
Replication in Distributed
Systems

Replication	Basics
 Multiple copies of data kept in different nodes
 A set of replicas holding copies of a data
 Nodes can be physically very close or distributed all over the world

 A set of clients that make requests (read/write) of the data in a
replica

 Why replicate?
 Fault Tolerance
 Service can be provided from a different replica if one replica fails

 Load Balancing
 Load can be shared by multiple replicas (ex. web servers)

 Reduced latency
 Replicas placed closer to request source for faster access

 Ideally, the user should think that there is a single copy of
the data (replication transparency)
 Requires a write at one replica to propagate

instantaneously to another replica as if it is done on a single
copy
 Impossible if real time ordering of read/write operations is

to be maintained as in a single copy

 Then how should we keep replicas updated in the
presence of writes?
 Should all copies of the data have the same value always, or

are intermediate differences allowed?
 Depends on consistency model to be satisfied depending on

application need
 What is a consistency model?

Design	Issues	in	Replication
 Consistency model to be enforced

 Where can updates happen?
 One designated replica or any replica?

 When to propagate updates?
 Eager (immediately, before response to client) or lazy

(sometime after response is sent to client)?
 Depends on consistency model to be supported

 How many replicas to install?

 When to Install a replica
 Static or On-demand?

 Where to place the replicas?

Consistency	Models

Consistency	Models

 Defines what guarantees are provided on reads on a shared
data in the presence of possibly interleaved/overlapped
access

 Replicas of a data accessed at multiple sites can be viewed as
a single shared data

 Tradeoff
 Should be strong enough to be useful
 Should be weak enough to be efficiently implementable

 Examples of consistency models
 Linearizability
 Sequential consistency
 Causal consistency
 Eventual consistency

 Many other models exist…
 Why so many models?
 Application requirements are different
 Stronger models require more overheads to implement, so many

weaker models have evolved if strong guarantees are not needed for
an application

 Even within a single application, different types of data may require
different consistency models

Linearizability
 Satisfied if there exists some sequential ordering of the reads

and writes in which
1. Operations of individual processes are ordered in the same

way as in the actual order
2. For two operations by two different processes, if times in

actual order are t1 and t2, and times in the sequential order
are t1’ and t2’, then if t1 < t2, then t1’ < t2’

3. Each read gets the value of the latest write before it in the
sequential ordering

 Time can be based on any global timestamping scheme

 Used mostly for formal verification etc.

(a) is linearizable, (b) is not

Sequential	Consistency
 Requires only the first and third conditions of Linearizability
 No ordering of events at different processes required
 Linearizability implies sequential consistency but not vice-versa

 No notion of time, and hence no notion of “most recent”
write

 Ordering of events at different processes may not be
important as they could have happened in some other order
in practice anyway due to different reasons (server speed,
message delays,…)

 Widely used in practice
 Still costly to implement

 (a) is sequentially consistent (Is (a) Linearizable?)
 (b) is not sequentially consistent
 Sequential consistency means all processes see all writes

in the same order (“seeing” means the results returned by
reads)

Causal	Consistency
 Causally related writes
 Writes in the same process
 Writes in different processes linked by reads in between

 Writes not causally related are concurrent

 All writes that are causally related must be seen (results
of read) by every process in the same order

 Writes that are not causally related can be seen in any
order by different processes

 Value returned by the reads must be consistent with this
causal order

 Example

 Is this sequentially consistent?

 What about these?

Eventual	Consistency
 Only requires that all replicas are eventually consistent
 If no further updates to a data happens, all reads of the data

at any replica should eventually get the same value
 Temporarily, different clients can see different values
 Say client X updates at replica A, and client Y reads from

replica B before the update by X propagates to B

 Temporarily, even same client can see different value
 Say client X updates at replica A, and then reads from replica

B before the update propagates to B
 So may not even guarantee that a single client always sees its

last write

 Other intermediate models exist

 Good if most operations are read, writes are infrequent,
and some temporary inconsistencies can be tolerated
 Good for many applications. Ex. DNS, NIS,….

Implementing	Consistency	
Models

Replication	Architectures

 Consistency models are fine, but how do systems
implement them?
 Depends on replication architecture and the specific model

 Replication Architectures
 Passive Replication
 All requests made to a single replica (primary)

 Active Replication
 Requests made to all replicas

Passive	Replication
 Each client requests to a single replica (primary)
 A unique identifier assigned by primary for each request

 Other replicas are backup
 Master-slave like relation between primary and backups
 Reads are returned from primary
 On write,
 Primary executes the write and sends the updated state to

all replicas
 Receive reply from all replicas
 Reply success to client

 Primary also sends periodic heartbeat messages to all
backups to indicate it is alive

 If primary dies (no heartbeat message detected at
backup)
 Backups elect a new leader that starts to act as primary
 Client may fail to access a service during the duration

between primary crash and new primary election (failover
time)

 Need to ensure
 Exactly one primary at all times (except failover time)
 All backups agree on the primary
 No backups respond to client requests

 Problem: what happens if there is a failure during update
of replicas?

 Consistency models enforced in passive replication
 Linearizability, as primary acts as sequencer, serializing all

access to the data
 Enforcing Linearizability implies sequential consistency

Active	Replication
 No master-slave relation among replicas
 A client makes requests to all replicas
 In practice, client can send request to one replica, that replica can

act as front end to send requests to all replicas
 Client must know what replica to go to if the front end fails

 All replicas replies to client, client can take
 First response for crash failure model (requires f+1 replicas to

tolerate f faults)
 Majority for byzantine faults (requires 2f+1 replicas to tolerate f

faults)
 Need to ensure that all replicas agree on the order of client

requests
 If all requests are applied in the same order at all replicas, their

final state is consistent
 Consensus problem

State	Machine	Replication
 A general strategy proposed to build fault-tolerant

systems by replication
 Basis for active replication in practice

 Each replica is represented by a state machine

 All replicas start with the same initial state

 Client requests are made to the state machines

 Need to ensure
 All non-faulty state machines receive all requests

(Agreement)
 All non-faulty state machines processes the requests in the

same order (Order)

Ensuring	Agreement	and	Order
 Using atomic multicast
 Read/write request sent to all replicas using atomic

multicast
 How to implement atomic multicast?
 Atomic multicast is equivalent to consensus

 Using other specialized consensus protocols
(Paxos/Raft)
 We will study Raft

Implementing	Linearizability
 Client makes read/write request
 Read/write request sent by local replica to all others

using atomic multicast
 On receiving this, replica servers (a) update copy on

write and send back ack, (b) only send ack on read
 On completion of total order multicast, the local copy

given to client on read or success returned to client on
write

Implementing	Sequential	
Consistency
 Using atomic multicast
 Client makes read/write request
 On read, just return the local copy (no atomic multicast)
 On write, request sent by local replica to all others using

atomic multicast
 On receiving this, replica servers update copy on write and

send back ack
 On completion of atmic multicast, success returned to client

on write

 Using Quorum-based protocols/Voting protocols

Voting	Protocols
 Each replica is given a number of votes
 Let V = sum of all replica votes

 Choose read quorum Qr and write quorum Qw such that
 Qr + Qw > V, and
 2 * Qw > V

 To read, each replica must get Qr votes

 To write, each replica must get Qw votes

 Guarantees
 A read and a write do not occur together
 Two writes do not occur together

 Data items are tagged with a version
 Incremented on each write

 To read data
 client gets read quorum from replica sites
 chooses the copy with the highest version no. from those

replicas
 Most updated copy (why?)

 To write data
 Client gets read quorum from replica sites
 Chooses the copy with highest version number (say t)
 Client gets write quorum from replica sites
 Writes the data with version number > t in all replicas of

write quorum

Special	Cases
 Let N = no. of replicas

 ROWA (Read One Write All)
 Each replica has one vote, Qr = 1, Qw = N
 Fast reads, slow writes
 Cannot tolerate even one replica failure for writes

 Majority
 Each replica has one vote, Qr = Qw = N/2 + 1
 Equal read/write overhead

Questions
 How to assign votes?
 More reliable servers can be assigned more votes
 More powerful servers may be assigned more votes

 What if one or more replicas fail?
 No combination of votes may satisfy the quorum

constraints

 What if there is a network partition?
 No majority may exist in any of the partitions

Problems	with	Sequential	
Consistency
 Not scalable
 Atomic Multicast requires all replicas to contact all other

replicas
 Voting based protocols still require a replica to contact a

large no. of other replicas (majority in the worst case)

 Good for small systems that require such strong
consistency

 Many systems do not need such strong consistency
guarantees

Implementing	Eventual	
Consistency
 Easy if a client always connects to a single replica

 Hard otherwise
 Ex. mobile systems

 Generally goal is to ensure that all replicas have the same
state eventually
 Epidemic protocol to replicate
 Replication topology
 Form a replication topology to decide who replicates from

who

 Scheduled Replication
 Push vs. pull models

Replica	Placement
 Mirroring
 Static replicas created a-priori
 May mirror all data or part depending on need

 Server-generated
 Dynamic replicas created by a server when load increases

 Client caching
 Replicas created by caching frequently used data at/near client

 Pros/Cons of each? When should you use what?

