
Spanner: Google’s Globally 
Distributed Database



Spanner

• Google’s globally distributed multi-versioned database
• General purpose transactions (ACID)
• Schematized semi-relational tables, SQL-like queries
• Synchronous replication
• Lock-free distributed read transaction
• External consistency at global scale



Basic Data Storage Idea

• Shard the database across rows
• Store shards in replica sets (group) geographically distributed

• Single datacentre, across datacenters spanning a continent, across continents
• Paxos based replication within each set

• Admin controls number, type, and geo-placement of replicas
• Ex: 5-way replication in North America, 3-way replication in Europe etc.

• Application can specify
• Which data goes to which DC
• How far data is from users (controls read latency)
• How far replicas are from each other (controls write latency)



• Tablet
• Set of (key, timestamp, value)

• Set of rows
• Stored in B-tree like files along with Write-Ahead-Log in an underlying Google 

Colossus filesystem
• Directory

• A bucketing abstraction on top of the key-value mapping
• Unit of data placement and movement
• Set of contiguous keys with the same “prefix”
• Smallest unit whose geographical replication placement can be specified by 

the application
• A tablet can contain many directories

• Need not be lexicographically contiguous partitions of the row space





Basic Architecture



Universe

• One deployment of spanner
• Holds one or more databases created by application
• Has 

• A universemaster
• Console to display/monitor status of all zones for debugging

• A placement driver
• Controls auto movement of data across zones

• May need to be moved for load balancing, addition/deletion of replicas, grouping data with 
similar access patterns etc.

• Communicates with spanservers to decide what data to move when



Zones

• Set of zones = set of locations for replicating data
• Zones can be dynamically added or removed
• Unit of physical isolation

• Data of different applications can be in different zones, even within the same
DC

• Has 
• One zonemaster

• Assigns data to spanservers
• Few Location Proxies

• Used by clients to find spanservers assigned to serve their data
• 100’s to 1000’s of spanservers

• Actually stores data



Spanserver

• Each spanserver stores
• 100-1000 tablets
• One Paxos protocol instance running for each tablet
• Paxos stores its metadata and log in the same tablet
• Each Paxos write is logged in both Paxos log and tablet log
• Writes applied by Paxos in order

• Writes invoke Paxos protocol at leader
• Reads access state at underlying tablet at any replica that is sufficiently “up-

to-date”
• The set of replicas of a tablet is collectively called a Paxos group





• Concurrency control
• Leader implements a lock table

• Two-phase locking

• Supporting distributed transactions
• Necessary when a transaction spans across groups
• Leader implements a transaction manager

• If a transaction involves only one Paxos group, no transaction manager needed
• Transaction managers of the group coordinate to do two-phase commit

• One group is chosen as coordinator, that leader is “coordinator leader”
• Others are “coordinator slaves”

• Transaction manager state is also stored in Paxos group
• So sort of replicated two-phase commit, avoids blocking when coordinator fails



Data Model
• Schematized semi-relational model
• SQL like query language
• Synchronous replication
• Data model layered on top of directory-bucketed key-value mapping
• Application creates one or more databases in an universe

• Each DB can contain an unlimited number of schematized tables
• Tables look like relational tables with rows, columns, and versioned values



TrueTime
• Spanner’s implementation global wall-clock time
• Main interesting idea

• If you ask the local clock for a time, it does not give a single time, it gives an
interval within which the global time will lie

• Three APIs
• TT.now() – returns an interval [earliest, latest]

• Guaranteed to contain the absolute time at which the TT.now() was invoked
• TT.before(t)

• Returns true if t has definitely passed
• TT.after(t)

• Returns true if t has definitely not arrived



• Time implemented by GPS and Atomic clocks
• Set of time master m/cs per DC

• Most have GPS with dedicated antenna
• Some have Atomic Clocks

• Time slave daemon per machine
• Pulls time from a variety of time masters

• Including from other DCs, near and far
• Applies a version of Marzullo’s algorithm to

• Detect and reject liars
• Synchronize local machine clock with non-liars



External Consistency

• Consistency requirement
• If start of T2 occurs after commit of T1, then TS(T2) > TS(T1)

• How do we enforce external consistency?
• Enabler: Interval-based global time from TrueTime API.
• Two rules for executing transactions and assigning timestamps

• Start: Coordinating leader for a write Ti assigns a commit timestamp si >= TT.now().latest 
computed after the arrival time of the commit request at the coordinating leader of Ti

• Commit Wait: Coordinating leader ensures that client cannot see any data committed by 
Ti until TT.after(si) is true



Types of Transactions

• Read-only
• Must be pre-defined by clients as read-only
• Execution after a system chooses a timestamp without locking

• Does not block incoming writes
• Can be from any replica that is sufficiently up-to-date

• Snapshot read
• Lock free read of a past version of data
• Client can specify a timestamp or a max acceptable staleness

• Read-write transactions



Assigning Timestamps for Read-Only 
Transactions
• Find scope of the reads

• All keys that will be read in the transaction
• If the scope’s values are served by a single Paxos group

• Client issues a read-only transaction to that group’s leader
• The leader assign a timestamp that is greater than the last committed write at 

the group
• If not

• Leaders can coordinate to assign a timestamp based on the last committed 
transactions at each group

• Spanner approach: Assign TT.now().latest
• No coordination is needed, so fast



Serving Read at a Timestamp

• Read from a sufficiently up-to-date replica
• What is up-to-date?

• Define a safe time which is the maximum time at which a replica is up-to-date
• Safe time = min(safe time of Paxos state machine, safe time of transaction manager)
• Safe time of Paxos = timestamp of highest applied Paxos write
• Safe time of TM = min(prepare timestamp of all transactions prepared at the group) – 1

• Coordinating leader ensures that any transactions commit timestamp is >= prepare 
timestamps of the transaction over all groups involved in the transaction

• So choosing this as safe time says that no further writes will happen before this
• Known from local Paxos log. So fast again.

• Replica can satisfy a read at a timestamp t if t is <= the safe time



Read-Write Transactions

• Client issues reads to leader replicas of appropriate groups. These 
acquire read locks and read the most recent data.

• Once reads are completed and writes are buffered (at the client), 
client chooses a coordinator leader and sends the identity of the 
leader along with buffered writes to participant leaders.

• Non-coordinator participant leaders
• Acquire write locks
• Choose a prepare timestamp larger than any previous transaction timestamps 

and log a prepare record in Paxos.
• Notify coordinator of chosen timestamp



Aassigning timestamp to a RW transaction

• Can be assigned a timestamp anytime after it has acquired all logs and
before it has released any

• Assigned by coordinating leader
• Assign a timestamp that is

• >= all prepare timestamps received from coordinators
• > TT.now().latest at the time the coordinating leader received its commit message 

from the client
• Greater than any timestamp assigned to any previous transaction by the leader

• Log the commit/abort record through Paxos, but delay sending decision to 
other coordinators until TT.after(s), where s is the timestamp assigned

• Guarantees s has elapsed 



Commit Wait



Implications of TrueTime

● The larger the uncertainty bound from TrueTime, the longer commit 
wait period.

● Commit wait will slow down dependent transactions, since locks are 
held during commit wait.

● So, as time gets less certain, Spanner gets slower.
● Attack Vector: you can cause very long commit wait periods – slow the 

system down by messing with the clock.
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