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Agenda Terminology Markov Decision Process

Agenda

§ Understand definitions and notation to be used in the course.

§ Understand definition and setup of sequential decision problems.
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Agenda Terminology Markov Decision Process

Resources

§ Reinforcement Learning by David Silver [Link]

§ Deep Reinforcement Learning by Sergey Levine [Link]

§ SB: Chapter 3
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/
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Terminology and Notation

Figure credit: S. Levine - CS 294-112 Course, UC Berkeley
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Terminology and Notation

1.	run	away

3.	pet
2.	ignore

Figure credit: S. Levine - CS 294-112 Course, UC Berkeley
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Markov Property

The future is independent of the past given the present.

Definition

A state St is Markov if and only if

P (St+1|St) = P (St+1|St, St−1, St−2, · · · , S1)
Andrey	Markov

§ Once the present state is known, the history may be thrown away

§ The current state is a sufficient statistic of the future
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Markov Chain

A Markov Chain or Markov Process is temporal process i.e., a sequence of
random states S1, S2, · · · where the states obey the Markov property.

Definition

A Markov Process is a tuple 〈S,P〉, where

§ S is the state space (can be continuous or discrete)

§ P is the state transition probability matrix. P also called an operator

P =


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn


where Pss′ = P (St+1 = s′|St = s)
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Markov Chain

P =


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn


Let µt,i = P (St = si) and µt =

[
µt,1, µt,2, · · · , µt,n

]T
, i.e., µt is a vector

of probabilities, then µt+1 = PTµt
µt+1,1

µt+1,2

...
µt+1,n

 =


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn


T 

µt,1
µt,2

...
µt,n
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Student Markov Process

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4 0.4

1.0
0.2

Figure credit:David Silver, DeepMind
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Student Markov Process - Episodes

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4 0.4

1.0
0.2

Figure credit:David Silver, DeepMind

Sample episodes for Student Markov
process starting from S1 = C1

§ C1 C2 C3 Pass Sleep

§ C1 FB FB C1 C2 Sleep

§ C1 C2 C3 Pub C2 C3 Pass Sleep

§ C1 FB FB C1 C2 C3 Pub C1 FB
FB FB C1 C2 C3 Pub C2 Sleep
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Student Markov Process - Transition Matrix

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4 0.4

1.0
0.2

Figure credit:David Silver, DeepMind



C1 C2 C3 Pass Pub FB Sleep

C1 0.5 0.5
C2 0.8 0.2
C3 0.6 0.4
Pass 1.0
Pub 0.2 0.4 0.4
FB 0.1 0.9
Sleep 1.0
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Agenda Terminology Markov Decision Process

Markov Reward Process

A Markov reward process is a Markov process with rewards.

Definition

A Markov Reward Process is a tuple 〈S,P,R, γ〉, where

§ S is the state space (can be continuous or discrete)

§ P is the state transition probability matrix. P also called an operator.
Pss′ = P (St+1 = s′|St = s)

§ R is a reward function, R = E
[
Rt+1|St = s

]
= R(s)

§ γ is a discount factor, γ ∈
[
0, 1
]
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Student Markov Reward Process

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

0.2

0.4

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Return

Definition

The return Gt is the total discounted reward from timestep t.

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (1)

§ γ ∈
[
0, 1
]

is the discounted present value of the future rewards.

§ Immediate rewards are valued above delayed rewards.

I γ close to 0 leads to “myopic” evaluation.

I γ close to 1 leads to “far-sighted” evaluation.
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Agenda Terminology Markov Decision Process

Why Discount?

Most Markov reward and decision processes are discounted. Why?

§ Uncertainty about the future may not be fully represented

§ Immediate rewards are valued above delayed rewards.

§ Avoids infinite returns in cyclic Markov processes or infinite horizon
problems.

§ Mathematically convenient. We can use stationarity property to
better effect.

It is sometimes possible to use average rewards also to bound the return to
finite values. More of it to follow when we discuss Markov Decision
Process
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Agenda Terminology Markov Decision Process

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting
from state s

v(s) = E
[
Gt|St = s

]
(2)

Abir Das (IIT Kharagpur) CS60077 July 26, Aug 01, 02, 08, 2019 15 / 43



Agenda Terminology Markov Decision Process

Example Student MRP Returns

Sample returns for Student MRP:
Starting from S1 = C1 with γ = 1

2

G1 = R2 + γR3 + · · ·+ γT−1RT+1

§ C1 C2 C3 Pass Sleep

§ C1 FB FB C1 C2 Sleep

§ C1 C2 C3 Pub C2 C3 Pass Sleep

§ C1 FB FB C1 C2 C3 Pub C1 FB
FB FB C1 C2 C3 Pub C2 Sleep

§ −2− 1
2 ∗2−

1
4 ∗2+

1
8 ∗10 = −2.25

§ −2− 1
2 ∗1−

1
4 ∗1−

1
8 ∗2−

1
16 ∗2 =

−3.125

§ −2− 1
2 ∗ 2−

1
4 ∗ 2+

1
8 ∗ 1−−

1
16 ∗

2− 1
32 ∗ 2 +

1
64 ∗ 10 = −3.41

§ −2− 1
2 ∗ 1−

1
4 ∗ 1−

1
8 ∗ 2−

1
16 ∗

2 + · · · = −3.20
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Agenda Terminology Markov Decision Process

State-Value Function for Student MRP (1)

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

-1

-2 -2 -2 10

1

0

V(s)	for	𝛾 = 0

0.2

0.4

Figure credit:David Silver, DeepMind
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State-Value Function for Student MRP (2)

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

-7.6

-5.0 0.9 4.1 10

1.9

0

V(s)	for	𝛾 = 0.9

0.2

0.4

Figure credit:David Silver, DeepMind
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State-Value Function for Student MRP (3)

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

-23

-13 1.5 4.3 10

+0.8

0

V(s)	for	𝛾 = 1

0.2

0.4

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Bellman Equation for MRPs

The value function can be decomposed into two parts:

§ immediate reward R(s)

§ discounted value of successor state γv(s′)

v(s) = R(s) + γEs′∈S
[
v(s′)

]
= R(s) + γ

∑
s′∈S
Pss′v(s′) (3)

s
s’ s’’

V(s’)

V(s)

V(s’’)

r
s
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Agenda Terminology Markov Decision Process

Bellman Equation for MRPs - Proof

v(s)=E
[
Gt|St = s

]
=E
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · |St = s

]

=E
[
Rt+1(St) + γRt+2(St+1) + γ2Rt+3(St+2) + γ3Rt+4(St+3) + · · · |St = s

]
=

∑
St+1,St+2,···

(
P (St+1, St+2, · · · |St = s)

[
Rt+1(St) + γRt+2(St+1)+

γ2Rt+3(St+2) + γ3Rt+4(St+3) + · · ·
])

=
∑

St+1,St+2,···
P (St+1, St+2, · · · |St = s)Rt+1(St)+

γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])
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Bellman Equation for MRPs - Proof

= Rt+1(St)
∑

St+1,St+2,···
P (St+1, St+2, · · · |St = s)+

γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

= Rt+1(St)

���
���

���
���

���:
1∑

St+1,St+2,···
P (St+1, St+2, · · · |St = s)+

γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

= Rt+1(St) + γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

= Rt+1(St) + γ
∑

St+1,St+2,···

(
P (St+2, · · · |St+1, St=s)P (St+1|St=s)

[
Rt+2(St+1)+

γRt+3(St+2) + γ2Rt+4(St+3) + · · ·
])
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Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
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St+1,St+2,···

(
P (St+2, · · · |St+1, St=s)P (St+1|St=s)

[
Rt+2(St+1)+

γRt+3(St+2) + γ2Rt+4(St+3) + · · ·
])
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Agenda Terminology Markov Decision Process

Bellman Equation for MRPs - Proof
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Agenda Terminology Markov Decision Process

Bellman Equation in Matrix Form

So, we have seen,

v(s) = R(s) + γ
∑
s′∈S
Pss′v(s′)

Where are the time subscripts? Hint: Think about (1). Definition of value
function, (2). Expectation operation.

The Bellman equation can be expressed concisely using matrices.

v = R+ γPv

where v and R are column vectors with one entry per state.
v(s1)
v(s2)

...
v(sn)

 =


R(s1)
R(s2)

...
R(sn)

+ γ


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn



v(s1)
v(s2)

...
v(sn)
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Agenda Terminology Markov Decision Process

Solving Bellman Equation

§ The Bellman equation being a linear equation, it can be solved
directly.

v = R+ γPv(
I− γP

)
v = R

v =
(
I− γP

)−1R
§ As computational complexity is O(n3) for n states, direct solution is

only feasible for small MRPs.

§ There are many iterative methods for large MRPs, e.g., Dynamic
programing, Monte-Carlo, Temporal difference learning
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Agenda Terminology Markov Decision Process

Existence of Solution to Bellman Equation

§ We need to show that
(
I− γP

)
is invertible and for that we will use

the following result from linear algebra - The inverse of a matrix
exists if and only if all its eigenvalues are non-zero.

§ For a stochastic matrix (row sum equal to 1 and all entries are ≥ 0),
the largest eigenvalue is 1.

Proof

As P is a stchoastic matrix, P1 = 1 where 1 = [1, 1, · · · 1]T . This means 1 is an
eigenvalue of P.
Now, lets suppose ∃λ > 1 and non-zero x such that Px = λx.
Since the rows of P are non-negative and sum to 1, each element of vector Px is
a convex combination of the components of the vector x.
A convex combination can’t be greater than xmax, the largest component of x.
However, as λ>1, at least one element (λxmax) in the R.H.S. (i.e., in λx) is
greater than xmax. This is a contradiction and so λ>1 is not possible.
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Agenda Terminology Markov Decision Process

Existence of Solution to Bellman Equation

§ So the largest eigenvalue of P is 1.

Theorem and its proof
For all eigenvalues λi of a square matrix A and corresponding eigenvectors vi
such that Avi = λivi,

eig(I+ γA) = 1 + γλi [γ is any scalar]
Proof:

Avi = λivi

γAvi = γλivi

vi + γAvi = vi + γλivi

(I+ γA)vi = (1 + γλi)vi

§ So the smallest eigenvalue of
(
I− γP

)
is 1− γ. For γ < 1 which is

> 0. And hence,
(
I− γP

)
is invertible.
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Agenda Terminology Markov Decision Process

Markov Decision Process

A Markov decision process is a Markov reward process with actions.

Definition

A Markov Decision Process is a tuple 〈S,A,P,R, γ〉, where

§ S is the state space (can be continuous or discrete)

§ A is the action space (can be continuous or discrete)

§ P is the state transition probability matrix.
Pass′ = P (St+1 = s′|St = s,At = a) = p(s′/s, a)

§ R is a reward function, R = E
[
Rt+1|St = s,At = a

]
= R(s, a)

§ γ is a discount factor, γ ∈
[
0, 1
]
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Agenda Terminology Markov Decision Process

Example: Student MDP

0.2

0.4

R	=	-1
Facebook

0.4

R	=	-1
Quit

R	=	-1
Facebook

R	=	0
Sleep

R	=	-2
Study

R	=	-2
Study

R	=	+1
Pub

R	=	+10
Study

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Policy

Definition

A policy π is a distribution over actions given states,

π(a/s) = P
[
At = a|St = s

]
§ The Markov property means the policy depends on the current state

(not the history)

§ The policy can be either deterministic or stochastic

§ The policy can be either stationary or non-stationary
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Agenda Terminology Markov Decision Process

Policy

§ For a deterministic environment p(s′/s, a) = 1,
else for stochastic environment 0 ≤ p(s′/s, a) ≤ 1

§ In a stochastic environment, there is always some
chance to end up in s′ starting from state s and
taking any action.

S	→ s’
a

§ So, probability of ending up in state s′ from s irrespective of the
action (i.e., taking any action according to the policy), = probability
of taking action 1 from state s× probability of ending up in state s′

taking action 1 + probability of taking action 2 from state s×
probability of ending up in state s′ taking action 2 + · · ·
§ This means pπ(s

′|s) =
∑
a
π(a|s)p(s′|s, a)

§ Similarly, the one-step expected reward for following policy π is given
by rπ(s) =

∑
a
π(a|s)r(s, a)

§ Side note: The above is given by rπ(s) =
∑
a
π(a|s)

∑
s′
p(s′|s, a)r(s, a, s′)

when reward is a function of the transiting state s′ also.
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Agenda Terminology Markov Decision Process

Value Functions

Definition

The state-value function vπ(s) of an MDP is the expected return starting
from state s, and then following policy π

vπ(s) = Eπ
[
Gt|St = s

]
(4)

Definition

The action-value function qπ(s, a) of an MDP is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ
[
Gt|St = s,At = a

]
(5)
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Agenda Terminology Markov Decision Process

Example: State-Value function for Student MDP

0.2

0.4

R	=	-1
Facebook

0.4

R	=	-1
Quit

R	=	-1
Facebook

R	=	0
Sleep

R	=	-2
Study

R	=	-2
Study

R	=	+1
Pub

R	=	+10
Study

-2.3 0

-1.3 2.7 7.4

𝑣" 𝑠 for	𝜋 𝑎 𝑠 = 0.5, 𝛾 = 1

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Relation between vπ and qπ

s

𝑣"(𝑠) 𝑠

𝑞"(𝑠, 𝑎) a a′
𝑞"(𝑠, 𝑎′)

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

s

𝑞"(𝑠, 𝑎) 𝑠

𝑣"(𝑠′)
𝑠′ 𝑠′′

𝑣"(𝑠′′)

𝑟

qπ(s, a) = r(s, a)+γ
∑
s′∈S

p(s′|s, a)vπ(s′)

s

𝑣"(𝑠) 𝑠

𝑎

𝑣"(𝑠′) 𝑠′

𝑟

vπ(s) =
∑
a∈A

π(a|s)

{
r(s, a) +

γ
∑
s′∈S

p(s′|s, a)vπ(s′)

}

𝑞"(𝑠, 𝑎) 𝑠

𝑠′

𝑟

𝑞"(𝑠′, 𝑎′)

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a){∑
a′∈A

π(a′|s′)qπ(s′, a′)

}
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qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a){∑
a′∈A

π(a′|s′)qπ(s′, a′)

}
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Relation between vπ and qπ
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Bellman Expectation Equations

Like MRPs, the value function can be decomposed into two parts -
immediate reward r(s) and the discounted value of successor state γv(s′).
But, as action is involved in MDP, the form is a little different.

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
{
r(s, a, s′) + γvπ(s

′)
}

[when r is a function of s, a, s′]

=
∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

}
[when r is a function of s, a]

= r(s) + γ
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)vπ(s′)

[when r is a function of s] (6)
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Bellman Expectation Equations

qπ(s, a)=Eπ
[
Gt|St = s, at = a

]
[eqn. 3.13 in SB]

=Eπ
[
rt+1 + γrt+2 + γ2rt+3...|St = s, at = a

]
=Eπ

[
rt+1 + γ(rt+2 + γrt+3...)|St = s, at = a

]
=Eπ

[
rt+1 + γGt+1|St = s, at = a

]
[By definition, eqn. 3.11 in SB]

=Eπ
[
rt+1|St = s, at = a

]
+ γEπ

[
Gt+1|St = s, at = a

]

=Eπ
[
rt+1|St = s, at = a

]
+

γEπ
[
Eπ
[
Gt+1|St = s, at = a, St+1 = s′, at+1 = a′

]
|St = s, at = a

]
(Above applies the formula E

[
Y |X

]
= E

[
E
[
Y |X,Z

]
|X
]
)

[Get the intuition behind the formula in this youtube link]

=Eπ
[
rt+1|St = s, at = a

]
+

γEπ
[
Eπ
[
Gt+1|St+1 = s′, at+1 = a′

]
|St = s, at = a

]
[Gt+1depends only on st+1 and at+1]

= Eπ
[
rt+1|St=s, at=a

]
+ γEπ

[
qπ(s

′, a′)|St=s, at=a
]

[Using definition of qπ]
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Agenda Terminology Markov Decision Process

Bellman Expectation Equations

= r(s, a) +
∑
s′∈S

∑
a′∈A

qπ(s
′, a′)p(a′, s′|s, a)

= r(s, a) +
∑
s′∈S

∑
a′∈A

qπ(s
′, a′)p(a′|s′, s, a)p(s′|s, a)

= r(s, a) +
∑
s′∈S

∑
a′∈A

qπ(s
′, a′)p(a′|s′)p(s′|s, a) [Markov property]

= r(s, a) +
∑
s′∈S

p(s′|s, a)
∑
a′∈A

qπ(s
′, a′)p(a′|s′)
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Agenda Terminology Markov Decision Process

Bellman Expectation Equation for Student MDP

0.2

0.4

R	=	-1
Facebook

0.4

R	=	-1
Quit

R	=	-1
Facebook

R	=	0
Sleep

R	=	-2
Study

R	=	-2
Study

R	=	+1
Pub

R	=	+10
Study

-2.3 0

-1.3 2.7 7.4

𝑣" 𝑠 for	𝜋 𝑎 𝑠 = 0.5, 𝛾 = 1

7.4	=	0.5*{10+0}	+	0.5*{1+1*(-0.2*1.3+0.4*2.7+0.4*7.4)}

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Optimal Policies and Optimal Value Functions

§ Solving a reinforcement learning task means, roughly, finding a policy
that achieves a lot of reward (maximum) over the long run.

§ The notion of maximality leads to optimality in MDPs.

§ What is meant by a policy is better than some other policy?

§ A policy π is defined to be better than or equal to a policy π′ if its
expected return is greater than or equal to that of π′ for all states.

Definition

π ≥ π′ iff vπ(s) ≥ vπ′(s), ∀s ∈ S
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Agenda Terminology Markov Decision Process

Optimal Policies and Optimal Value Functions

Definition

The optimal state-value function v∗(s) is the maximum state-value
function over all policies

v∗(s) = max
π

vπ(s), ∀s ∈ S

The optimal action-value function q∗(s, a) is the maximum action-value
function over all policies

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S and , ∀a ∈ A

§ An MDP is “solved” when we know the optimal value function
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Agenda Terminology Markov Decision Process

Optimal Action-Value Function for Student MDP

0.2

0.4

R	=	-1
Facebook

0.4

R	=	-1
Quit

R	=	-1
Facebook

R	=	0
Sleep

R	=	-2
Study

R	=	-2
Study

R	=	+1
Pub

R	=	+10
Study

6 0

6 8 10
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Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Optimal Policy

Theorem

For any Markov Decision Process

§ There exists an optimal policy π∗ that is better than or equal to all
other policies, π∗ ≥ π, ∀π
§ All optimal policies achieve the optimal value function vπ∗(s) = v∗(s)

§ All optimal policies achieve the optimal action-value function
qπ∗(s, a) = q∗(s, a)

An optimal policy can be found by maximising over q∗(s, a).

π∗(a|s) =

1 if a = argmax
a∈A

q∗(s, a)

0 otherwise

§ There is always a deterministic optimal policy for any MDP.

§ If we know q∗(s, a), we immediately have the optimal policy.
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Agenda Terminology Markov Decision Process

Relation between v∗ and q∗

s

𝑣∗(𝑠) 𝑠

𝑞∗(𝑠, 𝑎) a a′
𝑞∗(𝑠, 𝑎′)

v∗(s) = max
a∈A

q∗(s, a)

s

𝑞∗(𝑠, 𝑎) 𝑠

𝑣∗(𝑠′)
𝑠′ 𝑠′′

𝑣∗(𝑠′′)

𝑟

q∗(s, a) = r(s, a)+γ
∑
s′∈S

p(s′|s, a)v∗(s′)

s

𝑣∗(𝑠) 𝑠

𝑎

𝑣∗(𝑠′) 𝑠′

𝑟

v∗(s) = max
a∈A

{
r(s, a) +

γ
∑
s′∈S

p(s′|s, a)v∗(s′)

}

𝑞∗(𝑠, 𝑎) 𝑠

𝑠′

𝑟

𝑞∗(𝑠′, 𝑎′) 𝑎′

q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)

max
a′∈A

q∗(s
′, a′)
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Appendices Conditional Independence Eigenvalues

1. Independence

Independence

A⊥⊥B =⇒ P (A|B) = P (A)

Conditional Independence

A⊥⊥B|C =⇒ P (A|B,C) = P (A|C)

Proof:

P (A|B,C) = P (A,B,C)

P (B,C)
=
P (A,B|C)��

�P (C)

P (B|C)��
�P (C)

(7)

=
P (A|C)P (B|C)

P (B|C)
[ From definition of conditional independence]

= P (A|C)
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2. Independence

Theorem

Eigenvalues of the transpose AT are the same as the eigenvalues of A

Proof

Eigenvalues of a matrix are roots of its characteristic polynomial. Hence if
the matrices A and AT have the same characteristic polynomial, then they
have the same eigenvalues.

det(AT − λI) = det(AT − λIT ) (8)

= det(A− λI)T

= det(A− λI) [Since det(A) = det(AT )]
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