

Basics of Fault Tolerance

Failure of Systems

 Failure of a system – when the system deviates from its
specifications

 Failure of a system may cause it to fail to provide the service
it provides

 A system usually will have many components
 Fault in some component can lead to errors, which can lead

to failure of the system
 Measuring how dependable a system is
 Reliability
 Availability
 Safety

Dependability
 Reliability
 How often does the system fail?
 What is the conditional probability the system will work for the

duration [0,t] given that it is working at time 0?
 Measured by: MTTF (Mean Time To Failures), MTTR (Mean Time To

Repair), MTBF (Mean Time Between Failures = MTTF + MTTR)

 Availability
 How available the system is
 What is the probability that the system is up at time t?
 Usually measured by uptime (ex. 99%, max. downtime 5 hours in 1

year etc.)

 Safety
 How safe the system is, even if it fails
 Does it always maintain some safety property?

Some Observations
 A highly reliable system is also highly available
 A highly available system may or may not be highly reliable
 Ex: If a system fails for 1 second every hour, it can still be

considered highly available (99.97%) but not highly reliable
 The reliability of a system depends on the reliability of the

components used to build the system
 Reliability/Availability can be of interest at different

component levels
 A memory chip
 A disk controller with memory
 A PC with disks
 A cluster with a large number of PCs

Fault Tolerance

 The ability of a system to deliver desired services in spite
of faults in its components
 Can be full service (specified behavior in fault-free state)
 Ex: A primary-backup server system to tolerate one server

failure
 Or a degraded service (deviate from specified behavior in

fault free state, but in a pre-defined manner)
 Ex: A web service with multiple load-balanced servers in the

backend failing to meet its response time guarantees due to
one backend server failure, but still giving service with slower
response time

 Many modern distributed systems need to be highly
available
 Gmail
 Facebook
 Airlines/Railway reservation system
 Many many others….

 But they also have very large number of components
(machines, storage,….)
 Chance of something failing at any time very high, even if

individual MTBF is high
 How to build such systems in the presence of faults
 But what are the different ways a system can fail?

Classification of Faults
 Based on component that failed
 Program/process
 Processor/machine
 Memory
 Link
 Storage
 Clock
 …

 Too many possibilities
 But what matters finally is how does the system behave

when faults happen

 Based on behavior of faulty component
Crash – just halts
Failstop – crash with additional conditions
Omission – fails to perform some steps
Byzantine – behaves arbitrarily
Timing – violates timing constraints
…

Types of Tolerance

 Masking – system always behaves as per specifications even
in presence of faults

 Non-masking – system may violate specifications in presence
of faults. Should at least behave in a well-defined manner

 A fault tolerant system should specify
 Class of faults tolerated (Fault Model)
 What tolerance is given from each class (Fault Tolerance)

Handling Faults
 Needs some redundancy
 Hardware
 Software
 Time
 Information

 Types of recovery
 Forward error recovery
 Backward error recovery

Some Building Blocks
 Primitive operations/components that are used as basic tool

in the design of many fault tolerant systems
 Building reliable storage from unreliable disks
 RAID
 Centralized networked storage

 Reliable communication in the presence of unreliable links
 Unicast, multicast, broadcast

 Agreement/Consensus
 Enforcing atomic actions across nodes
 Checkpoint and recovery

Agreement Problems

Agreement Problems

 A set of n processes, m of which may be faulty
 Nonfaulty processes need to agree on some value(s) even in

the presence of the faulty processes
 One of the most widely studied problem in distributed

computing
 Different problem variations studied under different models

Different Problem Variations
 Byzantine agreement (or Byzantine Generals problem)
 One process x broadcasts a value v
 All nonfaulty processes must agree on a common value

(Agreement condition).
 The agreed upon value must be v if x is nonfaulty (Validity

condition)
 Consensus
 Each process broadcasts its initial value
 Satisfy agreement condition
 If initial value of all nonfaulty processes is v, then the agreed

upon value must be v

 Interactive Consistency
 Each process i broadcasts its own value vi

 All nonfaulty processes agree on a common vector (v1,
v2,…,vn)

 If the ith process is nonfaulty, then the ith value in the
vector agreed upon by nonfaulty processes must be vi

All three problems are equivalent, meaning that solution of
any one of them can be used to solve the other two

Impossibility Result
 In the asynchronous model, consensus is impossible to

achieve even with a single crash failure
 - (Fischer, Lynch, Paterson, 985)

Consensus Without Any Fault
 Completely connected topology
 Each processor
 Broadcast its input to all processors
 Decide on the minimum

 Only one round
 Does not work if there is a crash fault

18

Node 0 fails after broadcasting to nodes 1 and 3

1 and 3 decides 0, 2 and 4 decides 1 - violates Agreement
Condition

0

1

2 3

4

fail

0
0

Consensus With At Most m Crash
Faults

 Synchronous, completely connected, reliable
communication

 (m+1) rounds for each node
 Round 1:
 Broadcast own value to all other nodes

 Round 2 to round m +1:
 Broadcast any new received values

 At the end of round m +1:
 Decide on the minimum value received

Key Idea
 In m +1 rounds, there is at least a round with no failed

nodes
 At the end of this round, all non-faulty nodes have the

values at all other non-faulty nodes
 For a faulty node
 If it failed before sending its value to any other node, no one

has its value
 If it sent to some nodes before failing, at the end of the round

with no failures, all non-faulty nodes will have its value
 However, it is not known where that no-failure round is, so

have to go till m + 1 round
At least m+1 rounds are necessary to tolerate m crash faults

by any consensus algorithm (lower bound)

21

:

5 failures,
6 rounds

1 2

No failure in round 5

3 4 5 6 Round

Agreement under Byzantine Fault

 Total n processes, at most m of which can be faulty
 Synchronous, completely connected, reliable

communication
 Known results
 No solution possible if n < (3m + 1)
 Needs at least (m+1) rounds of message exchange (lower

bound result)

Lamport-Shostak-Pease Algorithm
 Oral messages – messages can be forged/changed in any

manner, but the receiver always knows the sender
 Recursively defined algorithm:

OM(m), m > 0
 Source x broadcasts value to all processes
 Let vi = value received by process i from source (0 if no

value received). Process i acts as a new source and initiates
OM(m -1), sending vi to remaining (n - 2) processes

 For each i, j, i ≠ j, let vj = value received by process i from
process j in step 2 using O(m-1). Process i uses the value
majority(v1, v2, …, vn -1)

OM(0)
 Source x broadcasts value to all processes
 Each process uses the value; if no value received, 0 is used

Time complexity = m+1 rounds
Message Complexity = O(nm)

You can reduce message complexity to polynomial by increasing

time

Atomic Commit

Atomic Actions and Commit
Protocols
An action may have multiple subactions executed by different

processes at different nodes of a distributed system
Atomic action: either all subactions are done or none are done (all-

or-nothing property/ global atomicity property) as far as system
state is concerned

Commit protocols – protocols for enforcing global atomicity
property

Two-Phase Commit (2PC)

 Assumes the presence of write-ahead log at each process to
recover from local crashes

 One process acts as coordinator, others are cohorts

Phase 1 (Prepare):
 Coordinator sends COMMIT_REQUEST to all cohorts
 Waits for replies from all cohorts
 On receiving a COMMIT_REQUEST, a cohort, if the local

transaction is successful, writes Undo/redo logs in stable
storage, and sends an AGREED message to the coordinator.
Otherwise, sends an ABORT

Phase 2 (Commit):
 If all cohorts reply AGREED, coordinator writes commit

record into the log, then sends COMMIT to all cohorts. If at
least one cohort has replied ABORT (or timeout),
coordinator writes abort record in log and sends ABORT to
all. Coordinator then waits for ACK from all cohorts. If ACK
is not received within timeout period, resend. If all ACKs
are received, coordinator writes complete to log

 On receiving a COMMIT, a cohort releases all
resources/locks, and sends an ACK to coordinator

 On receiving an ABORT, a cohort will undo the transaction
using Undo log, releases all resources/locks, and sends an
ACK

 Ensures global atomicity (either all processes commit or all of
them aborts)

 Resilient to arbitrary no. of crash failures
 Think of different failure scenarios
 Coordinator fails at different steps
 Cohort fails at different steps
 Their failures are independent, so any no. can fail simultaneously

 Whenever you think of crash of a process (coordinator or other),
think also of what happens when it recovers

 Problem: Two-phase Commit is a blocking protocol
 Crash of coordinator can block all processes until coordinator

recovers

 Example of a failure and recovery scenario
 Failure scenario: suppose all cohorts have replied with

AGREED in Phase 1, coordinator has written commit record in
its log, and then fail after sending zero or more (but not all)
COMMIT messages
 The cohorts who get the COMMIT will commit, and reply with

ACK. Coordinator does not get it as it is still crashed.
 The cohorts who do not get the COMMIT are blocked until

coordinator recovers

 Recovery: The coordinator recovers after some time
 The coordinator checks its log, sees the commit record and

thereby knows that all cohorts must have replied AGREED
 It does not see the complete record in log, so knows all ACKs have

not been received before crash
 Sends COMMIT to all cohorts again. Cohorts take action as in

protocol and two-phase commit completes if no further crash.

Non-Blocking Commit Protocols
 Three-phase Commit (3PC)
 Assumptions
 No network partitioning
 Less than K processes can fail at any time
 At least one process stays up at all time

 Drawbacks:
 Higher overheads
 Assumptions may not be satisfied in practice

 Hardly used in practice

 Two-Phase Commit used widely in practice as probability of
blocking is low in practical systems

Checkpointing & Recovery

Checkpointing & Rollback
Recovery

 Forward error recovery – assess damage due to faults
exactly and repair the erroneous part of the system state
 Less overhead but hard to assess effect of faults exactly in

general

 Backward error recovery – on a fault, restore system state to
a previous known error-free state and restart from there
 Costlier, but more general

Checkpoint and Rollback Recovery – a form of backward
error recovery

Checkpoint :
 Local checkpoint – local state of a process saved in stable

storage for possible rollback on a fault
 Global checkpoint – collection of local checkpoints, one

from each process
Consistent and Strongly Consistent Global Checkpoint –

similar to consistent and strongly consistent global state
respectively (Also called “recovery line”)

Main Idea: On recovery after failure, restart the system from
an earlier consistent state

Widely used for long running computational tasks

Orphan message – a message whose receive is recorded in some
local checkpoint of a global checkpoint but send is not recorded
in any local checkpoint in that global checkpoint (Note : A
consistent global checkpoint cannot have an orphan message)

Lost message – a message whose send is recorded but receive is not
in a global checkpoint

Are lost messages a problem??
 Not if unreliable channels assumed (since messages can be lost

anyway)
 If reliable channels assumed, need to handle this properly!

Cannot lose messages !

Performance Measures

 During fault-free operation
 Checkpointing time
 Space for storing checkpoints and messages (if needed)

 In case of a fault
 Recovery time (time to establish recovery line)
 Extent of rollback (how far in the past did we roll back? how

much computation is lost?)
 Is output commit problem handled? (if an output was sent out

before the fault, say cash dispensed at a teller m/c, it should
not be resent after restarting after the fault)

Some Parameters that Affect
Performance

 Checkpoint interval (time between two successive
checkpoints)

 Number of processes
 Communication pattern of the application
 Fault frequency
 Nature of stable storage

Classification

 Asynchronous/Uncoordinated
 Every process takes local checkpoint independently
 To recover from a fault in one process, all processes coordinate

to find a consistent global checkpoint from their local
checkpoints

 Very low fault-free overhead, recovery overhead is high
 Domino effect possible (no consistent global checkpoint exist,

so all processes have to restart from scratch)
 Higher space requirements, as all local checkpoints need to be

kept
 Good for systems where fault is rare and inter-process

communication is not too high (less chance of domino effect)

 Synchronous/Coordinated
 All processes coordinate to take a consistent global checkpoint
 During recovery, every process just rolls back to its last local

checkpoint independently
 Low recovery overhead, but high checkpointing overhead
 No domino effect possible
 Low space requirement, since only last checkpoint needs to be

stored at each process

 Communication Induced
 Synchronize checkpointing with communication, since

message send/receive is the fundamental cause of
inconsistency in global checkpoint

 Ex. : take local checkpoint right after every send! Last local
checkpoint at each process is always consistent. But too costly

 Many variations are there, more efficient than the above.

 Message logging
 Take coordinated or uncoordinated checkpoint, and then log

(in stable storage) all messages received since the last
checkpoint

 On recovery, only the recovering process goes back to its last
checkpoint, and then replays messages from the log
appropriately until it reaches the state right before the fault

 Only class that can handle output commit problem!

Some Checkpointing & Recovery
Algorithms
 A large number of algorithms exist for each of the classes
 We will look at one synchronous algorithm from text
 See Koo-Toueg’s algorithm

	Slide Number 1
	Failure of Systems
	Dependability
	Some Observations
	Fault Tolerance
	Slide Number 6
	Classification of Faults
	Slide Number 8
	Types of Tolerance
	Handling Faults
	Some Building Blocks
	Agreement Problems
	Agreement Problems
	Different Problem Variations
	Slide Number 15
	Impossibility Result
	Consensus Without Any Fault
	Slide Number 18
	Consensus With At Most m Crash Faults
	Key Idea
	Slide Number 21
	Agreement under Byzantine Fault
	Lamport-Shostak-Pease Algorithm
	Slide Number 24
	Atomic Commit
	Atomic Actions and Commit Protocols
	Two-Phase Commit (2PC)
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Non-Blocking Commit Protocols
	Checkpointing & Recovery
	Checkpointing & Rollback Recovery
	Slide Number 34
	Slide Number 35
	Performance Measures
	Some Parameters that Affect Performance
	Classification
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Some Checkpointing & Recovery Algorithms

