
Handling Deadlock 



Handling Deadlock 
Issues: 
 
 Reusable vs. consumable resources 
 Resource vs. communication deadlock 
 AND vs OR deadlock 
 Wait-For graphs (WFG) 
 Prevention, Avoidance, Detection?? 
 Resolution?? 
 



Deadlock Detection Strategies 
Requirements: 
 No undetected deadlocks 
 No “false” or “phantom” deadlocks 
 Detecting a deadlock even when there is none present 

in the system 
Strategies: 
 Centralized 
 Distributed 
 Path-pushing vs. Edge-chasing algorithms 

 Hierarchical 



A Simple Centralized Algorithm 
(Ho-Ramamoorthy) 
 Each node has a status table, contains status (resources 

locked and resources waited on) of all processes at that 
node 

 A central site periodically collects the status table from all 
nodes, constructs the WFG and checks for cycles 

 If no cycle detected, no deadlock 
 If cycle detected, status from all nodes requested again 

and WFG constructed using ONLY information common 
both times. If the same cycle is detected again, deadlock 
is declared. 

 Does NOT work!! Why?? 
 Can you make it work with additional information? 

 



Chandy-Misra-Haas Algorithm 
for AND Deadlocks 
 Distributed control  
 An “Edge-Chasing” algorithm 
 Uses a special probe message of the form (i, j, k) 

where: 
  pi : process originally initiating deadlock detection 
 pj : current sender 
 pk : destination/receiver  

 A process pi is dependant on another process pj if 
there exists a path from pi to pj in the WFG 

 If pi and pj are in the same node, pi is locally 
dependent on pj 

 
 



 Main Idea: 
 A blocked process pi initiates detection by sending 

probes to all processes pk at another node on which it 
is dependent (directly or indirectly) 

 A process receiving a probe (i, j, k) forwards it to all 
processes it is waiting for after changing the j and k 
fields appropriately, i remains unchanged.  

 Thus the probe message travels across the edges of 
the WFG; if it comes back to the initiator, WFG has a 
cycle and we have a deadlock. 

 Each process maintains an array dependenti: 
dependenti(j) is true if Pi knows that Pj is dependent 
on it. (initially set to false for all i & j). 
 

 
 



7 

The Algorithm 
Sending the probe (from Pi) : 
 if Pi is locally dependent on itself then deadlock. 
 else for all Pj and Pk such that 
     (a)  Pi is locally dependent upon Pj, and 
     (b)  Pj is waiting on Pk, and 
     (c ) Pj and Pk are on different sites, send probe(i,j,k)  
           to the home site of Pk. 
 
Receiving the probe (i, j, k) at Pk : 
 if (d) Pk is blocked, and 
     (e) dependentk(i) is false, and 
     (f) Pk has not replied to all requests of Pj, 
 then begin 
       dependentk(i) := true; 
  if k = i then Pi is deadlocked 
  else ... 



8 

Receiving the probe (contd.): 
 ……. 
  else for all Pm and Pn such that 
       (a’)  Pk is locally dependent upon Pm, and 
       (b’)  Pm is waiting on Pn, and 
       (c’)  Pm and Pn are on different sites,  
                                      send probe(i,m,n) to the home site of Pn. 
             end. 
 



0 is locally 
dependent upon 1 

2 is remotely 
dependent upon 3 

Example 

0 1 2 3 
4 

5 

6 

7 

8 

Machine 0 Machine 1 Machine 2 

(0,8,0) 

(0,2,3) 

(0,4,6) 

(0,5,7) 


	Handling Deadlock
	Handling Deadlock
	Deadlock Detection Strategies
	A Simple Centralized Algorithm (Ho-Ramamoorthy)
	Chandy-Misra-Haas Algorithm for AND Deadlocks
	Slide Number 6
	The Algorithm
	Slide Number 8
	Example

