
Paxos

Paxos
 Basis of consensus protocol at the heart of many replicated systems
 Apache Zookeeper, Google Chubby lock service,…

 Submitted for publication by Leslie Lamport first in 1989, finally
published in ACM TOCS in 1998
 Presented in terms of the functioning of a parliament in ancient

Greek island
 Most people found it hard to read and understand

 Presented in a simpler form in 2003 by Lamport
 Ok for overall understanding of the protocol. Should read the original

paper for full understanding and implementation reference.

 Interesting history behind its publication
 See Paxos under https://lamport.azurewebsites.net/pubs/pubs.html

(Interesting site to read for other works of Lamport also)

Consensus Problem
 A set of processes, each proposes a value
 Requirements:
 All correct processes must choose a single value (Agrement)
 The value chosen must be the value proposed by one of the

correct processes (Validity)

 All processes must be able to learn the value chosen
 No process should learn a value unless it is actually chosen

 Somewhat different than the consensus problem we studied
in the context of Byzantine General’s problems earlier
 Lets refer to it as Agreement problem just to distinguish

 Which one is harder?
 If you are given solution to this version of consensus, agreement

can be solved
 If you are given solution to agreement, this version of consensus

may not be solved
 If the values are different, agreement can agree on any value (not

necessarily one of the values proposed, which is a requirement
for this version of consensus)

Model
 Asynchronous
 Messages can be lost, duplicated, delayed, but not

corrupted
 Nodes may crash and recover. Stable storage available to

store data needed for recovery.

Agents in Paxos

 Three types of agents
 Proposer – proposes value
 Acceptor – accepts a value
 Learner – learns the chosen value

 “Accept” and “Choosing” are different
 A value is chosen if a majority of the acceptors accept it

 A node can be only proposer, only acceptor, only learner, or any
combination of the three
 Not important for the correctness of the protocol, or for

understanding it
 In practice, usually the same node will play the role of all three

Proposal
 A proposal is a two tuple
 A proposal number
 A value

 Proposal numbers are unique across the system
 No two proposals are issued with the same proposal number

 Proposal numbers can be totally ordered

Paxos Protocol
 Two phases
 Phase 1
 A proposer sends a Prepare(n) message to a set of acceptors (≥

majority) with a proposal number n
 An acceptor, on receiving a Prepare(n) message, if it has not

already replied to any Prepare message with a proposal number
higher than n, replies with a Promise(n, (k, v)) message where k is
the proposal number and v is the value in the highest number
proposal the acceptor has accepted so far, if any (else just send n)
 By a Promise message, the acceptor is promising the proposer

that it will from now not respond to any proposal with a lower
proposal number
 But it can respond to one with a higher proposal number

 Phase 2:
 If the proposer receives a Promise(n,…) message from a majority

of the acceptors, it
 Creates a proposal with proposal number n and value v in the

highest numbered proposal accepted by any of the acceptors
(received in the Promise message from that acceptor)
 Can use any value if no acceptor has accepted any proposal so

far
 Sends an Accept message with this proposal to all acceptors

 When the acceptor receives the Accept message, it accepts the
proposal if and only if it has not responded to any Prepare
message with a higher proposal number
 Can send back an Accepted message to inform the proposer,

though not needed for correctness

Learning the Chosen Value
 Easier, many possibilities
 Acceptors can inform Learners what value they accepted
 All learners or a special one which can inform others

 Learners can ask Acceptors what value they accepted
 Learners know a value is chosen when a majority of the

acceptors report they have accepted that value
 But what if a majority of acceptors accept and then one or

more fails such that no majority of chosen value among live
acceptors?

Need for Stable Storage
 An acceptor should store
 The highest numbered proposal it has accepted so far
 The highest proposal number it has responded to in a Promise()

message

 A proposer must store
 The highest proposal number it has sent out so far
 Avoids sending two proposals with the same number

Paxos Guarantees
 Once a proposal with proposal number n and value v is

chosen, all subsequent proposals with number > n issued
by any proposer has value v
 Also implies that all subsequent proposals accepted by any acceptor

has value v

 Ensures that if a value is chosen
 Only a single value is chosen
 It is obvious that the value chosen will be one of the values

proposed by a proposer
 So satisfies both safety conditions

 But does it guarantee that a value will be chosen (liveness)?

Possible Livelock
 Proposer p sends Prepare(n) to all acceptors

 All acceptors respond with Promise(n,…) to p

 p sends Accept(n,…) to all acceptors

 Proposer q sends Prepare(m) to all acceptors with m > n

 All of q’s Prepare() messages reach the acceptors before any of p’s
Accept() messages

 All acceptors respond with Promise(m,…) to q

 All acceptors reject p’s Accept() message

 p times out and sends a new Prepare(r) with r > m

 This repeats so that no acceptor accepts either p or q’s proposal

 Can be prevented from reaching consensus in other
scenarios with fault also
 All Prepare messages are always lost
 Proposer gets Promise message from a majority, sends

Accept, but some of the Accept messages are lost such that
no majority accepts the value proposed

 Other cases possible

 So Paxos does not guarantee consensus will be reached
 Only says consensus will be reached eventually if too

many bad things do not happen (bad timings, loss of
critical messages at critical times,….)

 This is expected, as otherwise Paxos would have solved
consensus for asynchronous systems with unreliable links
and crash faults
 Would have contradicted the FLP (Fisher-Lynch-Patterson)

Impossibility result that consensus is impossible to achieve
in an asynchronous system even in the presence of a single
crash fault

How to stop Livelock?
 Elect one proposer as a distinguished proposer
 Leader Election

 Only that proposer can propose values
 But what if it fails?
 Need to elect leaders in the presence of fault
 Another agreement problem
 All nodes need to agree on the leader

But why study Paxos?
 Basis of implementing State Machine Replication
 Replicas are state machines
 Replicas maintain logs of requests
 Order of requests in logs of all replicas are kept same (total

order)
 Replicas apply the requests in order from log, ensures all replicas

eventually have the same state

 Using Paxos for State Machine Replication
 Clients issue request to a replica (say a write request)
 Each replica can play the roles of all of proposer, acceptor,

learner
 Goal: For each client request, choose a unique position in

the log of all nodes for that request
 Log position i = client request to be executed as the i-th

command
 Paxos invoked to decide what should go in each log position

of all replicas
 One invocation of Paxos for each log position

 But we saw this may cause a livelock!

 Paxos solution: elect a leader
 All client requests come to the leader (directly from client,

or forwarded)
 Leader decides the log position (say k) of the client

command
 Leader runs consensus to have the command chosen as the

k-th command in the k-th invocation

 What if there is no leader, or more than one leader
temporarily?
 May not make progress, but safety is not violated

 Paxos does not specify which algorithm to use for leader
election

 Can also use Paxos to install a new “view” (set of
participating nodes) in all nodes
 The value proposed is a set: {“view number”, set of live nodes}
 All nodes agree on a view with Paxos
 Once they learn the chosen value, lowest id node in the chosen

view can declare itself the leader

	Slide Number 1
	Paxos
	Consensus Problem
	Slide Number 4
	Model
	Agents in Paxos
	Proposal
	Paxos Protocol
	Slide Number 9
	Learning the Chosen Value
	Need for Stable Storage
	Paxos Guarantees
	Possible Livelock
	Slide Number 14
	Slide Number 15
	How to stop Livelock?
	But why study Paxos?
	Slide Number 18
	Slide Number 19
	Slide Number 20

