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1. Problem Definition

= EXisting person re-identification strategies are camera pair specific.
= High performance in camera pairwise person re-identification does not always
mean consistent re-identification across multiple cameras.

Camera 1 Camera 3 We ASked
= Can the results be made consistent?

A = Will re-identification performance be
Improved by enforcing consistency?
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4. Experimental Results

= Most of the benchmark person re-identification datasets (e.g., ETHZ,
CAVIAR4REID, CUHK) are several sequences of 2 camera datasets.

= We validated the proposed approach on a publicly available WARD (3
camera dataset) and a 4 camera dataset ‘Re-identification Across indoor-
outdoor Dataset’ (RAID) released with this work. RAID is available at
http://www.ee.ucr.edu/~amitrc/datasets.php

2. Approach Overview
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Results on WARD dataset:
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Cumulative Matching Characteristic (CMC)
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Integer Program and the proposed method is termed as Network Consistent
Re-identification (NCR)

CMC curves showing comparative performance with 3 state-of-the-art
and 1 baseline method. NCR applied on similarity scores generated by
different methods outperforms the rest.

Results on RAID dataset:

An example of correction
of inconsistent re-
identification on application
of NCR strategy

3. Approach Detalls

Input: Camera pairwise similarity score generated by any standard method.

Case |. every person is present in every camera
Cost function:

Output: Optimal matching label matrix for each camera pair.

Case |l. every person is not present in every camera
Cost function:
= Use of previous cost gives significant amount of false matches. Say, a person

Cumulative Matching Characteristic (CMC)
Camera Pair 1 - 2 (indoor-indoor)

Cumulative Matching Characteristic (CMC)

Cumulative Matching Characteristic (CMC)
Camera Pair 1 - 4 (indoor-outdoor)

100

m : # of cameras n : # of persons
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