Monte Carlo Methods

CS60077: Reinforcement Learning

Abir Das

IIT Kharagpur

Sep 06 and 12, 2019

Agenda

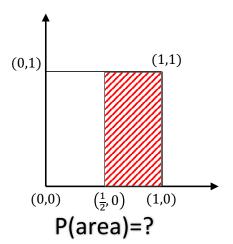
- § Understand how to evaluate policies in model-free setting using Monte Carlo methods
- § Understand Monte Carlo methods in model-free setting for control of Reinforcement Learning problems

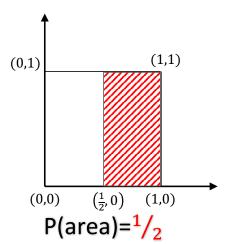
Resources

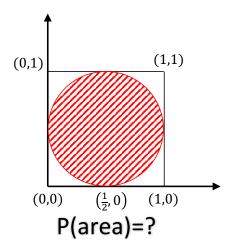
- § Reinforcement Learning by David Silver [Link]
- § Reinforcement Learning by Balaraman Ravindran [Link]
- § Monte Carlo Simulation by Nando de Freitas [Link]
- § SB: Chapter 5

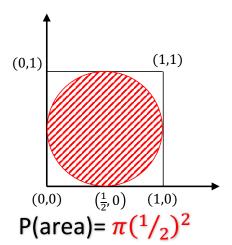
Model Free Setting

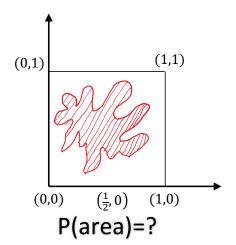
- § Like the previous few lectures, here also we will deal with prediction and control problems but this time it will be in a model-free setting
- § In model-free setting we do not have the full knowledge of the MDP
- Model-free prediction: Estimate the value function of an unknown MDP
- Model-free control: Optimise the value function of an unknown MDP
- § Model-free methods require only *experience* sample sequences of states, actions, and rewards (S_1, A_1, R_2, \cdots) from **actual** or **simulated** interaction with an environment.
- § Actual experince requires no knowledge of the environment's dynamics.
- § Simulated experience 'requires' models to generate samples only. No knowledge of the complete probability distributions of state transitions is required. In many cases this is easy to do

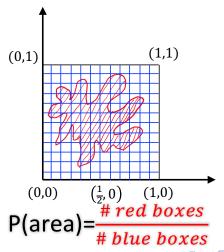


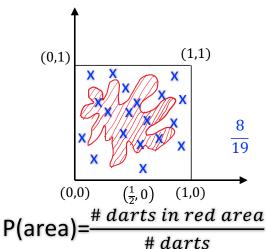












History of Monte Carlo

§ The bomb and ENIAC

Image taken from: www.livescience.com

Image taken from: www.digitaltrends.com

Monte Carlo for Expectation Calculation

- § Lets say we want to compute $\mathbb{E}[f(x)] = \int f(x)p(x)dx$
- § Draw i.i.d. samples $\{x^{(i)}\}_{i=1}^N$ from the probability density p(x)

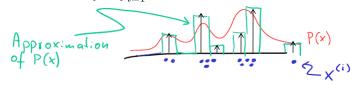


Image taken from: Nando de Freitas: MLSS 08

§ Approximate $p(x) \approx \frac{1}{N} \sum\limits_{i=1}^{N} \delta_{x^{(i)}}(x)$ [$\delta_{x^{(i)}}(x)$ is impulse at $x^{(i)}$ on x axis]

§
$$\mathbb{E}[f(x)] = \int f(x)p(x)dx \approx \int f(x) \frac{1}{N} \sum_{i=1}^{N} \delta_{x^{(i)}}(x)dx = \frac{1}{N} \sum_{i=1}^{N} \int f(x)\delta_{x^{(i)}}(x)dx = \frac{1}{N} \sum_{i=1}^{N} f\left(x^{(i)}\right)$$

Monte Carlo Policy Evaluation

 \S Learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, S_2, A_2, R_3, \cdots, S_k, A_k, R_k \sim \pi$$

00000

Recall that the *return* is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}\left[G_t | S_t = s\right]$$

Monte-Carlo policy evaluation uses empirical mean return instead of expected return

First Visit Monte Carlo Policy Evaluation

- § To evaluate state s i.e. to learn $v_{\pi}(s)$
- \S The first time-step t that state s is visited in an episode,
- § Increment counter $N(s) \leftarrow N(s) + 1$
- § Increment total retun $S(s) \leftarrow S(s) + G_t$
- \S Value is estimated by mean return V(s) = S(s)/N(s)
- § By law of large number, $V(s) o v_\pi(s)$ as $N(s) o \infty$

Every Visit Monte Carlo Policy Evaluation

- § To evaluate state s i.e. to learn $v_{\pi}(s)$
- § Every time-step t that state s is visited in an episode,
- § Increment counter $N(s) \leftarrow N(s) + 1$
- § Increment total retun $S(s) \leftarrow S(s) + G_t$
- \S Value is estimated by mean return V(s) = S(s)/N(s)
- § By law of large number, $V(s) o v_\pi(s)$ as $N(s) o \infty$

Blackjack Example

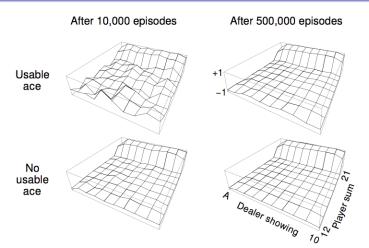
- States (200 of them):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for stick:
 - \blacksquare +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- Reward for twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12

Slide courtesy: David Silver [Deepmind]

00000

Agenda

00



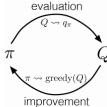
00000

Policy: stick if sum of cards \geq 20, otherwise twist

Slide courtesy: David Silver [Deepmind]

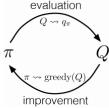
Introduction 000000000

- We will now, see how Monte Carlo estimation can be used in *control*.
- This is mostly like the generalized policy iteration (GPI) where one maintains both an approximate policy and an approximate value function.



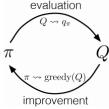
Introduction 000000000

- § We will now, see how Monte Carlo estimation can be used in control.
- This is mostly like the generalized policy iteration (GPI) where one maintains both an approximate policy and an approximate value function.



- Policy evaluation is done as Monte Carlo evaluation
- Then, we can do greedy policy improvement.

- § We will now, see how Monte Carlo estimation can be used in *control*.
- § This is mostly like the generalized policy iteration (GPI) where one maintains both an approximate policy and an approximate value function.

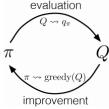


- § Policy evaluation is done as Monte Carlo evaluation
- § Then, we can do greedy policy improvement.
- § What is the problem!!

§ We will now, see how Monte Carlo estimation can be used in *control*.

MC Evaluation

§ This is mostly like the generalized policy iteration (GPI) where one maintains both an approximate policy and an approximate value function.



- § Policy evaluation is done as Monte Carlo evaluation
- § Then, we can do greedy policy improvement.
- § What is the problem!!

$$\S \pi'(s) \doteq \operatorname*{arg\,max}_{a \in \mathcal{A}} \left\{ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) v_{\pi}(s') \right\}$$

 \S Greedy policy improvement over v(s) requires model of MDP

$$\pi'(s) \doteq \operatorname*{arg\,max}_{a \in \mathcal{A}} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) v_{\pi}(s') \right\}$$

 \S Greedy policy improvement over v(s) requires model of MDP

$$\pi'(s) \doteq \underset{a \in \mathcal{A}}{\operatorname{arg max}} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) v_{\pi}(s') \right\}$$

 \S Greedy policy improvement over q(s,a) is model-free

$$\pi'(s) \doteq \underset{a \in \mathcal{A}}{\arg \max} q(s, a)$$

 \S Greedy policy improvement over v(s) requires model of MDP

$$\pi'(s) \doteq \underset{a \in \mathcal{A}}{\operatorname{arg max}} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) v_{\pi}(s') \right\}$$

 \S Greedy policy improvement over q(s,a) is model-free

$$\pi'(s) \doteq \operatorname*{arg\,max}_{a \in \mathcal{A}} q(s, a)$$

 \S How can we do Monte Carlo policy evaluation for q(s,a)?

Agenda

 \S Greedy policy improvement over v(s) requires model of MDP

$$\pi'(s) \doteq \underset{a \in \mathcal{A}}{\arg \max} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) v_{\pi}(s') \right\}$$

§ Greedy policy improvement over q(s,a) is model-free

$$\pi'(s) \doteq \underset{a \in \mathcal{A}}{\arg \max} q(s, a)$$

- \S How can we do Monte Carlo policy evaluation for q(s,a)?
- § Essentially the same as Monte Carlo evaluation for state values. Start at a state s, pick an action a and then follow the policy.
- § After few such episodes average the returns to get an estimate of q(s,a).

- § What are some concerns?
- § First visit/Every visit!!
- § Suppose you start at a state s and take action a. You reach at state s_1 and then following the policy π at s, you take the action $a_1 = \pi(s_1)$. Can you take the rest of the trajectory as a sample to estimate $q(s_1, a_1)$?
- § Practically you can, but convergence can not be guaranteed. The reason is that this strategy draws a disproportionately large number of actions corresponding to π . So, each sample is considered only for the starting s and a.

- § What are some concerns?
- § First visit/Every visit!!
- § Suppose you start at a state s and take action a. You reach at state s_1 and then following the policy π at s, you take the action $a_1 = \pi(s_1)$. Can you take the rest of the trajectory as a sample to estimate $q(s_1, a_1)$?
- § Practically you can, but convergence can not be guaranteed. The reason is that this strategy draws a disproportionately large number of actions corresponding to π . So, each sample is considered only for the starting s and a.
- \S How to make sure we have q(s,a) estimates for all s and a? Especially because of the above the 'exploring starts' becomes important.

- § Many state-action pairs may never be visited.
- § For deterministic policy, with no returns to average, the Monte Carlo estimates of many actions will not improve with experience.
- § This is the general problem of maintaining exploration.
- § One way to do this is by specifying that the episodes start in a state-action pair, and that every pair has a nonzero probability of being selected as the start.
- § This assumption is called 'exploring starts'

- § Many state-action pairs may never be visited.
- § For deterministic policy, with no returns to average, the Monte Carlo estimates of many actions will not improve with experience.
- § This is the general problem of maintaining exploration.
- § One way to do this is by specifying that the episodes start in a state-action pair, and that every pair has a nonzero probability of being selected as the start.
- § This assumption is called 'exploring starts'
- § Monte Carlo Exploration Starts is an 'on policy' method. On policy methods evaluate or improve the policy by drawing samples from the same policy.
- § Off-policy methods evaluate or improve a policy different from that used to generate the samples.

- § Before going to off-policy methods let us look into an on policy Monte Carlo control method that does not use exploring starts.
- § The assumption of exploring starts is sometimes useful, but it cannot be relied upon in general, particularly when learning directly from actual interaction with an environment.
- § The easiest alternative is to consider stochastic policies with a nonzero probability of selecting all actions in each state.

- § Before going to off-policy methods let us look into an on policy Monte Carlo control method that does not use *exploring starts*.
- § The assumption of exploring starts is sometimes useful, but it cannot be relied upon in general, particularly when learning directly from actual interaction with an environment.
- § The easiest alternative is to consider stochastic policies with a nonzero probability of selecting all actions in each state.
- § Instead of getting a greedy policy in the policy improvement step, an ϵ -greedy policy is obtained.
- § It means most of the time, the action corresponding to maximum estimated action value is chosen, but sometimes (with probability ϵ) an action at random is chosen.
- § Probability of choosing nongreedy actions is $\frac{\epsilon}{|\mathcal{A}(s)|}$ whereas remaining bulk of the probability, $1 \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}$, is given to the greedy action.

- \S ϵ -greedy policy is an example of a bigger class of policies known as ϵ -soft policies where $\pi(a|s) \geq \frac{\epsilon}{|\mathcal{A}(s)|}$ for all states and actions, for some $\epsilon > 0$.
- § Among ϵ -soft policies, ϵ -greedy policy is, in some sense, closest to greedy.
- § By using ϵ -greedy policy improvement strategy, we achieve the best policy among ϵ -soft policies, but we eliminate the assumption of 'exploring starts'.

Off-policy Methods

- § All methods trying to learn control face a dilemma.
 - ► They seek to learn action values conditional on subsequent optimal behavior.
 - ▶ But they need to behave non-optimally in order to explore all actions (to find the optimal actions).

Off-policy Methods

- § All methods trying to learn control face a dilemma.
 - ► They seek to learn action values conditional on subsequent optimal behavior.
 - But they need to behave non-optimally in order to explore all actions (to find the optimal actions).
- § The on-policy approach is actually a compromise, it learns action values not for the optimal policy, but for a near-optimal policy that still explores.

Off-policy Methods

- § All methods trying to learn control face a dilemma.
 - ▶ They seek to learn action values conditional on subsequent optimal behavior.
 - ▶ But they need to behave non-optimally in order to explore all actions (to find the optimal actions).
- § The on-policy approach is actually a compromise, it learns action values not for the optimal policy, but for a near-optimal policy that still explores.
- § Off-policy methods address this by using two policies for two different purposes.
 - one that is learned about and that becomes the optimal policy target policy.
 - one that is more exploratory and is used to generate behavior behavior policy.

Off-policy Prediction

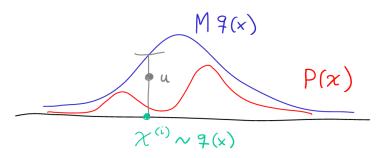
- § Estimate v_{π} or q_{π} of the target policy π , but we have episodes from another policy μ , the behavior policy.
- Almost all off-policy methods utilize concepts from sampling theory for such operations.

Rejection Sampling

set i = 1

Repeat until i = N

- Sample $x^{(i)} \sim q(x)$ and $u \sim \mathcal{U}_{(0,1)}$
- ② If $u<\frac{p(x^{(i)})}{Mq(x^{(i)})}$, then accept $x^{(i)}$ and increment counter i by 1. Otherwise, reject.



Agenda

00

§ What is bad about rejection sampling?

- § What is bad about rejection sampling?
- § Many wasted samples! why?

- § What is bad about rejection sampling?
- § Many wasted samples! why?
- § Importance sampling is a classical way to address this. You keep all the samples from the proposal/behavior distribution, you just weigh them.

- § What is bad about rejection sampling?
- Many wasted samples! why?
- Importance sampling is a classical way to address this. You keep all the samples from the proposal/behavior distribution, you just weigh them.
- Lets say we want to compute $\mathbb{E}_{x \sim p(.)}[f(x)] = \int f(x)p(x)dx$

$$\mathbb{E}_{x \sim p(.)}[f(x)] = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$
$$= \mathbb{E}_{x \sim q(.)}\left[f(x)\frac{p(x)}{q(x)}\right]$$
$$\approx \frac{1}{N} \sum_{\substack{x^{(i)} \sim q(.), i=1}}^{N} f(x^{(i)})\frac{p(x^{(i)})}{q(x^{(i)})}$$

§ $\frac{p(x^{(i)})}{c(x^{(i)})}$ is called the *importance weight*.

Introduction

To avoid numerical instability, the denominator is changed in the following way

$$\mathbb{E}_{x \sim p(.)}[f(x)] \approx \frac{\sum_{x^{(i)} \sim q(.)} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})}}{\sum_{x^{(i)} \sim q(.)} \frac{p(x^{(i)})}{q(x^{(i)})}}$$

§ What are the samples $x^{(i)}$? What are the p(.) and q(.) in our case? and what is $f(x^{(i)})$?

$$\mathbb{E}_{x \sim p(.)}[f(x)] \approx \frac{\sum\limits_{x^{(i)} \sim q(.)} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})}}{\sum\limits_{x^{(i)} \sim q(.)} \frac{p(x^{(i)})}{q(x^{(i)})}}$$

§ What are the samples $x^{(i)}$? What are the p(.) and q(.) in our case? and what is $f(x^{(i)})$?

$$\mathbb{E}_{x \sim p(.)}[f(x)] \approx \frac{\sum\limits_{x^{(i)} \sim q(.)} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})}}{\sum\limits_{x^{(i)} \sim q(.)} \frac{p(x^{(i)})}{q(x^{(i)})}}$$

 $\S x^{(i)}$ are the trajectories.

§ What are the samples $x^{(i)}$? What are the p(.) and q(.) in our case? and what is $f(x^{(i)})$?

$$\mathbb{E}_{x \sim p(.)}[f(x)] \approx \frac{\sum_{x^{(i)} \sim q(.)} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})}}{\sum_{x^{(i)} \sim q(.)} \frac{p(x^{(i)})}{q(x^{(i)})}}$$

- $\S x^{(i)}$ are the trajectories.
- § $p(x^{(i)})$ is the probability of the trajectory $x^{(i)}$ given that the trajectory follows the target policy.

§ What are the samples $x^{(i)}$? What are the p(.) and q(.) in our case? and what is $f(x^{(i)})$?

$$\mathbb{E}_{x \sim p(.)}[f(x)] \approx \frac{\sum_{x^{(i)} \sim q(.)} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})}}{\sum_{x^{(i)} \sim q(.)} \frac{p(x^{(i)})}{q(x^{(i)})}}$$

- $\S x^{(i)}$ are the trajectories.
- $\delta p(x^{(i)})$ is the probability of the trajectory $x^{(i)}$ given that the trajectory follows the target policy.
- § $q(x^{(i)})$ is the probability of the trajectory $x^{(i)}$ given that the trajectory follows the behavior policy.

§ What are the samples $x^{(i)}$? What are the p(.) and q(.) in our case? and what is $f(x^{(i)})$?

MC Evaluation

$$\mathbb{E}_{x \sim p(.)}[f(x)] \approx \frac{\sum_{x^{(i)} \sim q(.)} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})}}{\sum_{x^{(i)} \sim q(.)} \frac{p(x^{(i)})}{q(x^{(i)})}}$$

- $\S x^{(i)}$ are the trajectories.
- § $p(x^{(i)})$ is the probability of the trajectory $x^{(i)}$ given that the trajectory follows the target policy.
- § $q(x^{(i)})$ is the probability of the trajectory $x^{(i)}$ given that the trajectory follows the behavior policy.
- § $f(x^{(i)})$ is the return.

§ How is a trajectory represented?

- § How is a trajectory represented?
- Refresher from the very first lecture.
 - Goal in RL Problem:- to maximize the total reward "in expectation" over the long run.
 - $\tau \stackrel{\text{def}}{=} (s_1, a_1, s_2, a_2, \dots), p(\tau) = p(s_1) \prod_t p(a_t | s_t) p(s_{t+1} | s_t, a_t)$
 - $\max \mathbb{E}_{\tau \sim p(\tau)} [\sum_t R(s_t, a_t)]$

- § How is a trajectory represented?
- Refresher from the very first lecture.
 - Goal in RL Problem:- to maximize the total reward "in expectation" over the long run.
 - $\tau \stackrel{\text{def}}{=} (s_1, a_1, s_2, a_2, \dots), p(\tau) = p(s_1) \prod_t p(a_t | s_t) p(s_{t+1} | s_t, a_t)$
 - max $\mathbb{E}_{\tau \sim p(\tau)}[\sum_t R(s_t, a_t)]$
- § Let some trajectory $x^{(i)}$ be $(s_1, a_1, s_2, a_2, \cdots)$
- $p(x^{(i)}) = p(s_1)\pi(a_1|s_1)p(s_2|s_1,a_1)\pi(a_2|s_2)p(s_3|s_2,a_2)\cdots$
- $\{q(x^{(i)}) = p(s_1)\mu(a_1|s_1)p(s_2|s_1,a_1)\mu(a_2|s_2)p(s_3|s_2,a_2)\cdots\}$

- § How is a trajectory represented?
- Refresher from the very first lecture.
 - Goal in RL Problem:- to maximize the total reward "in expectation" over the long run.

MC Evaluation

- $\tau \stackrel{\text{def}}{=} (s_1, a_1, s_2, a_2, \dots), p(\tau) = p(s_1) \prod_t p(a_t | s_t) p(s_{t+1} | s_t, a_t)$
- max $\mathbb{E}_{\tau \sim n(\tau)}[\sum_t R(s_t, a_t)]$
- § Let some trajectory $x^{(i)}$ be $(s_1, a_1, s_2, a_2, \cdots)$
- $p(x^{(i)}) = p(s_1)\pi(a_1|s_1)p(s_2|s_1,a_1)\pi(a_2|s_2)p(s_3|s_2,a_2)\cdots$
- $q(x^{(i)}) = p(s_1)\mu(a_1|s_1)p(s_2|s_1,a_1)\mu(a_2|s_2)p(s_3|s_2,a_2)\cdots$
- $\S \ \ \frac{p(x^{(i)})}{q(x^{(i)})} = \underbrace{\frac{p(s_1)\pi(a_1|s_1)p(s_2|s_1,a_1)\pi(a_2|s_2)p(s_3|s_2,a_2)\cdots}{p(s_1)\mu(a_1|s_1)p(s_2|s_1,a_1)\mu(a_2|s_2)p(s_3|s_2,a_2)\cdots}}_{p(s_1)\mu(a_1|s_1)p(s_2|s_1,a_1)\mu(a_2|s_2)p(s_3|s_2,a_2)\cdots} = \frac{\pi(a_1|s_1)\pi(a_2|s_2)\cdots}{\mu(a_1|s_1)\mu(a_2|s_2)\cdots} = \frac{\pi(a_1|s_1)\pi(a_2|s_2)\cdots}{\mu(a_1|s_1)\mu(a_2|s_2)\cdots}$

$$\prod_{t=1}^{T_i} \frac{\pi(a_t|s_t)}{\mu(a_t|s_t)}$$

$$\mathbb{E}_{x \sim \pi}[f(x)] \approx \frac{\sum_{x^{(i)} \sim \mu} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})}}{\sum_{x^{(i)} \sim \mu} \frac{p(x^{(i)})}{q(x^{(i)})}}$$

$$v_{\pi}(s) = \mathbb{E}\left[G|S_{1} = s\right]$$

$$\approx \frac{\sum_{i=1}^{N} G^{(i)} \prod_{t=1}^{T_{i}} \frac{\pi(a_{t}^{(i)}|s_{t}^{(i)})}{\mu(a_{t}^{(i)}|s_{t}^{(i)})}}{\sum_{i=1}^{N} \prod_{t=1}^{T_{i}} \frac{\pi(a_{t}^{(i)}|s_{t}^{(i)})}{\mu(a_{t}^{(i)}|s_{t}^{(i)})}}$$

§ This was the evaluation step then do the greedy policy improvement.

