
Multimodal Video Description

Vasili Ramanishka
UMass Lowell

vramanis@cs.uml.edu

Abir Das
UMass Lowell

adas@cs.uml.edu

Dong Huk Park
UC Berkeley

dong.huk.park@berkeley.edu

Subhashini Venugopalan
University of Texas Austin
vsubhashini@utexas.edu

Lisa Anne Hendricks
UC Berkeley

lisa_anne@berkeley.edu

Marcus Rohrbach
UC Berkeley

rohrbach@berkeley.edu

Kate Saenko
UMass Lowell

saenko@cs.uml.edu

ABSTRACT
Real-world web videos often contain cues to supplement vi-
sual information for generating natural language descrip-
tions. In this paper we propose a sequence-to-sequence model
which explores such auxiliary information. In particular, au-
dio and the topic of the video are used in addition to the
visual information in a multimodal framework to generate
coherent descriptions of videos “in the wild”. In contrast
to current encoder-decoder based models which exploit vi-
sual information only during the encoding stage, our model
fuses multiple sources of information judiciously, showing
improvement over using the different modalities separately.
We based our multimodal video description network on the
state-of-the-art sequence to sequence video to text (S2VT) [26]
model and extended it to take advantage of multiple modal-
ities. Extensive experiments on the challenging MSR-VTT
dataset are carried out to show the superior performance of
the proposed approach on natural videos found in the web.

1. INTRODUCTION
Understanding a visual scene and expressing it in terms

of natural language descriptions has drawn considerable in-
terest from both computer vision and natural language pro-
cessing communities. Early works on visual description have
mostly focused on describing still images [6, 14, 15, 28].
Early efforts to generate automated video descriptions were
based on a two stage pipeline which first identifies the se-
mantic visual concepts and then stitches them in a “subject,
verb, object” template [5, 8, 13, 22]. Though a template
based approach separates the concept identification and de-
scription generation tasks, such templates are insufficient in
modeling the richness of the language as generally found in
human generated descriptions of videos or scenes.

Our model is based on the S2VT [26] model for generat-
ing natural language descriptions from videos. S2VT is an
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encoder-decoder based framework which maps a sequence
of frames to a sequence of words. For an input sequence
of video frames, the encoder first converts the video frames
into a sequence of high-level feature descriptors and then
encodes them into a sequence of hidden state vectors using
a Long Short Term Memory (LSTM) network [11]. Once
all frames are encoded, the decoder generates a sentence by
first using the final encoded state as the input to the decoder
and then by feeding back the generated words at each step
to the decoder LSTM until the sentence is complete.

An encoder-decoder framework allows both the input and
the output to be of variable length and has shown promi-
nence in a related task - machine translation [2, 21]. How-
ever, machine translation tasks need not consider input and
output from different modalities as they only deal with text.
S2VT does handle two different modalities with the input
being a sequence of frames and the output being sequence
of words, but it is limited in the sense that both the input
and the output, individually, explore information from sin-
gle a modality only. Specifically, the input modality is visual
while the output modality is textual.

With an eye to explore additional information that is often
available with the web videos, such as audio and broad topic
(category) of the videos, we have extended the S2VT frame-
work to a multimodal video description framework denoted
as the “MMVD”. This framework supplements the visual in-
formation with audio and textual features (derived from the
video category information). Such input from three different
modalities (visual, audio and textual) enables the generated
description to be nearly as complex and rich as human gen-
erated descriptions are. In addition, we show that employing
a committee of models where each model is an expert in de-
scribing videos from a specific category is advantageous than
a single model trying to describe videos from multiple cate-
gories. We have also simplified the S2VT model by using a
single layer LSTM for both encoding and decoding.

The performance of the proposed approach is validated us-
ing a publicly available benchmark dataset (MSR-VTT [27])
of web videos which comes with several challenges including
diverse content and diverse as well as noisy descriptions.

2. APPROACH
As our model builds on the S2VT model [26], we first

describe this model briefly and then describe our approach.
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Figure 1: Proposed MMVD approach exploits different modalities
of the video, which are first encoded using an LSTM, and then
decoded to predict a sentence description. To truly understand
the video we propose to rely on static frame features, 3D temporal
features across frames, audio, and the video domain or category.

2.1 S2VT video description framework
The S2VT model reads a sequence of input frames (x1, x2,

..., xn), encodes each frame to a fixed dimensional vector rep-
resentation, and then decodes this vector to a sequence of
output words (y1, y2, ..., ym). S2VT uses LSTM [11] units for
modeling long-range temporal dependencies in sequences.
LSTMs encode the input sequence in their hidden represen-
tations (hn) and then decode the output sequence from this
representation. In the encoding phase, an LSTM computes
a sequence of hidden states (h1, h2, ..., hn) from the input se-
quence (x1, x2, ..., xn). During decoding, the model defines
the joint probability over the output sequence (y1, y2, ..., ym)
as a product of the conditionals as

∏m
t=1 p(yt|hn+t−1, yt−1),

where the conditional probability of each output word yt is
obtained by a softmax over all the words in the vocabulary.
The model is trained end-to-end using standard backprop-
agation techniques where the following log-likelihood of the
predicted words is maximized for the model parameters θ,
where θ denotes all trainable weights and biases.

θ∗ = arg max
θ

m∑
t=1

log p(yt|hn+t−1, yt−1; θ) (1)

After encoding the frames, the <BOS> (beginning-of-
sentence) tag is fed to the LSTM while an <EOS> (end-
of-sentence) tag terminates each sentence. During decoding
at training time, the input to the LSTM is the embedded
representations of the ground truth words while at test time,
the word with the maximum probability after the softmax
is input to the LSTM until <EOS> token is emitted.

2.2 MMVD model
Our approach MMVD (Multimodal Video Description)

extends S2VT [26] to exploit additional multimodal features
and is implemented in TensorFlow [1]. Additionally, in-

stead of using a stack of two LSTM layers like S2VT, we
use a single layer of LSTMs which not only simplifies the
model but also reduces the memory requirement consider-
ably, thus allowing us to incorporate many additional fea-
tures. A schematic of the MMVD model is shown in Fig. 1.

2.2.1 Multimodal input features
Specifically, MMVD incorporates the following features

from different modalities to generate the descriptor for the
sequence of input frames from each video.
Object recognition features: The deep CNN models ap-
plied to image classification and detection tasks (ImageNet)
provide a strong visual representation of objects and scenes
depicted in the video frames. We used the state-of-the-art
ResNet [9] (winner of ILSVRC 2015) features which uses
special skip connections and features a heavy use of batch
normalization. Transferring knowledge from convnets pre-
trained on 1.2M+ images with 1000 category labels helps
create open ended descriptions of videos in the wild with
large vocabularies. We use 2048 dimensional features from
the global average pooling (pool5) layer after the last con-
voluational layer of ResNet.
Action recognition features: Though ResNet CNN fea-
tures efficiently capture different visual concepts in static
frames, they lack dynamic features that can capture move-
ment/motion in videos. A simple yet effective approach
to learn temporal dynamics in videos was proposed by ex-
tending a 2-D convnet to a deep 3-D convolutional network
(C3D) [23]. Unlike S2VT where optical flow features are
used to model motion patterns of activity, the use of C3D
features in MMVD allows it to learn relevant motion infor-
mation from videos in an end-to-end fashion. In our ex-
periments, C3D features from the fc-6 layer of the model
pre-trained on Sport1M [12] were used.
Video category information: In our ablation studies, we
show that the category or domain of a video (e.g., sports,
cooking, music etc.) carries a lot of information for gener-
ating a proper description of the video. As shown in section
3.3, the background knowledge about the videos in form of
their category information helps to discern between videos
which have only fine-grained visual differences. We use the
category labels supplied with the MSR-VTT video clips as
an additional feature descriptor and show that the video
domain information can be an useful resource for natural
language video description.
Audio features: Although audio tracks associated with
the web videos can be useful for generating descriptions of
such videos, this information has, traditionally, not been
used to effect. Towards this objective, we used the popular
audio feature - Mel Frequency Cepstral Coefficients which
have been used widely in various audio processing tasks such
as automatic speech recognition, music transcription, and
environment classification [4, 10, 17]. Feature extraction
was performed with pyAudioAnalysis [7] for evenly sampled
1 second audio segments aligned with corresponding video
frames sampled for object recognition features. Actual audio
descriptors were represented by average value and standard
deviation of 34 audio features (including 13 MFCCs).

We embed the features from various modalities to a lower
dimensional space, where the parameters of the embedding
are learned jointly with the description task. Then we con-
catenate the different embedded features for every time step
to create a single feature vector as input to the LSTM.
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We also trained models specifically for each video cate-
gory. For this, a base model is trained on the whole training
data by using the combined features as described above.
Then the different “expert” models are obtained by finetun-
ing the base model with paired video-caption data from spe-
cific categories only. During inference every “expert” is used
to produce descriptions for the corresponding category (the
category is provided with the video at test time).

2.2.2 Model details
Our model starts by sampling 26 uniformly spaced frames

from each video clip. The ResNet and C3D features features
are extracted from these 26 frames as the anchor frames.
Similarly, audio features are also extracted from one second
clips starting with these anchor frames. For category label
features, we used one-hot representations of the possible 20
category labels. Though S2VT allows variable length in-
put, to reduce computation we experimented with a fixed
number of frames sampled uniformly. The performance dif-
ference turned out to be negligible with significantly lower
computation overhead.

The increase in the number of input modalities comes with
the cost of increased memory and computational require-
ments as the total dimensionality of the input to the system
increases with the number of different features. As a result,
we reduce the dimensionality of each feature by passing them
through embedding layers (trainable fully connected layers
with no activation function). The embedded features are
concatenated and passed in as input to the LSTM. The en-
coder and decoder LSTMs share the same weights. No pre-
processing of the text data was done. We used a vocabulary
of size 23,667 (of which 13,627 tokens have 2 or more oc-
currences). The LSTM hidden state size was 512. To avoid
overfitting, we apply dropout with a rate of 0.5, which has
been shown to be beneficial in video description [20]. The
model was optimized by the Adam optimizer with initial
learning rate of 5× 10−4 in batches of size 100.

Some of the hyperparameters are motivated by the prop-
erties of the MSR-VTT dataset with a goal to simplify the
final model. For example, the strategy to sample 26 uni-
formly spaced frames was chosen as this number made sure
that events in videos from the dataset are not underrepre-
sented by the sampling strategy.

3. EXPERIMENTS
In this section we first describe the dataset and discuss

its challenges. Then we detail the evaluation protocol and
analyze the experimental evaluation.

3.1 Dataset
In this work, we train and evaluate our models on the

MSR-VTT dataset [27]. MSR-VTT is a large-scale dataset
collected for the task of describing videos with natural lan-
guage. The dataset provides 41.2 hours of web videos as
10,000 clips covering diverse visual contents in 20 broad cat-
egories or domains. Each clip is annotated with 20 natural
language descriptions produced by AMT workers. In ad-
dition to “in the wild” nature of the videos, an interesting
characteristic of this dataset is the presence of audio. The
audio information is complimentary to the visual features
and our method takes advantage of it as the human annota-
tors also based their descriptions not only on the video but
also on the accompanying sound.

ResNet C3D

cooking food autos sports movie kids

Figure 2: Feature embedding visualizations of visual descriptors
on MSR-VTT using t-SNE. It should be noted that semantically
close categories like ‘food/drinks’ and ‘cooking’ form a common
cluster while generic category like ‘movie’ has large diversity.
Each clip is visualized as a point and clips belonging to same
category have same color. While for semantically different cate-
gories the visual features may be efficient they may not be efficient
in generating specific descriptions for visually similar categories.

3.2 Challenges of the data
During our experiments we observed several additional

challenges in the dataset. These include noisy text data,
high variation in video and sentence length, unavailable au-
dio streams etc. as described next.
• Though the total vocabulary size of all the sentences in

the training split is 23,667, a total of 10,040 words ap-
pear only once. In addition, a comparison with the 400K
length vocabulary (based on Wikipedia 2014 + Gigaword
5) used for training a Glove [19] embedding, revealed that
836 words out of 23,667 words are out of vocabulary yet
they appear in the dataset multiple times (at least twice).
These primarily contain misspelled words like ‘backetball’
or ‘peson’. Such noisy captions add to the challenge of
learning a good language model for this dataset.
• As described in section 2.2.1 and as will be shown later,

audio features are useful in generating descriptions for “in
the wild” videos. However, around 12.5 % of the videos in
this dataset do not contain audio and the absence of this
useful information makes the task more challenging.
• We also noticed that 95% of the sentences are shorter than

17 tokens (or words) and 95% of video clips in dataset are
shorter that 26 seconds. Such clip duration is another
motivation to choose 26 anchor frames for each video as
this makes sure that the majority of the videos are not
under-represented as a result of sampling.
• We also studied the semantic separability of the video clips

using the visual descriptors (ResNet and C3D). Fig. 2 vi-
sualizes the feature embedding on training and validation
clips. We extracted both features from the 26 frames for
all training and validation clips. From each clip, the fea-
tures are mean-pooled across the frames and are projected
on 2-dimensional space using t-SNE [24]. The generally
intermingled clusters indicate the diversity between the
clips along with strong intra category variation. Fig. 2
shows that these visual descriptors may not be a good
candidate for describing semantically similar categories of
videos (e.g., ‘food’ and ‘cooking’) or a generic category
like ‘movie’. In such cases, audio or topic information of
the video become handy to get human like descriptions.

3.3 Results and discussion
We experimented with different modalities individually

and with several combinations of them. Table 1 provides the
performance of the model on the MSR-VTT validation data
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autos

RN: A man is driving a car

RN+categories: A man is driving a car

RN+all: A cartoon character is flying a helicopter

Committee: A person is playing a video game

howto

A woman is putting makeup on her face

A girl is applying makeup

A woman is talking about a product

A woman is showing how to apply makeup

Figure 3: Examples of sentences produced by the proposed
ResNet, ResNet+categories, ResNet+all modalities, and the
Committee of experts models. Each video clip is represented by
four frames with category label shown in top-left.

after training on the training split. Quantitave evaluation of
the model is done using 4 different metrics - BLEU@4 [18],
METEOR [3], CIDEr [25] and ROUGE-L [16]. We adopted
an early stopping criterion and stopped the training when
the model starts to overfit (roughly 10 epochs for all the
different trials). The best model was chosen by first normal-
izing all 4 scores on validation data and then selecting the
model which gives the highest sum of scores.

The first two rows in the table show that the model per-
formance is pretty low when only category or audio infor-
mation is used. This is reasonable as the description is gen-
erated without using any visual information. The next two
rows show the performance of the model with visual fea-
ture descriptors. These two features give a significant boost
in terms of all 4 metrics. However, the slightly better per-
formance of ResNet descriptors compared to the C3D can
possibly be attributed to greater depth and use of skip con-
nections in state-of-the-art ResNet. Moreover, the data on
which the two feature descriptors were pretrained are sig-
nificantly different. The ImageNet data (in case of ResNet)
comes with images from more than 1000 diverse categories
while the Sport1M data (in case of C3D) contains sports
related videos only, resulting in ResNet serving as a better
descriptor for “in the wild” videos seen in MSR-VTT.

The next 3 rows show the performance when the respec-
tive features are added in order. Thus ‘+C3D’ implies the
use of both ResNet and C3D features. Similarly, ‘+cate-
gories’ means the use of three features (ResNet, C3D and
category information) simultaneously and so on. We see
that the use of C3D features and category information does
not change the performance much in terms of BLEU@4,
METEOR or ROUGE-L. However, the CIDEr score gets
continually improved with the addition of these features.
While METEOR compares exact token matches, stemmed
tokens, paraphrase matches and WordNet synonyms based
semantic matches, BLEU@4 tries to give more weight to
human-like grammatically correct sentences. On the other
hand, CIDEr measures similarity of a generated sentence
to reference sentences by counting TF-IDF weighted com-
mon n-grams. Consequently, this metric rewards sentences
for generating n-grams of uncommon words and is a good fit
for measuring the quality of the generated sentences where a
diverse set of reference sentences for the videos are available
as is the case with MSR-VTT. The performance is boosted
in terms of all the metrics by the incorporation of audio

Table 1: Performance comparison for various feature descriptors
on the validation set. +C3D, +categories, +audio were added in
this order to ResNet model. Thus +audio line shows results for
all modalities. “Committee” refers to the “committee of experts”.

Descriptors BLEU@4 METEOR CIDEr ROUGE-L
categories 0.298 0.228 0.236 0.548
audio 0.301 0.222 0.184 0.544
C3D 0.374 0.264 0.389 0.594
ResNet 0.389 0.269 0.400 0.605
+C3D 0.385 0.267 0.411 0.601
+categories 0.381 0.270 0.418 0.597
+audio 0.395 0.277 0.442 0.610
committee 0.407 0.286 0.465 0.610

features signifying the importance of these features in gen-
erating natural language descriptions for web videos.

The last row shows the performance of the “committee of
experts” where “+audio” was taken as the base model on
which the experts were trained. It gives a significant im-
provement in terms of almost all metrics (except ROUGE-L
for which it stays the same). A possible reason for this boost
is the fact that the experts learn to produce better sentences
specific to different categories when they are fine tuned with
paired video-caption data specific to a video category.

Fig. 3 shows descriptions generated by MMVD on sample
test videos from MSR-VTT using 4 different combinations of
modalities. It can be seen that the use of all modalities helps
to produce more accurate sentences, e.g., it can identify that
the left video is about a cartoon character. “Committee of
experts” can even tell that the video is a result of a person
playing a video game. Similarly, for the video on the right,
“committee”can correctly identify that it is a“how to”video.

We used the following ablation experiment to estimate
the human level performance on this dataset. We removed
one random ground truth sentence from every annotated
video and treated these sentences as a human generated de-
scription for each video. The remaining 19 sentences for
each video were treated as the ground truth descriptions
with which the BLEU@4 and METEOR score were calcu-
lated. This naive approach gave us a METEOR score of 0.3
and a BLEU@4 score of 0.36 as an estimate of the human
performance on MSR-VTT dataset. From this study and
from the results shown in Table 1, it can be seen that our
approach outperforms humans in terms of BLUE@4 score
and gets close to human level performance in terms of ME-
TEOR. Additional results, analysis and code are available
in https://github.com/VisionLearningGroup/MMVD

4. CONCLUSION
This paper proposes a MultiModal approach to Video De-

scription (MMVD). Our MMVD model exploits information
from several diverse modalities to generate natural language
description of web videos using a recurrent encoder-decoder
framework. In particular, we have shown that the use of au-
dio information and the topic of a video can supplement the
visual features significantly for this task. Despite its con-
ceptual simplicity, our model achieves state-of-the-art per-
formance on the difficult MSR-VTT dataset which comes
with challenges both in audio-visual and language domain.
The future directions of our research will be to explore differ-
ent fusion strategies including speech recognition on audio
tracks for better video description.
Acknowledgments This work was supported by DARPA
under AFRL grant FA8750-13-2-0026 and a Google Faculty
Research Award.
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