distinguished partition and
all of them are up. As sites fail, the system moves to state (2, 2, 0) just as in
dynamic voting. The novelty of dynamic-linear appears if a failure occurs from
state (2, 2, 0). Suppose the site remaining up (call it site X) is the site named in
the distinguished site entry. Then a distinguished partition still exists; the system

e MACSYMA is a trademark of Symbolics, Inc. It was originally developed by the Mathlab Group of
the MIT Laboratory for Computer Science.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

262 l S. Jajodia and D. Mutchler

moves to state (1, 1, 0). That is, the single site X forms the distinguished
partition, site X is up, and no other site is up. If site X now fails, the new state
is (0, 1, 0): no site in the distinguished partition is up, site X alone still forms
the distinguished partition, and no other sites are up. The states in the top row
of Figure 2 are states that occur while site X remains down and other sites are
repaired or fail. The second-row states of Figure 2 are the states for which the
system is available for updates. The third and fourth rows of Figure 2 are
analogous to the bottom two rows of the figure for dynamic voting (Figure 1).

An update request will be accepted under dynamic-linear if the network is in
any of the states on the second row of Figure 2. The probability the system is in
one of the second-row states can be found by setting flow-in equal to flow-out
for each state and solving the resulting balance equations, just as for dynamic
voting.

8.3.5 Analytic Comparison of the Availabilities. Throughout this subsection,
we assume that the repair rate p is larger than the failure rate X, in other words,
that sites are more likely to be up than down. This assumption is quite natural,
and without it, the performance of some of the algorithms would degrade as the
number of sites increases. We give results only for three or more sites since the
algorithms reduce to trivial or nonsense algorithms when there are fewer sites.

Let Voting, Voting-Primary, Dynamic, and Dynamic-Linear denote the site
availabilities of the algorithms they name, respectively. (Voting means simple
voting here.) The first two of the following comparisons between the availabilities
are immediate, and the third is easily argued:

(1) Voting-Primary = Voting when there are an odd number of sites;
(2) Voting-Primary > Voting;
(3) Dynamic-Linear > Dynamic.

Theorem 3 gives the remaining comparisons of the availabilities of these
algorithms. Theorem 4 extends the comparison to include the class of all static
algorithms.

THEOREM 3. Suppose that the repair/failure ratio p/X is greater than 1.0. The
following statements hold for the site model.

When there are exactly 3 sites,

Voting-Primary = Voting > Dynamic-Linear > Dynamic.

When there are exactly 4 sites, if p/X < 2.3292 (approximately), then

Dynamic-Linear > Voting-Primary > Dynamic > Voting;

otherwise,

Dynamic-Linear > Dynamic > Voting-Primary > Voting.

When there are exactly 5 sites, if p/X < 1.3070 (approximately), then

Dynamic-Linear > Voting-Primary = Voting > Dynamic;

otherwise

Dynamic-Linear > Dynamic > Voting-Primary = Voting.
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 263

When there are 6 or more sites,

Dynamic-Linear > Dynamic > Voting-Primary > Voting.

PROOF. Our proof for 3, 4, 5, or 6 sites is by explicit, symbolic calculations
performed by MACSYMA. The proof for 7 or more sites proceeds by showing
that Dynamic > Voting-Primary; the other two inequalities then follow.

Let us first do the case when n (number of sites) is odd, so that Voting-Primary
is simply Voting. Return to Figure 1, the state diagram for dynamic voting. As
before, label the top-row states Ao, Al, . . . , Anw2, from left to right. Label the
middle-row and bottom-row states B,, through Bn-:! and C,, through Cn+ respec-
tively, again left to right. The system is available under dynamic voting in states
A, through A,,-+. The system is available under simple voting if and only if more
than half the sites are up. State Ak has k + 2 sites up; state Bk has k + 1 sites up;
and state Ck has k sites up. Thus the system is available under simple voting if
and only if it is one of states A,,, through An+, B,+, through B,,+, or Ch+a
through C,,+, where h is the “halfway” point (n - 1)/2 - 2.

In an abuse of notation, we also let these symbols denote the steady-state
probabilities of the respective states. Then for odd n,

Dynamic > Voting-Primary

if and only if

h k+2 n--2 k + 1 n-2

c -----A,> c -Bk+ 2
k=O n k=h+2 n k=h+3 n

Note that we are using site availability, not system availability.
If we could solve the balance equations in Section 8.3.3 to obtain simple

expressions for the Ak, Bk, and Ck, this proof might be easy. Such expressions
are not apparent. This proof will show the truth of inequality (l), without using
any explicit expression for the solution of the balance equations. Instead, we
obtain and use the following four relations from the balance equations, where
the first two are each valid for any m between 1 and n - 2, inclusive.

n-2
X(m + 2)A, = p(n - m - 1)&-1 -I- P c & (2)

k=m

n-2

Xm(B, + C,) = p(n - m - l)(Bmwl + I?,,-,) - y C Bk
k=m

(3)

n-2

~Mo=P C Bk
k=O

(4)

n-2 n-2

2/.L c &=A c &. (5)
k=O k=O

Equation (2) is obtained by summing the balance equations associated with states
& for k from m to n - 2. Equation (3) is obtained similarly by summing the
balance equations associated with states Bk and Ck for k from m to n - 2.
Equation (4) is the sum of the equation associated with A0 and equation (2) when
m is 1. The final equation (5) is obtained by summing the balance equations

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

264 l S. Jajodia and D. Mutchler

associated with states CL’, for k. from 0 to n - 2. These equations will be sufficient
for our needs.

By conducting extensive but simple algebraic manipulations to inequality (l),
including the application of equations (2) and (4) to its left-hand side and
equation (3) to its right-hand side, one can show that inequality (1) is equivalent
to the following inequality:

h-l

C (n - k - 2)Ak + ; (k + l)& - B,,, + niz
[

2k - n + 2 - 1 Bk
k=O k=O k=h+2 P I

n-3

> c (n - k - 2)Ck - (h + 2) ’ C,,+2
(6)

k=h+l P

where h is again the “halfway” point (n - 1)/2 - 2.
We now apply six approximations. That is to say, after we do the following

manipulations to inequality (6) and then show the truth of the resulting ine-
quality, we will have shown the truth of inequality (6) itself, hence also the truth
of inequality (l), hence the result.

(1)

(2)
(3)
(4)

(5)

(6)

Use only the first term of 2 ;;A (n - k - 2)Ak, that is, use (n - 2)Ao. Note
that we are assuming here that n z 7, for if not, h would be 0 and the sum
empty. Transform (n - 2)Ao into

(n - 2) 2 j2 Bk
k 0

by using equation (4).
Discard the Ckzo (k + l)Bk term.
Replace the -&+l term by -2 r,” Bk.
Discard the

term. This is an acceptable approximation because each term in the sum is
nonnegative, since X/p 5 1.
Note that

n-3

C (n - k - 2)C, 5 v ni3 ck
k=h+l k=h+l

~ (n - 1) ni2 c

2
k

k=O

where this last step is an application of equation (5) above. Replace the left-
hand side of this string of inequalities by the right-hand side.
Discard the -(h + 2)(x/P)Ch+2 term.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 265

The result of applying these approximations to inequality (6) is the following
inequality:

That is, showing that inequality (7) holds is a sufficient (but not necessary)
condition for inequality (6) to hold. The above approximations were carefully
selected to permit the next key step: divide through by C ;Zi Bk. After rearranging
terms, this yields the equivalent expression

2(n - 2)(/l/X)” - 4p/X - n + 1 L 0. (8)

For p/X = 1, this reduces to n 2 7. Since the left-hand side of inequality (8) is an
increasing function of p/h when n e 3 and p/X 2 1 (just take the partial derivative
with respect to p/X), we are done for odd n 2 7.

The preceding was under the assumption that n is odd. The proof for even n
involves similar manipulations, to which we now turn. For even n, inequality (1)
has an additional term

hfl
h+2C

+ - hC2
n 1

on its right-hand side, where h is now defined to be (n/2) - 2. By using equations
(2), (3), and (4), along with extensive algebraic manipulation akin to that in the
proof for odd n, one reveals the following analogue to inequality (6); showing its
truth will complete the proof.

h-2 h-l

C (n- k - 2)& + c (k + l)& - &
k=O k=O

+ 1 - A Bh+l + [1 2k-n+3-&Bk
P P 1

n-3

> k;h (n - k - 2)Ck - ; (h + l)ch+, + ; (h + 2)(Ah + Bh+l + Ch+2) . 1
We next apply approximations. As before, use only the first term of

h-2

2 (n - k - 2)Ak
k=O

(this is legal because n L 8), transforming it by equation (4) into

Replace the -Bk term by -GE: Bk. Discard the other three (nonnegative) terms
on the left-hand side of inequality (9). Replace

n-3

c (Iz - k - 2)c,
k=h

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

266 l S. Jajodia and D. Mutchler

using equation (5) as before. Discard the other term on the right-hand side of
inequality (9). All this yields

that is,

2(n - a)(&)’ - 4p/X - n 2 0.

At p/X = 1, this reduces to n L 8. Since the left-hand side of the above inequality
is an increasing function of p/X when n 2 3 and p/X I 1 (just take the partial
derivative with respect to p/X), we are done for even n I 8. Cl

THEOREM 4. Assume that the update requests arrive at sites uniformly, that
is, any given update request has probability l/n of arriving at any given site,
independently of whatever partitioning is occurring, where n is the number of sites.
Assume that the repair rate p is greater than the failure rate X. Then under the
site model dynamic-linear has greater site availability than any static algorithm if
there are four or more sites. The same is true if one uses system availability instead
of site availability as the metric.

PROOF. The statement that dynamic-linear has greater site availability than
voting-primary is just a recapitulation of Theorem 3. The extension to system
availability follows from Theorem 2 in Section 8.2. Barbara and Garcia-Molina
have shown [4] that the system availability of voting-primary is greater than the
system availability of any other static voting algorithm if p > X. Their same proof
applies to nonvoting static algorithms as well. That is, it applies to all coteries,
not just those that correspond to vote assignments. (See Section 6 for an
explanation of coteries.) Furthermore, their proof can easily be modified to work
for site availability as well as system availability, if one assumes that updates
arrive at sites uniformly. This condition is necessary because coteries other than
simple voting do not treat the sites uniformly; those coteries might thereby
benefit from a nonuniform arrival distribution. 0

Recall that we are using a nonstandard measure of availability, namely, the
limiting probability that an update arriving at some arbitrary site will be pro-
cessed. Theorem 2 in Section 8.2 says that if we were to use the traditional
measure-the long-term probability that a distinguished partition exists-the
superiority of the dynamic algorithms would be further enhanced. In fact, under
the traditional measure of availability, dynamic-linear is better than all static
algorithms when there are three sites, as well as when there are four or more
sites. Note that the two measures conflict in their advice when there are three
sites: according to site availability, one should use simple voting, while system
availability says that dynamic-linear is better.
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l

0.72 -

x
c 0.70 -
=

3
.Z
Ki

2 0.68 -
CD

.=
cn

0.66 -

0.64 -

-p)- Dynamic-Linear
* Dynamic Voting
4 Voting-Primary
-9 Voting

267

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Sites
Fig. 3. Repair rate is three times failure rate.

8.3.6 Numerical Comparison of the Availabilities. The previous subsection
established the qualitative superiority of the dynamic voting algorithms over
static algorithms. This subsection displays the quantitative difference by graph-
ing the performance of the algorithms at several sample points. Note that the
scaling of the axes varies from graph to graph.

The graph depicted by Figure 3 shows availability graphed against the number
n of sites, when the repair rate p is three times the failure rate X. Note that for
three sites, voting is better than the two dynamic algorithms, while the reverse
is true for four or more sites. As n grows large, the availability of each algorithm
converges to P/(P + X) (=0.75 for Figure 3), the probability that the site at which
the update arrives is a functioning site. However, the convergence of the two
dynamic algorithms differs from that of the two static algorithms in two respects.

(1) The two dynamic algorithms approach the asymptotic value somewhat
more quickly than the two static algorithms do. This effect is most
pronounced when, as in Figure 3, the repair/failure ratio is small.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

268 l S. Jajodia and D. Mutchler

(2) The availability of each of the two dynamic algorithms increases monoton-
ically as the number of sites increases. The nonmonotonicity of the static
algorithms is most pronounced for simple voting with a small number of
sites.

The repair/failure ratio for Figure 3 is much smaller than one would encounter
in practice. The relative behavior of the four algorithms is unchanged for larger
repair/failure ratios, although the absolute difference between the algorithms
shrinks as this ratio increases. For instance, for a repair/failure ratio of 50.0, all
four algorithms are within 0.00001 of the maximum possible availability by the
time the number of sites has reached 7.

The graph in Figure 4 shows site availability for repair/failure ratios one might
expect to encounter in practice when there are four sites. Here the improvement
in going from voting-primary to dynamic-linear is small but still noticeable; it
about equals the improvement in going from simple voting to voting-primary.
The curve for dynamic voting is so close to that for dynamic-linear that it is
omitted.

The graph shown by Figure 5 illustrates the availabilities of all four algorithms
for small repair/failure ratios when there are five sites. This graph illustrates the
crossover behavior stated in Theorem 3, which occurs only when there are four
or five sites.

Formally, any explanation for characteristics of these graphs must come from
the inequalities in the proofs of Theorems 3 and 4; the complicated nature of
those inequalities defies simple explanations. Informally, the advantage of the
dynamic algorithms over the static algorithms is that the former can survive
more failures before rejecting updates. The disadvantage is that when dynamic
algorithms finally start rejecting updates, it will take them longer to return (via
repairs) to a state in which updates can again be accepted. This advantage
increases when either the number of sites or the repair/failure ratio increases.
Apparently, the number of sites is the more important of these two factors, with
respect to the question of which algorithm is best. Thus, the dynamic algorithms
do well when there are many sites, even if the repair/failure ratio is small.
Likewise, the static algorithms do well when there are few sites, even if the
repair/failure ratio is large. In between these extremes is the five-site case: there
the repair/failure ratio determines the outcome of the comparison of dynamic
voting and static voting. This may be the explanation of the crossover behavior
shown in Figure 5.

Here is a simple argument to prove that dynamic voting has lower availability
than static voting when there are three sites. Static voting and dynamic voting
with three sites behave identically unless exactly two sites are up. In that case,
static voting permits updates, while dynamic voting permits updates only if the
two sites that are up both have up-to-date copies of the file. That is, any update
accepted by dynamic voting is accepted by static voting, while the reverse is not
true, when there are three sites.

The nonmonotonicity of the static algorithms can be explained easily by an
example. In the seven-site case, simple voting rejects updates when there are four
or more failures of the seven sites. In the eight-site case, again four or more
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database

0.981

s.
C
=

9
0.9Ex

c

2
m
0

C
cn

0.97s

/;
9 Voting

. 269

50.0 50.2 50.4 50.6 50.9 51.0 51.2

Ratio of repair rate to failure rate

Fig. 4. Four sites.

failures cause updates to be rejected, but now these failures are drawn from a
larger set (eight sites instead of seven). Four failures from eight sites is more
likely than four failures from seven sites, if sites are more likely to be up than
down. This explains why the availability of simple voting is lower at eight sites
than at seven sites. Increasing the number of sites from seven to nine, however,
increases availability, by a similar argument. Thus availability of simple voting
increases, but not monotonically.

The nonmonotonicity of voting-primary is a consequence of using site availa-
bility as our measure. Under system availability, the availability of voting-primary
with n sites is the same as its availability with n - 1 sites, for even n. The
dynamic voting algorithms have elements of the nonmonotonicity of the static
algorithms, but this is apparently overwhelmed by the fact that adding a site
permits the dynamic algorithms to survive one more failure before updates are
first rejected.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

270 l S. Jajodia and D. Mutchler

Q Dynamic-Linear
+ Dynamic Voting
4 Voting

1.0 1.2 1.4 1.6 1.6

Ratio of repair rate to failure rate

Fig. 5. Five sites.

8.4 The Link Model

8.4.1 Specification of the Model. The structure inherent in the site model
permitted us to prove a strong, analytic theorem comparing our two dynamic
algorithms to the class of all static algorithms. However, the site model has a
serious flaw: it excludes partitioning, the very problem our algorithms are
designed to handle! In this subsection we present a link model that permits
partitioning. The results we have achieved in the link model are not as strong as
those we have achieved in the site model, but once again, they support the
superiority of dynamic-linear over static algorithms. By considering two comple-
mentary models, and acquiring the same qualitative result in each, we strengthen
our confidence that the result will hold in the real world as well.

The link model is exactly the same as the site model except that links fail
instead of sites. Here are the details of the link model.

(1) The network is modeled by a connected graph: nodes of the graph denote
sites and edges denote bidirectional communication links. This graph, called the
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 271

initial graph, is a parameter of the model. As such, it can be any connected graph.
The sites in the network are infallible, but each link is subject to failure and
repair. The partitions of the network at any instant are the connected components
of the graph obtained from the initial graph by erasing all links that are down at
that instant.

(2) The failures at the various links form independent Poisson processes with
failure rate X. For any given link that is up (functioning), the probability it goes
down (fails) at or before the next t time units is 1 - e-&‘. Similarly, the repairs
at the various links form independent Poisson processes with repair rate p.

(3) Updates are instantaneous. We ignore communication delays in the commit
protocol.

(4) Updates arrive frequently: after any failure or repair, an update always
arrives at one of the sites with an up-to-date copy of the file and is processed
before the next failure or repair. An alternative assumption that yields the same
model is frequent polling: after any failure or repair, the sites with up-to-date
copies of the file communicate to determine the new status of the system before
the next failure or repair.

The link model is quite akin to the site model, and its use is justified on similar
grounds. Both models treat failures and repairs homogeneously and with Mar-
kovian assumptions. Both models ignore the effect of communication delays.
Both models assume updates arrive frequently with respect to failures and repairs.
However, the link model introduces an additional parameter: the underlying
network topology, as described by the initial graph.

Even when there are only a few sites, many initial graphs are possible. Of the
many possible graphs, all but the regular graphs have an element of asymmetry
in their treatment of the sites. These factors greatly complicate the analysis
of our algorithms. To cope with this complexity, we restrict our attention
to the eight possible biconnected topologies for five-site networks. These topol-
ogies are shown in Figure 6. These same topologies have been used both for
nonstochastic analysis of static algorithms [5, 261 and for simulation of dynamic
algorithms [7, 81.

The link model treats updates as if they were instantaneous. Thus, as in the
site model, we ignore the distinction between logical and physical version numbers
and speak simply of “the version number.”

8.4.2 Analysis of Static Algorithms. Recall from Section 6 that a coterie is a
list of groups of sites, such that any two groups intersect and no group is a proper
subset of another group. A static algorithm is any algorithm that, implicitly (as
in weighted voting) or explicitly, defines a group of sites to be a distinguished
partition if and only if the group is a superset of a set in the coterie being used.
In the context of the link model, the set of static algorithms is in one-to-one
correspondence with the set of coteries.

There are 81 possible coteries in a five-site network and thus 81 static
algorithms to analyze in the link model. Eight of these coteries are listed in
Figure 7 (taken from [26]); the others are obtained from those eight by permuting
sites. For each of the eight topologies in Figure 6, and for each of the 81 static
algorithms, we computed the site and system availabilities of the static algorithm.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

272 9 S. Jajodia and D. Mutchler

Fig. 6. The eight biconnected five-node graphs.

Coterie I : {}
Coterie 2: {a}
Coterie 3: {a,b) {a$} {b,c}
Coterie 4: {a,b,c} {a,d} {b,d] (c,d}
Coterie 5: (a,b,c} (b,d} (c,d} {b,c,e} (a,d,e).
Coterie 6: (a,b,c} (c,d} (b,c,e} (a,d,e} (a,c,e} (b,d,a} (b,d,e}
Coterie 7: (a,b,c} (b,c,e} (a,d,e} (a,c,e} (b.d,a}

h4el ia,b,el {w&al ic,d,bl ic,d,el
Coterie 8: (a,b,c,d} {a.e} (b,e} (c,e} (d,e}

Fig. 7. Eight of the 81 coteries for five sites a, b, c, d, and e.

(See Section 8.2 for the definitions of these two measures of availability.) This
subsection describes the simple method by which that computation was done.

Let G denote an initial graph and consider a static algorithm, with associated
coterie C, for which we wish to compute site and system availabilities. For either
measure of availability, it suffices to know the steady-state probability distribu-
tion of the size of the distinguished partition. To determine which partition, if
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 273

any, is defined by the algorithm to be the distinguished one at time t, and hence
to know the size of that partition, one needs to know only the initial graph; the
groups that form coterie C; and which links are up at time t. Thus we can model
the action of the algorithm by letting the state of the network at time t be the
list of links that are up at time t.

The mean time to failure of a functioning link is l/X. The mean time to repair
of a failed link is l/p. It follows that for the Poisson process describing the
behavior of the links, the probability that any given link is up at any particular
time is

l/X
l/X + l/p ’

that is, L
X+p’

Let m denote the number of links in the initial graph G, so that there are 2”
possible states of the system. For any state with u links up and the remaining
m - u links down, its probability is

The system availability of a given static algorithm is computed by summing over
all states that contain a distinguished partition whose size is nonzero, weighting
each state by its probability given above. The site availability is computed
likewise, weighting each term additionally by the size of the distinguished
partition divided by the number of sites (five). Note that the availability will
vary from one static algorithm to another because the associated coteries define
different sets of distinguished partitions.

8.43 Analysis of Dynamic Voting and Dynamic-Linear. Static algorithms
permit an analysis using only the evolving status of the links of the network.
The dynamic algorithms, however, use the current vote assignment as well as the
current status of the links to perform their periodic vote reassignment. The state
of a dynamic algorithm must specify not only what links are up, but also which
nodes have what votes.

We wrote a program that, given an initial graph, computes and draws the state
diagram for dynamic-linear on that initial graph, under the link model. The state
diagram for dynamic-linear with the ring topology is shown in Figure 8. The
state diagrams for the other topologies are much larger, varying from 49 states
to 159 states. Each state is depicted by its graph, with solid lines denoting links
that are functioning and dashed lines denoting failed links. For each state, the
set of nodes surrounded by a small circle or triangle forms the list of sites with
up-to-date copies of the file in that state, that is, the list of sites with votes. The
node surrounded by a triangle is the node in the distinguished site entry, when
there are an even number of sites with votes. The solid double-arrows between
states depict state transitions caused by failures (one direction) or repairs (the
other direction). The dashed arrows between states depict one-directional state
transitions caused by repairs. State A is the initial state (all links functioning).
For clarity we have omitted from Figure 8 the arc labels that indicate the
magnitudes of the state transitions. For instance, the transition from state F to

ACM Transactions on Database Systems, Vol. 15, NO. 2, June 1990.

274 l S. Jajodia and D. Mutchler

Fig. 8. The state diagram for a five-element ring.

state B has magnitude 2~, because the repair of either of the two dashed links in
state F enacts a transition to state B.

The balance equations are acquired (mechanically) from the state diagrams by
setting flow-into each state equal to flow-out. For example, if we let A, B, C, . . .
denote the probabilities of states A, B, C, . . . , then the equation corresponding
to state B is

5AA + 2pC + 2pD + 2pE + 2pF = [4X + r]B.

The balance equations are in terms of parameters p and X. When the number
of equations is small, they can be solved effectively by a symbolic manipulator
like MACSYMA or MAPLE. For larger systems, your favorite program for
solving systems of linear equations numerically will do the job for fixed
repair/failure ratio p/X.

8.4.4 Summary of Results for the Link Model. For each of the eight
biconnected five-site graphs, we computed the site availabilities of dynamic-
linear and all 81 static algorithms applicable to five-site graphs, for repair/failure
ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database - 275

1.0

0.9

h
C
c

3
z
Cu

0.8

2

0

G

0.7

0.6

* Topology 8
- Topology 7
-9 Topology 6
* Topology 4
* Topology 3
4 Topology 5
+ Topology 2
- Topology 1

0 5 10 15 2

Ratio of repair rate to failure rate

Fig. 9. Dynamic-linear under the eight topologies.

ratios varying from 1.0 to 20.0 in increments of 0.1. In each of these cases,
dynamic-linear had larger availability than the best static algorithm.

Figures 9 and 10 present the results graphically. Each graph depicts site
availability versus the ratio of the repair rate p to the failure rate X.

The graph of Figure 9 shows the effect of the topology on the site availability
of dynamic-linear. The eight curves are for the eight biconnected, five-site
topologies studied. The topologies are numbered as they are presented in Figure
6, left to right and top to bottom. For example, topology 1 is a ring and topology
8 is a complete graph. Each curve encompasses the entire range of repair/failure
ratios studied. As one would expect, the more interconnected the topology, the
higher the availability. For each topology, the site availability increases sharply
as the repair/failure ratio increases from 1.0. The rate of increase is large and
nearly constant for a while, then decreases steadily, soon becoming near zero. Of
course, the availability for all eight topologies converges to 1.0 as the repair/
failure ratio grows large. The steepness of the initial ascent and the point at

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

276 l S. Jajodia and D. Mutchler

0.6

Q Top. 8: DL
- Best coterie
- Voting
+ Top. 7: DL
- Best coterie
- Voting
* Top. 4: DL
- Best coterie
- Voting
-) Top. 5: DL
- Best coterie
- Voting
a- Top. 2: DL
- Best coterie
- Voting
-c Top.1: DL
- Best coterie
- Voting

Ratio of repair rate to failure rate

Fig. 10. Dynamic-linear, best coterie, and voting.

which the slope becomes less than 1.0 varies from topology to topology. The more
interconnected the topology, the steeper the initial descent and the quicker the
slope falls below 1.0.

The graph of Figure 10 is an enlargement of the left-most portion of Graph 4,
but with curves for the best static algorithm and simple voting included. The
curves for topologies 3 and 6 are omitted; those curves lie very close to the curves
for topologies 5 and 4, respectively. For each topology, the curve for dynamic-
linear lies above the curve for the best static algorithm, which in turn lies above
the curve for simple voting. (The curves for the best static algorithm and voting
are essentially indistinguishable for each of the topologies 7 and 8.) For each

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database l 277

topology, simple voting becomes the best static algorithm once the repair/failure
ratio is sufficiently large. The less connected the topology, the greater the
superiority of dynamic-linear over the best static algorithm. In particular, one
has the most to gain by using dynamic-linear in a ring topology.

9. SUMMARY AND OPEN PROBLEMS

We have proposed two algorithms, dynamic voting and dynamic-linear, that
maintain the consistency of a replicated database in the face of network parti-
tioning. We believe that dynamic-linear is superior to static algorithms for the
following reasons.

(1) Dynamic-linear is as easy to implement as static voting.
(2) The message complexity of dynamic-linear is only slightly greater than the

message complexity of static voting.
(3) Dynamic-linear has greater availability than any static algorithm.

The claim for greater availability is supported by two models, one in which
sites fail and one in which links fail. Theorem 4 in the site model is unique
among results providing analysis of dynamic vote reassignment: no other theorem
to date applies to an unbounded number of sites. Other results have been only
for small, fixed values for the number of sites.

Here are some open problems that remain to be solved.

(1) Barbara and Garcia-Molina have shown [4] that the optimal static algo-
rithm, under the site model, is the voting-primary algorithm, if sites are more
likely to be up than down. We have shown (Theorem 3) that voting-primary is
bested by dynamic-linear, when there are four or more sites. The question
remains: what is the optimal dynamic algorithm, under the site model? A hybrid
algorithm-use dynamic voting when there are four or more sites with current
copies of the replicated file, but switch to static three-site voting when the
number of current copies falls to three-provides better availability than dynamic
voting, for reasonable repair/failure ratios [32]. What algorithm will conclude
this series of small improvements?

(2) In practice one will encounter asymmetric networks that are less than
completely connected and in which some sites and links are more reliable than
others. What is the optimal assignment of votes for weighted dynamic voting?
For dynamic coteries? When such optimal assignments are difficult to determine,
what heuristic assignments are reasonable and what bounds can be placed on the
performance of the heuristics?

(3) The site and link models are each idealized. Does the relative standing of
dynamic-linear and static algorithms change when communication delays are
introduced? We think not (because all these algorithms face similar communi-
cation delays in the commit protocol), but offer no proof. What happens if update
arrivals are not frequent relative to repairs and failures? We believe that a modest
relaxation of the frequent-update modeling assumption will not seriously degrade
the availabilities of our dynamic algorithms, but again offer no proof.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

278 l S. Jajodia and D. Mutchler

REFERENCES

1. AHAMAD, M., AND AMMAR, M. Performance characterization of quorum-consensus algorithms
for replicated data. In Proceedings of the Symposium on Reliability in Distributed Software and
Database Systems (1987), pp. 161-168.

2. ALSBERG, P. A., AND DAY, J. D. A principle for resilient sharing of distributed resources. In
Proceedings of the 2nd International Conference on Software Engineering (1976), 562-570.

3. ATTAR, R., BERNSTEIN, P. A., AND GOODMAN, N. Site initialization, recovery, and backup in a
distributed database system. In Proceedings of the 6th Berkeley Workshop on Distributed Data
Management and Computer Networks (1982), pp. 185-202.

4. BARBARA, D., AND GARCIA-M• LINA, H. The reliability of voting mechanisms. Tech. Rep. TR
330, Dept. of Electrical Engineering and Computer Science, Princeton University, Princeton,
N.J., 1984.

5. BARBARA, D., AND GARCIA-M• LINA, H. The vulnerability of vote assignments. ACM Trans.
Comput. Syst. 4, 3 (Aug. 1986), 187-213.

6. BARBARA, D., GARCIA-M• LINA, H., AND SPAUSTER, A. Increasing availability under mutual
exclusion constraints with dynamic vote assignment. Tech. Rep. CS-TR-056-86, Dept. of Com-
puter Science, Princeton University, Princeton, N.J., Nov. 1986.

7. BARBARA, D., GARCIA-M• LINA, H., AND SPAUSTER, A. Policies for dynamic vote reassignment.
In Proceedings of the IEEE Conference on Distributed Computing (1986). IEEE, New York,
1986, pp. 37-44.

8. BARBARA, D., GARCIA-M• LINA, H., AND SPAUSTER, A. Protocols for dynamic vote reassignment.
In Proceedings of the 5th ACM Symposium on Principles of Distributed Computing (1986). ACM,
New York, 1986, pp. 195-205.

9. BERNSTEIN, P. A., AND GOODMAN, N. Concurrency control in distributed database systems.
ACM Comput. Suru. 13, 2 (June 1981), 185-221.

10. BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, Mass., 1987.

11. BLAUSTEIN, B. T., AND KAUFMAN, C. W. Updating replicated data during communication
failures. In Proceedings of the 11th International Conference on Very Large Data Bases
(1985), pp. 49-58.

12. CERI, S., AND PELAGATTI, G. Distributed Databases: Principles and Systems. McGraw-Hill, New
York, 1984.

13. CHAR, B. W., FEE, G. J., GEDDES, K. O., GONNET, G. H., AND MONAGAN, M. B. A tutorial
introduction to Maple. J. Symbolic Comput. 2, 2 (1986), 179-200.

14. COOPER, E. C. Analysis of distributed commit protocols. In Proceedings of the ACM SZGMOD
International Conference on Management of Data (1982). ACM, New York, 1982, pp. 175-183.

15. DAVCEV, D., AND BURKHARD, W. Consistency and recovery control for replicated files. In
Proceedings of the 10th ACM Symposium on Operating Systems Principles (1985). ACM, New
York, 1985, pp. 87-96.

16. DAVIDSON, S. B. Optimism and consistency in partitioned distributed database systems. ACM
Trans. Database Syst. 9,3 (Sept. 1984), 456-481.

17. DAVIDSON, S. B., GARCIA-M• LINA, H., AND SKEEN, D. Consistency in partitioned networks.
ACM Comput. Suru. 17, 3 (Sept. 1985), 341-370.

18. DUGAN, J., AND CIARDO, G. Stochastic petri net analysis of a replicated tile system. In
Proceedings of the International Workshop on Petri Nets and Performance Models (Aug. 1987).

19. EAGER, D. L., AND SEVCIK, K. C. Achieving robustness in distributed database systems. ACM
Trans. Database Syst. 8, 3 (Sept. 1983), 354-381.

20. EL ABBADI, A., SKEEN, D., AND CHRISTIAN, F. An efficient, fault-tolerant protocol for replicated
data management. In Proceedings of the 4th ACM Symposium on Principles of Database Systems
(1985). ACM, New York, 1985, pp. 215-228.

21. EL ABBADI, A., AND TOUEG, S. Availability in partitioned replicated databases. In Proceedings
of the 5th ACM Symposium on Principles of Database Systems (1986). ACM, New York, 1986, pp.
240-251.

22. EL ABBADI, A., AND TOUEG, S. Maintaining availability in partitioned replicated databases.
Tech. Rep. TR-87-857, Dept. of Computer Science, Cornell University, Ithaca, N.Y., 1987.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

Dynamic Voting Algorithms for Maintaining a Replicated Database 279

23. FISCHER, M. J., AND MICHAEL, A. Sacrificing serializability to attain high availability of data
in an unreliable network. In Proceedings of the ACM Symposium on Principles of Database
Systems (1982). ACM, New York, 1982, pp. 70-75.

24. GARCIA-M• LINA, H. Elections in a distributed computing system. IEEE Trans. Computers
C-31,1 (Jan. 1982), pp. 48-59.

25. GARCIA-M• LINA, H. Reliability issues for fully replicated distributed databases. IEEE Comput.
15,9 (Sept. 1982), pp. 34-42.

26. GARCIA-M• LINA, H., AND BARBARA, D. How to assign votes in a distributed system. J. ACM
32,4 (Oct. 1985), 841-860.

27. GIFFORD, D. K. Weighted voting for replicated data. In Proceedings of the 7th Symposium on
Operating System Principles (1979), pp. 150-162.

28. GRAY, J. N. Notes on database operating systems. In R. Bayer, R.M. Graham, and G. Seegmuller,
Eds., Lecture Notes in Computer Science, vol. 60. Springer-Verlag, New York, 1978, pp. 394-481.

29. JAJODIA, S., AND MEADOWS, C. A. Mutual consistency in decentralized distributed systems. In
Proceedings of the IEEE 3rd International Conference on Data Engineering (1987). IEEE, New
York, 1987, pp. 396-404.

30. JAJODIA, S., AND MUTCHLER, D. A pessimistic consistency control algorithm for replicated files
which achieves high availability. IEEE Trans. Softw. Eng. 15, 1 (Jan. 1989), 39-46.

31. JAJODIA, S., AND MUTCHLER, D. Dynamic voting. In Proceedings of the ACM SZGMOD
International Conference on Management of Data (1987). ACM, New York, 1987, pp. 227-238,

32. JAJODIA, S., AND MUTCHLER, D. Enhancements to the voting algorithm. In Proceedings of the
13th International Conference on Very Large Data Bases (1987), pp. 399-406.

33. JAJODIA, S., AND MUTCHLER, D. Integrating static and dynamic voting protocols to enhance
file availability. In Proceedings of the 4th ZEEE International Conference on Data Engineering
(1988). IEEE, New York, 1988, pp. 144-153.

34. KOHLER, W. H. A survey of techniques for synchronization and recovery in decentralized
computer systems. ACM Comput. Suru. 13,2 (1981), 149-183.

35. LAMPORT, L. The implementation of reliable distributed multiprocess systems. Comput. Net-
works 2 (1978), 95-114.

36. LAMPSON, B., AND STURGIS, H. Crash recovery in a distributed data storage system. Tech.
Rep., Computer Science Laboratory, Xerox Palo Alto Research Center, Palo Alto, Calif., 1976.

37. MINOURA, T., AND WIEDERHOLD, G. Resilient extended true-copy token scheme for a distrib-
uted database system. IEEE Trans. Softw. Eng. SE-g,3 (1982), 173-189.

38. PARIS, J.-F. Voting with a variable number of copies. In Proceedings of the IEEE International
Symposium on Fault-Tolerant Computing (1986), pp. 50-55.

39. PARIS, J.-F. Voting with witnesses: A consistency scheme for replicated files. In Proceedings of
the IEEE International Conference on Distributed Computing (1986). IEEE, New York, 1986,
pp. 606-621.

40. PARKER, D. S., JR., POPEK, G. J., RUDISIN, G., STOUGHTON, A., WALKER, B. J., WALTON, E.,
CHOW, J. M., EDWARDS, D., KISER, S., AND KLINE, C. Detection of mutual inconsistency in
databases. IEEE Trans. Softw. Eng. SE-g, 3 (1983), 240-247.

41. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the presence of faults.
J. ACM 27, 2 (Apr. 1980), 228-234.

42. RAMARAO, K. V. S. Detection of mutual inconsistency in distributed databases. In Proceedings
of the 3rd IEEE Znternational Conference on Data Engineering (1987). IEEE, New York, 1987,
pp. 405-411.

43. RAMARAO, K. V. S. Transaction atomicity in the presence of network partitions. In Proceedings
of the 4th IEEE International Conference on Data Engineering (1988). IEEE, New York, 1988,
pp. 512-519.

44. SARIN, S. K., BLAUSTEIN, B. T., AND KAUFMAN, C. W. System architecture for partition-
tolerant distributed databases. IEEE Trans. Comput. C-34, 12 (1985), 1158-1163.

45. SCHLICTING, R., AND SCHNEIDER, F. Fail-stop processors: An approach to designing fault-
tolerant distributed computing systems. ACM Trans. Comput. Syst. 1, 3 (1983), 222-238.

46. SEGUIN, J., SERGEANT, G., AND WILMS, P. A majority consensus algorithm for the consistency
of duplicated and distributed information. In Proceedings of the IEEE International Conference
on Distributed Computing Systems (1979). IEEE, New York, 1979, pp. 617-624.

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

280 l S. Jajodia and D. Mutchler

47. SELINGER, P. G. Replicated data. In Distributed Databases. I. W. Draffen and F. Poole, Eds.
Cambridge University Press, Cambridge, 1980.

48. SKEEN, D., AND STONEBRAKER, M. A formal model of crash recovery in a distributed system.
IEEE Trans. Softw. Eng. SE-g, 3 (1983), 219-228.

49. SKEEN, D., AND WRIGHT, D. Increasing availability in partitioned database systems. In Pro-
ceedings of the 3rd ACM Symposium on Principles of Database Systems (1984). ACM, New York,
1984, pp. 290-299.

50. THOMAS, R. H. A majority consensus approach to concurrency control. ACM Trans. Database
Syst. 4,2 (June 1979), 180-209.

51. THOMAS, R. H. A solution to the concurrency control problem for multiple copy databases. In
Proceedings of IEEE Compcon (Spring 1978). IEEE, New York, 1978, pp. 56-62.

52. TRIVEDI, K. Probability and Statistics with Reliability, Queuing, and Computer Science Appli-
cations. Prentice-Hall, Englewood Cliffs, N.J., 1982.

53. WRIGHT, D. D. Managing distributed databases in partitioned networks. Tech. Rep. 83-572,
Dept. of Computer Science, Cornell University, Ithaca, N.Y., 1983.

54. WRIGHT, D. D. On merging partitioned databases. ACM SIGMOD Rec. 13,4 (1983), 6-14.

Received March 1988; revised October 1988; accepted March 1989

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

