
Paxos



Paxos
 Basis of consensus protocol at the heart of many replicated systems
 Apache Zookeeper, Google Chubby lock service,…

 Submitted for publication by Leslie Lamport first in 1989, finally 
published in ACM TOCS in 1998
 Presented in terms of the functioning of a parliament in ancient 

Greek island
 Most people found it hard to read and understand

 Presented in a simpler form in 2003 by Lamport
 Ok for overall understanding of the protocol. Should read the original 

paper for full understanding and implementation reference.

 Interesting history behind its publication
 See Paxos under https://lamport.azurewebsites.net/pubs/pubs.html 

(Interesting site to read for other works of Lamport also)



Consensus Problem
 A set of processes, each proposes a value 
 Requirements:
 All correct processes must choose a single value (Agrement)
 The value chosen must be the value proposed by one of the 

correct processes (Validity)

 All processes must be able to learn the value chosen
 No process should learn a value unless it is actually chosen



 Somewhat different than the consensus problem we studied 
in the context of Byzantine General’s problems earlier 
 Lets refer to it as Agreement problem just to distinguish

 Which one is harder?
 If you are given solution to this version of consensus, agreement 

can be solved
 If you are given solution to agreement, this version of consensus 

may not be solved
 If the values are different, agreement can agree on any value (not 

necessarily one of the values proposed, which is a requirement 
for this version of consensus)



Model
 Asynchronous
 Messages can be lost, duplicated, delayed, but not 

corrupted
 Nodes may crash and recover. Stable storage available to 

store data needed for recovery.



Agents in Paxos

 Three types of agents
 Proposer – proposes value
 Acceptor – accepts a value
 Learner – learns the chosen value

 “Accept” and “Choosing” are different
 A value is chosen if a majority of the acceptors accept it

 A node can be only proposer, only acceptor, only learner, or any 
combination of the three
 Not important for the correctness of the protocol, or for 

understanding it
 In practice, usually the same node will play the role of all three



Proposal
 A proposal is a two tuple
 A proposal number
 A value

 Proposal numbers are unique across the system
 No two proposals are issued with the same proposal number

 Proposal numbers can be totally ordered



Paxos Protocol
 Two phases 
 Phase 1
 A proposer sends a Prepare(n) message to a set of acceptors (≥ 

majority) with a proposal number n
 An acceptor, on receiving a Prepare(n) message, if it has not 

already replied to any Prepare message with a proposal number 
higher than n, replies with a Promise(n, (k, v)) message where k is 
the proposal number and v is the value in the highest number 
proposal the acceptor has accepted so far, if any (else just send n)
 By a Promise message,  the acceptor is promising the proposer 

that it will from now not respond to any proposal with a lower 
proposal number
 But it can respond to one with a higher proposal number



 Phase 2:
 If the proposer receives a Promise(n,…) message from a majority 

of the acceptors, it 
 Creates a proposal with proposal number n and value v in the 

highest numbered proposal accepted by any of the acceptors 
(received in the Promise message from that acceptor)
 Can use any value if no acceptor has accepted any proposal so 

far
 Sends an Accept message with this proposal to all acceptors

 When the acceptor receives the Accept message, it accepts the 
proposal if and only if it has not responded to any Prepare
message with a higher proposal number
 Can send back an Accepted message to inform the proposer, 

though not needed for correctness



Learning the Chosen Value
 Easier, many possibilities
 Acceptors can inform Learners what value they accepted
 All learners or a special one which can inform others

 Learners can ask Acceptors what value they accepted
 Learners know a value is chosen when a majority of the 

acceptors report they have accepted that value
 But what if a majority of acceptors accept and then one or 

more fails such that no majority of chosen value among live 
acceptors?



Need for Stable Storage
 An acceptor should store 
 The highest numbered proposal it has accepted so far
 The highest proposal number it has responded to in a Promise() 

message

 A proposer must store
 The highest proposal number it has sent out so far
 Avoids sending two proposals with the same number



Paxos Guarantees
 Once a proposal with proposal number n and value v is 

chosen, all subsequent proposals with number > n issued 
by any proposer has value v
 Also implies that all subsequent proposals accepted by any acceptor 

has value v

 Ensures that if a value is chosen
 Only  a single value is chosen
 It is obvious that the value chosen will be one of the values 

proposed by a proposer
 So satisfies both safety conditions

 But does it guarantee that a value will be chosen (liveness)?



Possible Livelock
 Proposer p sends Prepare(n) to all acceptors

 All acceptors respond with Promise(n,…) to p

 p sends Accept(n,…) to all acceptors

 Proposer q sends Prepare(m) to all acceptors with m > n

 All of q’s Prepare() messages reach the acceptors before any of p’s 
Accept() messages

 All acceptors respond with Promise(m,…) to q

 All acceptors reject p’s Accept() message

 p times out and sends a new Prepare(r) with r > m

 This repeats so that no acceptor accepts either p or q’s proposal



 Can be prevented from reaching consensus in other 
scenarios with fault also
 All Prepare messages are always lost
 Proposer gets Promise message from a majority, sends 

Accept, but some of the Accept messages are lost such that 
no majority accepts the value proposed

 Other cases possible



 So Paxos does not guarantee consensus will be reached
 Only says consensus will be reached eventually if too 

many bad things do not happen (bad timings, loss of 
critical messages at critical times,….)

 This is expected, as otherwise Paxos would have solved 
consensus for asynchronous systems with unreliable links 
and crash faults
 Would have contradicted the FLP (Fisher-Lynch-Patterson) 

Impossibility result that consensus is impossible to achieve 
in an asynchronous system even in the presence of a single 
crash fault



How to stop Livelock?
 Elect one proposer as a distinguished proposer
 Leader Election

 Only that proposer can propose values
 But what if it fails?
 Need to elect leaders in the presence of fault
 Another agreement problem
 All nodes need to agree on the leader



But why study Paxos?
 Basis of implementing State Machine Replication
 Replicas are state machines
 Replicas maintain logs of requests
 Order of requests in logs of all replicas are kept same (total 

order)
 Replicas apply the requests in order from log, ensures all replicas 

eventually have the same state



 Using Paxos for State Machine Replication
 Clients issue request to a replica (say a write request)
 Each replica can play the roles of all of proposer, acceptor, 

learner
 Goal: For each client request, choose a unique position in 

the log of all nodes for that request
 Log position i = client request to be executed as the i-th

command
 Paxos invoked to decide what should go in each log position 

of all replicas
 One invocation of Paxos for each log position

 But we saw this may cause a livelock!



 Paxos solution: elect a leader
 All client requests come to the leader (directly from client, 

or forwarded)
 Leader decides the log position (say k) of the client 

command 
 Leader runs consensus to have the command chosen as the 

k-th command in the k-th invocation 

 What if there is no leader, or more than one leader 
temporarily?
 May not make progress, but safety is not violated



 Paxos does not specify which algorithm to use for leader 
election

 Can also use Paxos to install a new “view” (set of 
participating nodes) in all nodes
 The value proposed is a set: {“view number”, set of live nodes}
 All nodes agree on a view with Paxos
 Once they learn the chosen value, lowest id node in the chosen 

view can declare itself the leader
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