Leader Election

Leader Election

- Elect one node as leader
- Requirements
 - Terminates
 - Leader process knows it is the leader on termination
 - All other processes know they are not the leader on termination, and (optionally) knows who the leader is
- Have been studied in different topology
 - Rings
 - Arbitrary topology

Leader Election in Rings

- Models
 - Synchronous or Asynchronous
 - Unidirectional or bidirectional ring
 - Anonymous (no unique id) or Non-anonymous (unique ids)
 - Uniform (no knowledge of 'n', the number of processes) or non-uniform (knows 'n')
- Known Impossibility Result
 - There is no deterministic, synchronous, non-uniform leader election protocol for anonymous rings

Lelann-Chang-Robert's Algorithm

- Model
 - Asynchronous, reliable, unidirectional ring, unique ids
- Algorithm
 - Send own id to node on left
 - If an id received from right, forward id to left node only if received id greater than own id, else ignore
 - If own id received, declares itself "leader"
- Worst case message complexity = $O(n^2)$
 - Can you draw a ring with ids and a sequence of message exchanges that achieves this worst case?

Hirschberg-Sinclair Algorithm

• Model

- Same as LCR, but requires bidirectional ring
- Operates in phases
- In k-th phase ($0 \le k \le \lg n$), send probe with own id to 2^k processes on both sides of yourself
 - Directly send only to neighbors with id and $TTL = 2^k$ in it
- If id received
 - If own id > received id, drop the probe (and start algo with own id as above if not already done so)

• Else

- If TTL > 0, forward probe with TTL = TTL-1
- Else send reply to originator

- Replies are always forwarded irrespective of id
- A process goes to (k+1)-th phase if and only if it receives a reply from both sides in k-th phase
- Process receiving its own id in a probe declare itself "leader" (id must have traversed and passed by all other nodes)
- Leader can then circulate a leader message around the ring to inform all other nodes who the leader is

- Message Complexity: O(*n*lg*n*)
 - After (k-1)-th phase, at most $n/(2^{k-1} + 1)$ nodes can be alive
 - Each of these nodes can send at most 4.2^k messages
 - 2^{k+1} probes and 2^{k+1} replies on each side
 - $k = O(\lg n)$

Lower Bound for Rings

- Can we do it in O(nlgn) time in unidirectional rings?
 - Yes (Peterson's algorithm)
- Lots of other algorithms exist for rings
- Lower Bound result:
 - Any comparison-based leader election algorithm in a ring requires $\Omega(nlgn)$ messages
- What if not comparison-based?
 - Can you break the message lower bound with increased time?

Variable Time Algorithm

- Synchronous, round based
- Round = maximum message transmission delay
- Phase = n rounds
- Node k does the following
 - If no message received when k-th phase starts, declare itself the leader and send a leader message with its id around the ring
 - If message received before k-th phase starts, record id in message as leader and forward the message
- Message complexity O(n)
- Time complexity O(K), where K is the lowest id in the ring

Leader Election in Arbitrary Networks

• FloodMax

- Synchronous, round-based
- At each round, each process sends the max. id seen so far (not necessarily its own) to all its neighbors
- After diameter no. of rounds, if max. id seen = own id, declares itself leader
- Complexity = O(d.m), where d = diameter of the network, m = no. of edges
- Does not extend to asynchronous model trivially
- Variations of building different types of spanning trees with no pre-specified roots. Chosen root at the end is the leader
 - Will study DFS spanning tree later