
 
 

Basics of Fault Tolerance  



Failure of Systems 

 Failure of a system – when the system deviates from its 
specifications 

 Failure of a system may cause it to fail to provide the service 
it provides 

 A system usually will have many components 
 Fault in some component can lead to errors, which can lead 

to failure of the system 
 Measuring how dependable a system is 
 Reliability 
 Availability 
 Safety 
 

 
 
 



Dependability 
 Reliability 
 How often does the system fail? 
 What is the conditional probability the system will work for the 

duration [0,t] given that it is working at time 0? 
 Measured by: MTTF (Mean Time To Failures), MTTR (Mean Time To 

Repair), MTBF (Mean Time Between Failures = MTTF + MTTR) 

 Availability 
 How available the system is 
 What is the probability that the system is up at time t? 
 Usually measured by uptime (ex. 99%, max. downtime 5 hours in 1 

year etc.) 

 Safety 
 How safe the system is, even if it fails 
 Does it always maintain some safety property? 

 
 



Some Observations 
 A highly reliable system is also highly available 
 A highly available system may or may not be highly reliable 
 Ex: If a system fails for 1 second every hour, it can still be 

considered highly available (99.97%) but not highly reliable 
 The reliability of a system depends on the reliability of the 

components used to build the system 
 Reliability/Availability can be of interest at different 

component levels 
 A memory chip 
 A disk controller with memory 
 A PC with disks 
 A cluster with a large number of PCs 

 
 

 
 



Fault Tolerance 

 The ability of a system to deliver desired services in spite 
of faults in its components 
 Can be full service (specified behavior in fault-free state) 
 Ex: A primary-backup server system to tolerate one server 

failure 
 Or a degraded service (deviate from specified behavior in 

fault free state, but in a pre-defined manner) 
 Ex: A web service with multiple load-balanced servers in the 

backend failing to meet its response time guarantees due to 
one backend server failure, but still giving service with slower 
response time 

 
 

 
 

 
 



 Many modern distributed systems need to be highly 
available 
 Gmail 
 Facebook 
 Airlines/Railway reservation system 
 Many many others…. 

 But they also have very large number of components 
(machines, storage,….) 
 Chance of something failing at any time very high, even if 

individual MTBF is high 
 How to  build such systems in the presence of faults 
 But what are the different ways a system can fail? 

 
 

 
 
 



Classification of Faults 
 Based on component that failed 
 Program/process 
 Processor/machine 
 Memory 
 Link 
 Storage 
 Clock 
 … 

 Too many possibilities 
 But what matters finally is how does the system behave 

when faults happen 
 

 
 
 



 Based on behavior of faulty component 
Crash – just halts  
Failstop – crash with additional conditions  
Omission – fails to perform some steps 
Byzantine – behaves arbitrarily 
Timing – violates timing constraints 
…  



Types of Tolerance 

 Masking – system always behaves as per specifications even 
in presence of faults 

 Non-masking – system may violate specifications in presence 
of faults. Should at least behave in a well-defined manner 

 
 A fault tolerant system should specify 
 Class of faults tolerated (Fault Model) 
 What tolerance is given from each class (Fault Tolerance) 

 



Handling Faults 
 Needs some redundancy 
 Hardware 
 Software 
 Time 
 Information 

 Types of recovery 
 Forward error recovery 
 Backward error recovery 



Some Building Blocks 
 Primitive operations/components that are used as basic tool 

in the design of many fault tolerant systems 
 Building reliable storage from unreliable disks 
 RAID 
 Centralized networked storage 

 Reliable communication in the presence of unreliable links 
 Unicast, multicast, broadcast 

 Agreement/Consensus 
 Enforcing atomic actions across nodes 
 Checkpoint and recovery 

 
 



Agreement Problems 



Agreement Problems 

 A set of n processes, m of which may be faulty 
 Nonfaulty processes need to agree on some value(s) even in 

the presence of the faulty processes 
 One of the most widely studied problem in distributed 

computing 
 Different problem variations studied under different models 



Different Problem Variations 
 Byzantine agreement (or Byzantine Generals problem) 
 One process x  broadcasts a value v 
 All nonfaulty processes must agree on a common value 

(Agreement condition).  
 The agreed upon value must be v if x is nonfaulty (Validity 

condition) 
 Consensus 
 Each process broadcasts its initial value 
 Satisfy agreement condition 
 If initial value of all nonfaulty processes is v, then the agreed 

upon value must be v 
 
 



 Interactive Consistency 
 Each process i broadcasts its own value vi 

 All nonfaulty processes agree on a common vector (v1, 
v2,…,vn) 

 If the ith process is nonfaulty, then the ith value in the 
vector agreed upon by nonfaulty processes must be vi 

 
 

All three problems are equivalent, meaning that solution of 
any one of them can be used to solve the other two 

 



Impossibility Result 
 In the asynchronous model, consensus is impossible to 

achieve even with a single crash failure 
   -  (Fischer, Lynch, Paterson, 985) 

 



Consensus Without Any Fault 
 Completely connected topology 
 Each processor 
 Broadcast its input to all processors 
 Decide on the minimum 

 Only one round 
 Does not work if there is a crash fault 
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Node 0 fails after broadcasting to nodes 1 and 3 
 
1 and 3 decides 0, 2 and 4 decides 1 -  violates Agreement 
Condition 
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Consensus With At Most m Crash 
Faults 

 Synchronous, completely connected, reliable 
communication 

 (m+1) rounds for each node 
 Round 1: 
 Broadcast own value to all other nodes 

 Round 2 to round m +1: 
 Broadcast any new received values 

 At the end of round m +1: 
 Decide on the minimum value received 

 



Key Idea 
 In  m +1 rounds, there is at least a round with no failed 

nodes 
 At the end of this round, all non-faulty  nodes have the 

values at all other non-faulty nodes 
 For a faulty node 
 If it failed before sending its value to any other node, no one 

has its value 
 If it sent to some nodes before failing, at the end of the round 

with no failures, all non-faulty nodes will have its value 
 However, it is not known where that no-failure round is, so 

have to go till m + 1 round 
At least m+1 rounds are necessary to tolerate m crash faults 

by any consensus algorithm (lower bound) 
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Agreement under Byzantine Fault 

 Total n processes, at most m of which can be faulty 
 Synchronous, completely connected, reliable 

communication  
 Known results 
 No solution possible if n < (3m + 1) 
 Needs at least (m+1) rounds of message exchange (lower 

bound result) 

 



Lamport-Shostak-Pease Algorithm 
 Oral messages – messages can be forged/changed in any 

manner, but the receiver always knows the sender 
 Recursively defined algorithm: 
 
OM(m), m > 0 
 Source x broadcasts value to all processes 
 Let vi = value received by process i from source (0 if no 

value received). Process i acts as a new source and initiates 
OM(m -1), sending vi to remaining (n - 2) processes 

 For each i, j, i ≠ j, let vj = value received by process i from 
process j in step 2 using O(m-1). Process i uses the value 
majority(v1, v2, …, vn -1) 



OM(0) 
 Source x broadcasts value to all processes 
 Each process uses the value; if no value received, 0 is used 
 
Time complexity = m+1 rounds 
Message Complexity = O(nm) 
 
You can reduce message complexity to polynomial by increasing 

time 

 



Atomic Commit 



Atomic Actions and Commit 
Protocols 
An action may have multiple subactions executed by different 

processes at different nodes of a distributed system 
Atomic action: either all subactions are done or none are done (all-

or-nothing property/ global atomicity property) as far as system 
state is concerned 

Commit protocols – protocols for enforcing global atomicity 
property 



Two-Phase Commit (2PC) 

 Assumes the presence of write-ahead log at each process to 
recover from local crashes 

 One process acts as coordinator, others are cohorts 
 
Phase 1 (Prepare): 
 Coordinator sends COMMIT_REQUEST to all cohorts 
 Waits for replies from all cohorts 
 On receiving a COMMIT_REQUEST, a cohort, if the local 

transaction is successful, writes Undo/redo logs in stable 
storage, and sends an AGREED message to the coordinator. 
Otherwise, sends an ABORT 



Phase 2 (Commit): 
 If all cohorts reply AGREED, coordinator writes commit 

record into the log, then sends COMMIT to all cohorts. If at 
least one cohort has replied ABORT (or timeout), 
coordinator writes abort record in log and sends ABORT to 
all. Coordinator then waits for ACK from all cohorts. If ACK 
is not received within timeout period, resend. If all ACKs 
are received, coordinator writes complete to log 

 On receiving a COMMIT, a cohort releases all 
resources/locks, and sends an ACK to coordinator 

 On receiving an ABORT, a cohort will undo the transaction 
using Undo log, releases all resources/locks, and sends an 
ACK 
 

 



 Ensures global atomicity (either all processes commit or all of 
them aborts) 

 Resilient to arbitrary no. of crash failures 
 Think of different failure scenarios 
 Coordinator fails at different steps 
 Cohort fails at different steps 
 Their failures are independent, so any no. can fail simultaneously 

 Whenever you think of crash of a process (coordinator or other), 
think also of what happens when it recovers 

 Problem: Two-phase Commit is a blocking protocol 
 Crash of coordinator can block all processes until coordinator 

recovers 
 



 Example of a failure and recovery scenario 
 Failure scenario: suppose all cohorts have replied with 

AGREED in Phase 1, coordinator has written commit record in 
its  log, and then fail after sending zero or more (but not all) 
COMMIT messages 
 The cohorts who get the COMMIT will commit, and reply with 

ACK. Coordinator does not get it as it is still crashed. 
 The cohorts who do not get the COMMIT are blocked until 

coordinator recovers 

 Recovery:  The coordinator recovers after some time 
 The coordinator checks its log, sees the commit record and 

thereby knows that all cohorts must have replied AGREED 
 It does not see the complete record in log, so knows all ACKs have 

not been received before crash 
 Sends COMMIT to all cohorts again. Cohorts take action as in 

protocol and two-phase commit completes if no further crash. 

 



Non-Blocking Commit Protocols 
 Three-phase Commit (3PC) 
 Assumptions 
 No network partitioning 
 Less than K processes can fail at any time  
 At least one process stays up at all time 

 Drawbacks:   
 Higher overheads 
 Assumptions may not be satisfied in practice 

 Hardly used in practice 

 Two-Phase Commit used widely in practice as probability of 
blocking is low in practical systems 

 



Checkpointing & Recovery 



Checkpointing & Rollback 
Recovery 

 Forward error recovery – assess damage due to faults 
exactly and repair the erroneous part of the system state 
 Less overhead but hard to assess effect of faults exactly in 

general 
 

 Backward error recovery – on a fault, restore system state to 
a previous known error-free state and restart from there  
 Costlier, but more general 

 
 



Checkpoint and Rollback Recovery – a form of backward 
error recovery 

Checkpoint :  
 Local checkpoint – local state of a process saved in stable 

storage for possible rollback on a fault 
 Global checkpoint – collection of local checkpoints, one 

from each process 
Consistent and Strongly Consistent Global Checkpoint – 

similar to consistent and strongly consistent global state 
respectively (Also called “recovery line”) 

Main Idea: On recovery after failure, restart the system from 
an earlier consistent state 

Widely used for long running computational tasks 
 
 



Orphan message – a message whose receive is recorded in some 
local checkpoint of a global checkpoint but send is not recorded 
in any local checkpoint in that global checkpoint ( Note : A 
consistent global checkpoint cannot have an orphan message) 

Lost message – a message whose send is recorded but receive is not 
in a global checkpoint 

Are lost messages a problem?? 
 Not if unreliable channels assumed (since messages can be lost 

anyway) 
 If reliable channels assumed, need to handle this properly! 

Cannot lose messages ! 
 



Performance Measures 

 During fault-free operation 
 Checkpointing time 
 Space for storing checkpoints and messages (if needed) 

 In case of a fault 
 Recovery time (time to establish recovery line) 
 Extent of rollback (how far in the past did we roll back? how 

much computation is lost?) 
  Is output commit problem handled? (if an output was sent out 

before the fault, say cash dispensed at a teller m/c, it should 
not be resent after restarting after the fault) 



Some Parameters that Affect 
Performance 

 Checkpoint interval (time between two successive 
checkpoints) 

 Number of processes 
 Communication pattern of the application 
 Fault frequency 
 Nature of stable storage 

 



Classification 

 Asynchronous/Uncoordinated 
 Every process takes local checkpoint independently 
 To recover from a fault in one process, all processes coordinate 

to find a consistent global checkpoint from their local 
checkpoints 

 Very low fault-free overhead, recovery overhead is high 
 Domino effect possible (no consistent global checkpoint exist, 

so all processes have to restart from scratch) 
 Higher space requirements, as all local checkpoints need to be 

kept 
 Good for systems where fault is rare and inter-process 

communication is not too high (less chance of domino effect) 



 Synchronous/Coordinated 
 All processes coordinate to take a consistent global checkpoint 
 During recovery, every process just rolls back to its last local 

checkpoint independently 
 Low recovery overhead, but high checkpointing overhead 
 No domino effect possible 
 Low space requirement, since only last checkpoint needs to be 

stored at each process 



 Communication Induced 
 Synchronize checkpointing with communication, since 

message send/receive is the fundamental cause of 
inconsistency in global checkpoint 

 Ex. : take local checkpoint right after every send! Last local 
checkpoint at each process is always consistent. But too costly 

 Many variations are there, more efficient than the above. 



 Message logging 
 Take coordinated or uncoordinated checkpoint, and then log 

(in stable storage) all messages received since the last 
checkpoint 

 On recovery, only the recovering process goes back to its last 
checkpoint, and then replays messages from the log 
appropriately until it reaches the state right before the fault 

 Only class that can handle output commit problem! 
 
 



Some Checkpointing & Recovery 
Algorithms 
 A large number of algorithms exist for each of the classes 
 We will look at one synchronous algorithm from text 
 See Koo-Toueg’s algorithm 
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