Probability Primer
 CS60077：Reinforcement Learning

Abir Das

IIT Kharagpur
July 19 and 25， 2019

4ロ \square 4追 $4 \equiv$ 引 三

Agenda

To brush up basics of probability and random variables.

Resources

§ "Probability, Statistics, and Random Processes for Electrical Engineering", 3rd Edition, Alberto Leon-Garcia - [PSRPEE] - Alberto Leon-Garcia
§ "Machine Learning: A Probabilistic Perspective", Kevin P. Murphy [MLAPP] - Kevin Murphy:

Introduction

§ Probability theory is the study of uncertainty.
§ The mathematical treatise of probability is very sophisticated, and delves into a branch of analysis known as measure theory.
§ We, however, will go through only basics of probability theory at a level appropriate for our Reinforcement Learning course.

Introduction

§ Probability is the Mathematical language for quantifying uncertainty. The starting point is to specify random experiments, sample space and set of outcomes.
§ A random experiment is an experiment in which the outcome varies in an unpredictable fashion when the experiment is repeated under the same conditions.

An outcome is a result of the random experiment and it can not be decomposed in terms of other results. The sample space of a random experiment is defined as the set of all possible outcomes. An outcome and the sample space of a random experiment will be denoted as ζ and S respectively.

Introduction

§ Probability is the Mathematical language for quantifying uncertainty. The starting point is to specify random experiments, sample space and set of outcomes.
§ A random experiment is an experiment in which the outcome varies in an unpredictable fashion when the experiment is repeated under the same conditions.
§ An outcome is a result of the random experiment and it can not be decomposed in terms of other results. The sample space of a random experiment is defined as the set of all possible outcomes. An outcome and the sample space of a random experiment will be denoted as ζ and S respectively.

Introduction

§ Examples of random experiment

- Flipping a coin
- Rolling a die
- Flipping a coin twice
- Pick a number X at random between zero and one, then pick a number Y at random between zero and X.

The corresponding sample spaces will be

Introduction

§ Examples of random experiment

- Flipping a coin
- Rolling a die
- Flipping a coin twice
- Pick a number X at random between zero and one, then pick a number Y at random between zero and X.
§ The corresponding sample spaces will be
- $S_{1}=\{H, T\}$
- $S_{2}=\{1,2,3,4,5,6\}$
- $S_{3}=\{H H, H T, T H, T T\}$
- $S_{4}=\{(x, y): 0 \leq y \leq x \leq 1\}$.

Introduction

§ Any subset E of the sample space S is known as an event. We, sometimes, are not interested in the occurrence of specific outcomes but rather in the occurrence of a combination of a few outcomes. This requires that we consider subsets of S

Introduction

Any subset E of the sample space S is known as an event. We, sometimes, are not interested in the occurrence of specific outcomes but rather in the occurrence of a combination of a few outcomes.
This requires that we consider subsets of S

- Getting even number when rolling a die, $E_{2}=\{2,4,6\}$
- Number of heads equal to number of tails when flipping a coin twice, $E_{3}=\{H T, T H\}$
- Two numbers differ by less than $1 / 10$, $E_{4}=\{(x, y): 0 \leq y \leq x \leq 1$ and $|x-y|<1 / 10\}$.
We say that an event E occurs if the outcome ζ is in E

Introduction

§ Any subset E of the sample space S is known as an event. We, sometimes, are not interested in the occurrence of specific outcomes but rather in the occurrence of a combination of a few outcomes.
This requires that we consider subsets of S

- Getting even number when rolling a die, $E_{2}=\{2,4,6\}$
- Number of heads equal to number of tails when flipping a coin twice, $E_{3}=\{H T, T H\}$
- Two numbers differ by less than $1 / 10$, $E_{4}=\{(x, y): 0 \leq y \leq x \leq 1$ and $|x-y|<1 / 10\}$.
§ We say that an event E occurs if the outcome ζ is in E

[^0]
Introduction

§ Any subset E of the sample space S is known as an event. We, sometimes, are not interested in the occurrence of specific outcomes but rather in the occurrence of a combination of a few outcomes.
This requires that we consider subsets of S

- Getting even number when rolling a die, $E_{2}=\{2,4,6\}$
- Number of heads equal to number of tails when flipping a coin twice, $E_{3}=\{H T, T H\}$
- Two numbers differ by less than $1 / 10$, $E_{4}=\{(x, y): 0 \leq y \leq x \leq 1$ and $|x-y|<1 / 10\}$.
§ We say that an event E occurs if the outcome ζ is in E
§ Three events are of special importance.
- Simple event are the outcomes of random experiments.
- Sure event is the sample space S which consists of all outcomes and hence always occurs.
- Impossible or null event ϕ which contains no outcomes and hence never occurs.

Introduction

\S Set of events (or event space) \mathcal{F} : A set whose elements are subsets of the sample space (i.e., events). $\mathcal{F}=\{A: A \subseteq S\} . \mathcal{F}$ is really a "set of sets".
$\S \mathcal{F}$ should satisfy the following three properties.

- $\phi \in \mathcal{F}$
- $A \in \mathcal{F} \Longrightarrow A^{c}(\triangleq S \backslash A) \in \mathcal{F}$
- $A_{1}, A_{2}, \cdots \in \mathcal{F} \Longrightarrow \cup_{i} A_{i} \in \mathcal{F}$

Introduction

§ Probabilities are numbers assigned to events of \mathcal{F} that indicate how "likely" it is that the events will occur when a random experiment is performed.
Let a random experiment has sample space S and event space \mathcal{F}. Probability of an event A is a function $P: \mathcal{F} \rightarrow \mathbb{R}$ that satisfies the following properties

Introduction

§ Probabilities are numbers assigned to events of \mathcal{F} that indicate how "likely" it is that the events will occur when a random experiment is performed.
§ Let a random experiment has sample space S and event space \mathcal{F}. Probability of an event A is a function $P: \mathcal{F} \rightarrow \mathbb{R}$ that satisfies the following properties

- $P(A) \geq 0, \forall A \in \mathcal{F}$
- $P(S)=1$
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$ are disjoint events (i.e., $A_{i} \cap A_{j}=\phi$ for $i \neq j$) then, $P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$
These three properties are called the Axioms of Probability.

Introduction

§ Probabilities are numbers assigned to events of \mathcal{F} that indicate how "likely" it is that the events will occur when a random experiment is performed.
§ Let a random experiment has sample space S and event space \mathcal{F}. Probability of an event A is a function $P: \mathcal{F} \rightarrow \mathbb{R}$ that satisfies the following properties

- $P(A) \geq 0, \forall A \in \mathcal{F}$
- $P(S)=1$
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$ are disjoint events (i.e., $A_{i} \cap A_{j}=\phi$ for $i \neq j$) then, $P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$
§ These three properties are called the Axioms of Probability.

Introduction

§ Properties

- $P\left(A^{c}\right)=1-P(A)$
- $P(A) \leq 1$
- $P(\phi)=0$
- If $A \subseteq B$, then $P(A) \leq P(B)$.
- $P(A \cap B) \leq \min (P(A), P(B))$
- $P(A \cup B) \leq P(A)+P(B)$

Conditional Probability

§ Conditional probability provides whether two events are related in the sense that knowledge about the occurrence of one, say B, alters the likelihood of occurrence of the other say, A.
§ This conditional probability is defined as,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Two events A and B are independent (denoted as $A \perp B$) if the knowledge of occurrence of one does not change the likelihood of occurrence of the other. This translates to the condition for independence as,

Conditional Probability

§ Conditional probability provides whether two events are related in the sense that knowledge about the occurrence of one, say B, alters the likelihood of occurrence of the other say, A.
§ This conditional probability is defined as,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

§ Two events A and B are independent (denoted as $A \perp B$) if the knowledge of occurrence of one does not change the likelihood of occurrence of the other. This translates to the condition for independence as,

$$
\begin{aligned}
P(A \mid B) & =P(A) \\
\frac{P(A \cap B)}{P(B)} & =P(A) \\
P(A \cap B) & =P(A) P(B)
\end{aligned}
$$

Total Probability Theorem

\S Let $B_{1}, B_{2}, \cdots, B_{n}$ be exhaustive and mutually exclusive events such that each of these events has positive probabilities. Then for any event A, the total probability theorem says,

$$
\begin{equation*}
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) \tag{1}
\end{equation*}
$$

Proof: Since, $B_{1}, B_{2}, \cdots, B_{n}$ are exhaustive (i.e., their union covers the whole sample space), $A=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots\left(A \cap B_{n}\right)$

Total Probability Theorem

\S Let $B_{1}, B_{2}, \cdots, B_{n}$ be exhaustive and mutually exclusive events such that each of these events has positive probabilities. Then for any event A, the total probability theorem says,

$$
\begin{equation*}
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) \tag{1}
\end{equation*}
$$

Proof: Since, $B_{1}, B_{2}, \cdots, B_{n}$ are exhaustive (i.e., their union covers the whole sample space), $A=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots\left(A \cap B_{n}\right)$

Total Probability Theorem

\oint Let $B_{1}, B_{2}, \cdots, B_{n}$ be exhaustive and mutually exclusive events such that each of these events has positive probabilities. Then for any event A, the total probability theorem says,

$$
\begin{equation*}
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) \tag{1}
\end{equation*}
$$

Proof: Since, $B_{1}, B_{2}, \cdots, B_{n}$ are exhaustive (i.e., their union covers the whole sample space), $A=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots\left(A \cap B_{n}\right)$

$$
\begin{aligned}
P(A) & =P\left(\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots\left(A \cap B_{n}\right)\right) \\
& =P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\cdots+P\left(A \cap B_{n}\right)
\end{aligned}
$$

(as B_{i} 's are mutually exclusive)
$=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$

Total Probability Theorem

Figure credit: [PSRPEE] - Alberto Leon-Garcia
§ This is also known as marginalization operation.
\S Such exhaustive and mutually exclusive events $B_{1}, B_{2}, \cdots, B_{n}$ are also said to form a partition of the sample space.

Bayes Rule

§ The total probability theorem is often used in conjunction with the Bayes' Rule that relates conditional probabilities of the form $P(B \mid A)$ with conditional probabilities of the form $P(A \mid B)$.
\S Let the events $B_{1}, B_{2}, \cdots, B_{n}$ partitions a sample space such that each of the $P\left(B_{i}\right)$'s are non-negative. The Bayes' rule states,

$$
\begin{equation*}
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{P(A)}=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} \tag{2}
\end{equation*}
$$

§ Bayes' rule is a very important tool for inference in machine learning.
A can be thought of as the "effect" and B_{i} 's are several "causes" that can result in the effect. From the probabilities of the causes (B_{i} 's) resulting in the effect (A) and the probability of the causes (B_{i} 's) to occur frequently, the probability that a particular cause $\left(B_{i}\right)$ is the reason behind the effect (A) is computed.

Random Variables

§ Statistics and Machine Learning are concerned with data. The link to sample space and events to data is Random Variables.
\S A random variable is a mapping $(X: S \rightarrow \mathbb{R})$ from the sample space to real values that assigns a real number $(X(\zeta))$ to each outcome (ζ) in the sample space of a random experiment.

FIGURE 3.1

A random variable assigns a number $X(\zeta)$ to each outcome ζ in the sample space S of a random experiment.
Figure credit: [PSRPEE] - Alberto Leon-Garcia
§ We will use the following notation: capital letters denote random variables, e.g., X or Y, and lower case letters denote possible values of the random variables, e.g., x or y.

Random Variables

§ An example from [PSRPEE] - Alberto Leon-Garcia

Example 3.1 Coin Tosses

A coin is tossed three times and the sequence of heads and tails is noted. The sample space for this experiment is $S=\{$ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$. Let X be the number of heads in the three tosses. X assigns each outcome ζ in S a number from the set $S_{X}=\{0,1,2,3\}$. The table below lists the eight outcomes of S and the corresponding values of X.

$\zeta:$	HHH	HHT	HTH	THH	HTT	THT	TTH	TTT
$X(\zeta):$	3	2	2	2	1	1	1	0

X is then a random variable taking on values in the set $S_{X}=\{0,1,2,3\}$.
Since the value of a random variable is determined by the outcome of the experiment, we may assign probabilities to the possible values of the random variable.

Random Variables

§ An example from [PSRPEE] - Alberto Leon-Garcia

Example 3.1 Coin Tosses

A coin is tossed three times and the sequence of heads and tails is noted. The sample space for this experiment is $S=\{$ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$. Let X be the number of heads in the three tosses. X assigns each outcome ζ in S a number from the set $S_{X}=\{0,1,2,3\}$. The table below lists the eight outcomes of S and the corresponding values of X.

$\zeta:$	HHH	HHT	HTH	THH	HTT	THT	TTH	TTT
$X(\zeta):$	3	2	2	2	1	1	1	0

X is then a random variable taking on values in the set $S_{X}=\{0,1,2,3\}$.
§ Since the value of a random variable is determined by the outcome of the experiment, we may assign probabilities to the possible values of the random variable.

$$
\begin{equation*}
P(X=x)=P(\{\zeta \in S ; X(\zeta)=x\}) \tag{3}
\end{equation*}
$$

Random Variables

$$
\begin{aligned}
& P[X=0]=P[\{T T T\}]=\frac{1}{8} \\
& P[X=1]=P[\{H T T, T H T, T T H\}]=P[\{H T T\}]+P[\{T H T\}]+P[\{T T H\}]=\frac{3}{8} \\
& P[X=2]=P[\{H H T, H T H, T H H\}]=P[\{H H T\}]+P[\{H T H\}]+P[\{T H H\}]=\frac{3}{8} \\
& P[X=3]=P[\{H H H\}]=\frac{1}{8} \\
& \text { Plot generated by: }{ }^{1} \text { discrete_prob_dist_plo }{ }^{3}{ }^{2}
\end{aligned}
$$

Discrete Random Variables and PMF

§ A discrete random variable X is defined as a random variable that can take at most a countable number of possible values, i.e., $S_{X}=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.
A discrete random variable is said to be finite if its range is finite,

Discrete Random Variables and PMF

§ A discrete random variable X is defined as a random variable that can take at most a countable number of possible values, i.e., $S_{X}=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.
§ A discrete random variable is said to be finite if its range is finite, i.e., $S_{X}=\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right\}$.

The probabilities of events involving a discrete random variable X forms the Probability Mass Function (PMF) of X and it is defined as (ref eqn. (3)),

$$
P_{X}(x)=P(X=x)=P(\{\zeta \in S ; X(\zeta)=x\} \text { for real } x)
$$

Discrete Random Variables and PMF

A discrete random variable X is defined as a random variable that can take at most a countable number of possible values, i.e., $S_{X}=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.
§ A discrete random variable is said to be finite if its range is finite, i.e., $S_{X}=\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right\}$.

The probabilities of events involving a discrete random variable X forms the Probability Mass Function (PMF) of X and it is defined as (ref eqn. (3)),

$$
\begin{equation*}
P_{X}(x)=P(X=x)=P(\{\zeta \in S ; X(\zeta)=x\} \text { for real } x) \tag{4}
\end{equation*}
$$

Note that $P_{X}(x)$ is a function of x over the real line, and that $P_{X}(x)$ can be nonzero only at the values

Discrete Random Variables and PMF

§ A discrete random variable X is defined as a random variable that can take at most a countable number of possible values, i.e., $S_{X}=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.
§ A discrete random variable is said to be finite if its range is finite, i.e., $S_{X}=\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right\}$.
§ The probabilities of events involving a discrete random variable X forms the Probability Mass Function (PMF) of X and it is defined as (ref eqn. (3)),

$$
\begin{equation*}
P_{X}(x)=P(X=x)=P(\{\zeta \in S ; X(\zeta)=x\} \text { for real } x) \tag{4}
\end{equation*}
$$

\S Note that $P_{X}(x)$ is a function of x over the real line, and that $P_{X}(x)$ can be nonzero only at the values $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$

Continuous Random Variables and PDF

§ Random variables with a continuous range of possible experimental values are quite common.
X is a continuous random variable if there exists a non-negative function $f_{X}(x)$, defined for all real $x \in(-\infty, \infty)$, having the property that for any set B of real numbers, $P(X \in B)=\int_{B} f_{X}(x) d x$. The function $f_{X}(x)$ is called the probability density function (PDF) of the random variable X.

Continuous Random Variables and PDF

§ Random variables with a continuous range of possible experimental values are quite common.
X is a continuous random variable if there exists a non-negative function $f_{X}(x)$, defined for all real $x \in(-\infty, \infty)$, having the property that for any set B of real numbers, $P(X \in B)=\int_{B} f_{X}(x) d x$. The function $f_{X}(x)$ is called the probability density function (PDF) of the random variable X.
Some properties of PDFs

\square
If we let $a=b$ in the preceding then $P(X=a)=\int_{a}^{a} f_{X}(x) d x=0$
This means

Continuous Random Variables and PDF

§ Random variables with a continuous range of possible experimental values are quite common.
$\S X$ is a continuous random variable if there exists a non-negative function $f_{X}(x)$, defined for all real $x \in(-\infty, \infty)$, having the property that for any set B of real numbers, $P(X \in B)=\int_{B} f_{X}(x) d x$. The function $f_{X}(x)$ is called the probability density function (PDF) of the random variable X.
§ Some properties of PDFs

- $P(-\infty<X<\infty)=\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x$
- If we let $a=b$ in the preceding, then $P(X=a)=\int_{a}^{a} f_{X}(x) d x=0$
- This means

$$
P(a \leq X \leq b)=P(a<X<b)=P(a \leq X<b)=P(a<X \leq b)
$$

Continuous Random Variables and PDF

Figure 3.1: Illustration of a PDF. The probability that X takes value in an interval $[a, b]$ is $\int_{a}^{b} f_{X}(x) d x$, which is the shaded area in the figure.
Fig credit: MIT Course: 6.041-6.43, Lecture Notes

Fig credit: MIT Course: 6.041-6.43, Lecture Notes

Figure 3.2: Interpretation of the PDF $f_{X}(x)$ as "probability mass per unit length" around x. If δ is very small, the probability that X takes value in the interval $[x, x+\delta]$ is the shaded area in the figure, which is approximately equal to $f_{X}(x) \cdot \delta$.

Cumulative Distribution Function

§ We have defined PMF and PDF for discrete and continuous random variables respectively.

Cumulative Distribution Function (CDF) is a concept that is applicable to both discrete and continuous random variables. It is defined as,

Cumulative Distribution Function

§ We have defined PMF and PDF for discrete and continuous random variables respectively.
§ Cumulative Distribution Function (CDF) is a concept that is applicable to both discrete and continuous random variables. It is defined as,

$$
F_{X}(x)=P(X \leq x)= \begin{cases}\sum_{k \leq x} P_{X}(k) & X: \text { discrete } \tag{5}\\ \int_{-\infty}^{x} f_{X}(t) d t \quad X: \text { continuous }\end{cases}
$$

For continuous random variables, the cumulative distribution function $F_{X}(x)$ is differentiable everywhere. Naturally, in these cases, PDF is the derivative of the CDF

Cumulative Distribution Function

§ We have defined PMF and PDF for discrete and continuous random variables respectively.
§ Cumulative Distribution Function (CDF) is a concept that is applicable to both discrete and continuous random variables. It is defined as,

$$
F_{X}(x)=P(X \leq x)= \begin{cases}\sum_{k \leq x} P_{X}(k) & X: \text { discrete } \tag{5}\\ \int_{-\infty}^{x} f_{X}(t) d t & X: \text { continuous }\end{cases}
$$

§ For continuous random variables, the cumulative distribution function $F_{X}(x)$ is differentiable everywhere. Naturally, in these cases, PDF is the derivative of the CDF.

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

Cumulative Distribution Function

Cumulative Distribution Function

Fig credit: MIT Course: 6.041-6.43, Lecture Notes

CDF - Some Properties

§ $0 \leq F_{X}(x) \leq 1$
§ $\lim _{x \rightarrow-\infty} F_{X}(x)=0$
§ $\lim _{x \rightarrow \infty} F_{X}(x)=1$
$\S x \leq y \Longrightarrow F_{X}(x) \leq F_{X}(y)$

Expectation

§ The expected value/expectation/mean of a random variable is defined as:

$$
\mathbb{E}[X]= \begin{cases}\sum_{x} x P_{X}(x) & \text { when } X \text { is discrete } \tag{6}\\ \int x f_{X}(x) d x & \text { when } X \text { is continuous }\end{cases}
$$

Functions of random variable: If $Y=g(X)$ is a function of a
random variable X, then Y is also a random variable, since it provides
a numerical value for each possible outcome.

Expectation

§ The expected value/expectation/mean of a random variable is defined as:

$$
\mathbb{E}[X]= \begin{cases}\sum_{x} x P_{X}(x) & \text { when } X \text { is discrete } \tag{6}\\ \int x f_{X}(x) d x & \text { when } X \text { is continuous }\end{cases}
$$

§ Functions of random variable: If $Y=g(X)$ is a function of a random variable X, then Y is also a random variable, since it provides a numerical value for each possible outcome.
For a function of the random variable Y
$=g(X)$, the expectation is,
similarly, defined as,

when X is discrete

Expectation

§ The expected value/expectation/mean of a random variable is defined as:

$$
\mathbb{E}[X]= \begin{cases}\sum_{x} x P_{X}(x) & \text { when } X \text { is discrete } \tag{6}\\ \int x f_{X}(x) d x & \text { when } X \text { is continuous }\end{cases}
$$

§ Functions of random variable: If $Y=g(X)$ is a function of a random variable X, then Y is also a random variable, since it provides a numerical value for each possible outcome.
§ For a function of the random variable $Y=g(X)$, the expectation is, similarly, defined as,

$$
\mathbb{E}[g(X)]= \begin{cases}\sum_{x} g(x) P_{X}(x) & \text { when } X \text { is discrete } \tag{7}\\ \int g(x) f_{X}(x) d x & \text { when } X \text { is continuous }\end{cases}
$$

Variance

$\S \mathbb{E}[X]$ is also referred to as the first moment of X. Similarly the second moment is defined as $\mathbb{E}\left[X^{2}\right]$ and in general, the $n^{\text {th }}$ moment as $\mathbb{E}\left[X^{n}\right]$
Another quantity of interest is the variance of a random variable x, denoted as $\operatorname{var}(X)$ and defined as $\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$. Variance provides a measure of dispersion of X around its mean $\mathbb{E}[X]$

Variance

$\S \mathbb{E}[X]$ is also referred to as the first moment of X. Similarly the second moment is defined as $\mathbb{E}\left[X^{2}\right]$ and in general, the $n^{\text {th }}$ moment as $\mathbb{E}\left[X^{n}\right]$
§ Another quantity of interest is the variance of a random variable x, denoted as $\operatorname{var}(X)$ and defined as $\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$. Variance provides a measure of dispersion of X around its mean $\mathbb{E}[X]$.
Another measure of dispersion is the standard deviation of X, which
is defined as the square root of the variance $\sigma_{X}=\sqrt{\operatorname{var}(X)}$

Variance

$\S \mathbb{E}[X]$ is also referred to as the first moment of X. Similarly the second moment is defined as $\mathbb{E}\left[X^{2}\right]$ and in general, the $n^{\text {th }}$ moment as $\mathbb{E}\left[X^{n}\right]$
§ Another quantity of interest is the variance of a random variable x, denoted as $\operatorname{var}(X)$ and defined as $\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$. Variance provides a measure of dispersion of X around its mean $\mathbb{E}[X]$.
§ Another measure of dispersion is the standard deviation of X, which is defined as the square root of the variance $\sigma_{X}=\sqrt{\operatorname{var}(X)}$
Note that, using the rule for expected value of functions of random variables variance can be computed as,

Variance

$\S \mathbb{E}[X]$ is also referred to as the first moment of X. Similarly the second moment is defined as $\mathbb{E}\left[X^{2}\right]$ and in general, the $n^{\text {th }}$ moment as $\mathbb{E}\left[X^{n}\right]$
§ Another quantity of interest is the variance of a random variable x, denoted as $\operatorname{var}(X)$ and defined as $\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$. Variance provides a measure of dispersion of X around its mean $\mathbb{E}[X]$.
§ Another measure of dispersion is the standard deviation of X, which is defined as the square root of the variance $\sigma_{X}=\sqrt{\operatorname{var}(X)}$
§ Note that, using the rule for expected value of functions of random variables variance can be computed as,

$$
\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]= \begin{cases}\sum_{x}(X-\mathbb{E}[X])^{2} P_{X}(x) & \text { for discrete } X \tag{8}\\ \int(X-\mathbb{E}[X])^{2} f_{X}(x) d x & \text { for continuous } X\end{cases}
$$

Properties

§ Expectation

- $\mathbb{E}[a]=a$ for any constant $a \in \mathbb{R}$
- $\mathbb{E}[a f(X)]=a \mathbb{E}[f(X)]$ for any constant $a \in \mathbb{R}$
- $\mathbb{E}[f(X)+g(X)]=\mathbb{E}[f(X)]+\mathbb{E}[g(X)]$
§ Variance
$\triangleright \operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-[\mathbb{E}[X]]^{2}$
- $\operatorname{var}(a)=0$ for any constant $a \in \mathbb{R}$
- $\operatorname{var}(a f(X))=a^{2} \operatorname{var}(f(X))$ for any constant $a \in \mathbb{R}$

Some Common Random Variables

Discrete Random Variables
§ Bernoulli random variable: Takes two values 1 and 0 (or 'Head' and 'Tail'). The PMF is given by,

$$
P_{X}(x)= \begin{cases}p & \text { if } x=1 \tag{9}\\ 1-p & \text { if } x=0\end{cases}
$$

This is also written as $P_{X}(x)=p^{x}(1-p)^{1-x}$
§ It is used to model situations with just two random outcomes e.g., tossing a coin once.
\S For $X \sim \operatorname{Ber}(p), \mathbb{E}(X)=p$ and $\operatorname{var}(X)=p(1-p)$.

Some Common Random Variables

Discrete Random Variables
§ Binomial random variable: is used to model more complex situation e.g., the number of heads if a coin is tossed n times. The PMF is given by,

$$
\begin{equation*}
P_{X}(x)=P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1, \cdots, n . \tag{10}
\end{equation*}
$$

\S For $X \sim \operatorname{Bin}(n, p), \mathbb{E}(X)=n p$ and $\operatorname{var}(X)=n p(1-p)$.

Some Common Random Variables

Discrete Random Variables

§ Poisson random variable: models situations where the events occur completely at random in time or space. The random variable counts the number of occurrences of the event in a certain time period or in a certain region in space. The PMF is given by,

$$
\begin{equation*}
P_{X}(x)=P(X=x)=\frac{\lambda^{x}}{x!} e^{-\lambda}, \quad x=0,1,2, \cdots \tag{11}
\end{equation*}
$$

where λ is the average number of occurrences of the event in that specified time interval or region in space.
\S For $X \sim$ Poisson $(\lambda), \mathbb{E}(X)=\lambda$ and $\operatorname{var}(X)=\lambda$.

Some Common Random Variables

Continuous Random Variables
§ Uniform random variable: X is a uniform random variable on the interval (a, b) if its probability density function is given by,

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a \leq x \leq b \tag{12}\\ 0, & \text { otherwise }\end{cases}
$$

\S For $X \sim \operatorname{Uniform}(a, b), \mathbb{E}(X)=\frac{a+b}{2}$ and $\operatorname{var}(X)=\frac{(b-a)^{2}}{12}$.

Fig credit: MIT Course: 6.041-6.43, Lecture Notes

Some Common Random Variables

Continuous Random Variables
§ Exponential random variable: X is a exponential random variable if its probability density function is given by,

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \tag{13}\\ 0, & \text { otherwise }\end{cases}
$$

\S For $X \sim \operatorname{Exponential}(\lambda), \mathbb{E}(X)=\frac{1}{\lambda}$ and $\operatorname{var}(X)=\frac{1}{\lambda^{2}}$.

Fig credit: MIT Course: 6.041-6.43, Lecture Notes

Some Common Random Variables

Continuous Random Variables
§ Gaussian/Normal random variable: X is a Gaussian/Normal random variable if its probability density function is given by,

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{14}
\end{equation*}
$$

\S For $X \sim \operatorname{Gaussian}\left(\mu, \sigma^{2}\right), \mathbb{E}(X)=\mu$ and $\operatorname{var}(X)=\sigma^{2}$.
§ Gaussianity is Preserved by Linear Transformations. If $X \sim \operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$ and if a, b are scalars, the the random variable $Y=a X+b$ is also Gaussian with mean and variance $\mathbb{E}(X)=a \mu+b$ and $\operatorname{var}(X)=a^{2} \sigma^{2}$ respectively.

Two Random Variables

§ Many random experiments involve several random variables. For example, temperature and pressure of a room during different days.

Figure credit: [PSRPEE] - Alberto Leon-Garcia
§ Consider two discrete random variables X and Y associated with the same experiment. We will use the notation $P(X=x, Y=y)$ to denote $P(X=x$ and $Y=y)$.

Two Random Variables

§ The Joint PMF of the two random variables X and Y is defined as,

$$
\begin{align*}
P_{X, Y}(x, y) & =P(X=x, Y=y) \\
& =P(\{\zeta \in S ; X(\zeta)=x, Y(\zeta)=y\} \text { for real } x \text { and } y) \tag{15}
\end{align*}
$$

$\S P_{X}(x)$ and $P_{Y}(y)$ are sometimes referred to as the marginal PMFs, to distinguish them from the joint PMF.
§ The marginal and the joint PMFs are related in the following way (ref eqn. (1), the total probability theorem),

$$
\begin{equation*}
P_{X}(x)=\sum_{y} P_{X, Y}(x, y) \text { and } P_{Y}(y)=\sum_{x} P_{X, Y}(x, y) \tag{16}
\end{equation*}
$$

Two Random Variables

§ Similar to PDFs for single random variable, joint PDF for two continuous random variables is defined. for sets A and B of real numbers,

$$
\begin{equation*}
P(X \in A, Y \in B)=\int_{B} \int_{A} f_{X, Y}(x, y) d x d y \tag{17}
\end{equation*}
$$

§ Similarly, joint CDF is also defined.
$F_{X, Y}(x, y)=P(X \leq x, Y \leq y)= \begin{cases}\sum_{l \leq y} \sum_{k \leq x} P_{X, Y}(k, l) & X, Y: \text { discrete } \\ \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(u, v) d u d v & X, Y: \text { continuous }\end{cases}$
§ Differentiation for continuous random variables, yields

$$
\begin{equation*}
f_{X, Y}(x, y)=\frac{d F_{X, Y}(x, y)}{d y d x} \tag{18}
\end{equation*}
$$

Some Useful Relations

§ Marginal CDF can be obtained by setting the value of the other Random Variable to ∞, i.e., $F_{X}(x)=F_{X, Y}(x, \infty)$ and $F_{Y}(y)=F_{X, Y}(\infty, y)$.
§ Similar relations exist between marginal and joint PDFs. $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$ and $f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x$
§ Conditional PMF and Marginal PMF for discrete variables are related as, $P_{Y \mid X}(y \mid x)=\frac{P_{X, Y}(x, y)}{P_{X}(x)}$ assuming that $P_{X}(x) \neq 0$.
\S Similar relation is there for continuous random variables.
$f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}$ provided $f_{X}(x) \neq 0$.

Joint Expectations

§ Similar expectation and moment rules exist for joint moments and expectation as in the case of a single random variable.
§ Considering $Z=g(X, Y)$ as a function of two random variables, the expectation of Z can be found as,

$$
\mathbb{E}[Z]= \begin{cases}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y & X, Y \text { continuous } \tag{19}\\ \sum_{i} \sum_{j} g\left(x_{i}, y_{j}\right) P_{X, Y}\left(x_{i}, y_{n}\right) & X, Y \text { discrete }\end{cases}
$$

§ Expectation of a sum of random variables is the sum of the expectations of the random variables.

$$
\begin{equation*}
\mathbb{E}\left[X_{1}+X_{2}+X_{3}+\cdots\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]+\cdots \tag{20}
\end{equation*}
$$

Joint Moments, Correlation, and Covariance

\S The $j k^{t h}$ joint moment of X and Y is defined as,

$$
\mathbb{E}\left[X^{j} Y^{k}\right]= \begin{cases}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{j} y^{k} f_{X, Y}(x, y) d x d y & X, Y \text { continuous } \tag{21}\\ \sum_{m} \sum_{n} x_{m}^{j} y_{n}^{k} P_{X, Y}\left(x_{m}, y_{n}\right) & X, Y \text { discrete }\end{cases}
$$

When $j=k=1$, the corresponding moment $\mathbb{E}[X Y]$ gives the correlation between X and Y. If $\mathbb{E}[X Y]=0, X$ and Y are said to be orthogonal.

Joint Moments, Correlation, and Covariance

\S The $j k^{t h}$ joint moment of X and Y is defined as,

$$
\mathbb{E}\left[X^{j} Y^{k}\right]= \begin{cases}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{j} y^{k} f_{X, Y}(x, y) d x d y & X, Y \text { continuous } \tag{21}\\ \sum_{m} \sum_{n} x_{m}^{j} y_{n}^{k} P_{X, Y}\left(x_{m}, y_{n}\right) & X, Y \text { discrete }\end{cases}
$$

\S When $j=k=1$, the corresponding moment $\mathbb{E}[X Y]$ gives the correlation between X and Y. If $\mathbb{E}[X Y]=0, X$ and Y are said to be orthogonal.
The $j k^{\text {th }}$ central moment of X and Y is defined as

Joint Moments, Correlation, and Covariance

\S The $j k^{t h}$ joint moment of X and Y is defined as,

$$
\mathbb{E}\left[X^{j} Y^{k}\right]= \begin{cases}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{j} y^{k} f_{X, Y}(x, y) d x d y & X, Y \text { continuous } \tag{21}\\ \sum_{m} \sum_{n} x_{m}^{j} y_{n}^{k} P_{X, Y}\left(x_{m}, y_{n}\right) & X, Y \text { discrete }\end{cases}
$$

\S When $j=k=1$, the corresponding moment $\mathbb{E}[X Y]$ gives the correlation between X and Y. If $\mathbb{E}[X Y]=0, X$ and Y are said to be orthogonal.
\S The $j k^{t h}$ central moment of X and Y is defined as $\mathbb{E}\left[(X-\mathbb{E}(X))^{j}(Y-\mathbb{E}(Y))^{k}\right]$ When $j=k=1$, the corresponding central moment $\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]$ is called the covariance between X and

Joint Moments, Correlation, and Covariance

\S The $j k^{\text {th }}$ joint moment of X and Y is defined as,

$$
\mathbb{E}\left[X^{j} Y^{k}\right]= \begin{cases}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{j} y^{k} f_{X, Y}(x, y) d x d y & X, Y \text { continuous } \tag{21}\\ \sum_{m} \sum_{n} x_{m}^{j} y_{n}^{k} P_{X, Y}\left(x_{m}, y_{n}\right) & X, Y \text { discrete }\end{cases}
$$

\S When $j=k=1$, the corresponding moment $\mathbb{E}[X Y]$ gives the correlation between X and Y. If $\mathbb{E}[X Y]=0, X$ and Y are said to be orthogonal.
\S The $j k^{t h}$ central moment of X and Y is defined as $\mathbb{E}\left[(X-\mathbb{E}(X))^{j}(Y-\mathbb{E}(Y))^{k}\right]$
§ When $j=k=1$, the corresponding central moment $\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]$ is called the covariance between X and Y.

Joint Moments, Correlation, and Covariance

§ Covariance can also be expressed as $\operatorname{COV}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$ If X and Y are independent, then $\operatorname{COV}(X, Y)=0$, i.e., $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$

Joint Moments, Correlation, and Covariance

§ Covariance can also be expressed as $\operatorname{COV}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
\S If X and Y are independent, then $\operatorname{COV}(X, Y)=0$, i.e., $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
Correlation coefficient turns covariance into a normalized scale between -1 to 1

Joint Moments, Correlation, and Covariance

Covariance can also be expressed as $\operatorname{COV}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
If X and Y are independent, then $\operatorname{COV}(X, Y)=0$, i.e., $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
§ Correlation coefficient turns covariance into a normalized scale between -1 to 1 .

$$
\begin{equation*}
\rho_{X, Y}=\frac{\operatorname{COV}(X, Y)}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}} \tag{22}
\end{equation*}
$$

$\rho_{\mathrm{Y}} \mathrm{V}=0$ means X and Y are uncorrelated.

Joint Moments, Correlation, and Covariance

Covariance can also be expressed as $\operatorname{COV}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
If X and Y are independent, then $\operatorname{COV}(X, Y)=0$, i.e.,
$\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
§ Correlation coefficient turns covariance into a normalized scale between -1 to 1 .

$$
\begin{equation*}
\rho_{X, Y}=\frac{\operatorname{CoV}(X, Y)}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}} \tag{22}
\end{equation*}
$$

$\S \rho_{X, Y}=0$ means X and Y are uncorrelated. Then $\operatorname{COV}(X, Y)=0$.
If X and Y are independent, then they are uncorrelated, but the
reverse is not always true (true always for Gaussian random variables) Check Section 5.6.2 of [PSRPEE] for more details and examples.

Joint Moments, Correlation, and Covariance

\S Covariance can also be expressed as $\operatorname{COV}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$ If X and Y are independent, then $\operatorname{COV}(X, Y)=0$, i.e., $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
§ Correlation coefficient turns covariance into a normalized scale between -1 to 1 .

$$
\begin{equation*}
\rho_{X, Y}=\frac{\operatorname{CoV}(X, Y)}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}} \tag{22}
\end{equation*}
$$

$\S \rho_{X, Y}=0$ means X and Y are uncorrelated. Then $\operatorname{COV}(X, Y)=0$.
§ If X and Y are independent, then they are uncorrelated, but the reverse is not always true (true always for Gaussian random variables). Check Section 5.6.2 of [PSRPEE] for more details and examples.

Joint Moments, Correlation, and Covariance

\S For example, let $X \sim \mathcal{U}(-1,1)$ and $Y=X^{2}$. Clearly, Y is dependent on X, but it can be shown that $\rho_{X, Y}=0$.

$$
\begin{gather*}
\mathbb{E}[X]=\frac{-1+1}{2}=0, \operatorname{VAR}[X]=\frac{(1-(-1))^{2}}{12}=\frac{1}{3} \\
\mathbb{E}[Y]=\mathbb{E}\left[X^{2}\right]=\operatorname{VAR}[X]+(\mathbb{E}[X])^{2}=\frac{1}{3}-0^{2}=\frac{1}{3} \\
\mathbb{E}[X Y]=\int_{-1}^{1} x^{3} f_{X}(x) d x=\int_{-1}^{1} x^{3} \frac{1}{2} d x=0 \tag{23}\\
\rho_{X, Y}=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=\frac{0-0 \times \frac{1}{3}}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=0
\end{gather*}
$$

Joint Moments, Correlation, and Covariance

\S For example, let $X \sim \mathcal{U}(-1,1)$ and $Y=X^{2}$. Clearly, Y is dependent on X, but it can be shown that $\rho_{X, Y}=0$.

$$
\begin{gather*}
\mathbb{E}[X]=\frac{-1+1}{2}=0, \operatorname{VAR}[X]=\frac{(1-(-1))^{2}}{12}=\frac{1}{3} \\
\mathbb{E}[Y]=\mathbb{E}\left[X^{2}\right]=\operatorname{VAR}[X]+(\mathbb{E}[X])^{2}=\frac{1}{3}-0^{2}=\frac{1}{3} \\
\mathbb{E}[X Y]=\int_{-1}^{1} x^{3} f_{X}(x) d x=\int_{-1}^{1} x^{3} \frac{1}{2} d x=0 \tag{23}\\
\rho_{X, Y}=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=\frac{0-0 \times \frac{1}{3}}{\sqrt{\operatorname{VAR}(X)} \sqrt{\operatorname{VAR}(Y)}}=0
\end{gather*}
$$

§ If X and Y are independent random variables, then random variables defined by any pair of functions $g(X)$ and $h(Y)$ are also independent, i.e., if $P(X Y)=P(X) P(Y)$ then $P(g(X) h(Y))=P(g(X)) P(h(y))$.

Conditional Expectation

\S The conditional expectation of Y given $X=x$ is defined as,

$$
\begin{equation*}
\mathbb{E}[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y \mid x}(y \mid x) d y \tag{24}
\end{equation*}
$$

The conditional expectation $\mathbb{E}(Y \mid x)$ can be viewed as defining a function of $x, g(x)=\mathbb{E}(Y \mid x)$. As x, is a result of a random experiment, $\mathbb{E}(Y \mid x)$ is a random variable. So, we can find its expectation as,

Conditional Expectation

§ The conditional expectation of Y given $X=x$ is defined as,

$$
\begin{equation*}
\mathbb{E}[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y \mid x}(y \mid x) d y \tag{24}
\end{equation*}
$$

The conditional expectation $\mathbb{E}(Y \mid x)$ can be viewed as defining a function of $x, g(x)=\mathbb{E}(Y \mid x)$. As x, is a result of a random experiment, $\mathbb{E}(Y \mid x)$ is a random variable. So, we can find its expectation as,

$$
\begin{equation*}
\mathbb{E}[\mathbb{E}[Y \mid x]]=\int_{-\infty}^{\infty} \mathbb{E}[Y \mid x] f_{X}(x) d x=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{Y \mid x}(y \mid x) f_{X}(x) d x d y \tag{25}
\end{equation*}
$$

With some simple manipulation of the double integral it can be easily shown that $\mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid x]]$. Sometimes, to remove confusion it is where the subscripts of the expectation sign denotes the expection w.r.t. that random variable.

Conditional Expectation

The conditional expectation of Y given $X=x$ is defined as,

$$
\begin{equation*}
\mathbb{E}[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y \mid x}(y \mid x) d y \tag{24}
\end{equation*}
$$

The conditional expectation $\mathbb{E}(Y \mid x)$ can be viewed as defining a function of $x, g(x)=\mathbb{E}(Y \mid x)$. As x, is a result of a random experiment, $\mathbb{E}(Y \mid x)$ is a random variable. So, we can find its expectation as,

$$
\begin{equation*}
\mathbb{E}[\mathbb{E}[Y \mid x]]=\int_{-\infty}^{\infty} \mathbb{E}[Y \mid x] f_{X}(x) d x=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{Y \mid x}(y \mid x) f_{X}(x) d x d y \tag{25}
\end{equation*}
$$

§ With some simple manipulation of the double integral it can be easily shown that $\mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid x]]$. Sometimes, to remove confusion it is also written as $\mathbb{E}_{Y}[Y]=\mathbb{E}_{X}\left[\mathbb{E}_{Y}[Y \mid x]\right]$ where the subscripts of the expectation sign denotes the expection w.r.t. that random variable.

Conditional Independence

$\S X$ and Y are conditionally independent given Z iff the conditional joint can be written as product of conditional marginals,

$$
\begin{equation*}
X \Perp Y \mid Z \Leftrightarrow P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \tag{26}
\end{equation*}
$$

Conditional also implies,

$$
X \Perp Y \mid Z \Rightarrow P(X \mid Y, Z)=P(X \mid Z) \text { and } P(Y \mid X, Z)=P(Y \mid Z)
$$

Conditional Independence

$\S X$ and Y are conditionally independent given Z iff the conditional joint can be written as product of conditional marginals,

$$
\begin{equation*}
X \Perp Y \mid Z \Leftrightarrow P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \tag{26}
\end{equation*}
$$

§ Conditional also implies,

$$
\begin{equation*}
X \Perp Y \mid Z \Rightarrow P(X \mid Y, Z)=P(X \mid Z) \text { and } P(Y \mid X, Z)=P(Y \mid Z) \tag{27}
\end{equation*}
$$

Z causes X and Y. Given it is 'raining', we don't need to know whether 'frogs are out' to predict if 'ground is wet'

Conditional Independence

$\S X$ and Y are conditionally independent given Z iff the conditional joint can be written as product of conditional marginals,

$$
\begin{equation*}
X \Perp Y \mid Z \Leftrightarrow P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \tag{26}
\end{equation*}
$$

§ Conditional also implies,

$$
\begin{equation*}
X \Perp Y \mid Z \Rightarrow P(X \mid Y, Z)=P(X \mid Z) \text { and } P(Y \mid X, Z)=P(Y \mid Z) \tag{27}
\end{equation*}
$$

§ Z causes X and Y. Given it is 'raining', we don't need to know whether 'frogs are out' to predict if 'ground is wet'.

Multiple Random Variables

§ The notions and ideas can be generalized to more than two random variables. A vector random variable \mathbf{X} is a function that assigns a vector of real numbers to each outcome ζ in the sample space S of a random experiment.
§ Uppercase boldface letters are generally used to denote vector random variables. By convention, it is a column vector. Each X_{i} can be thought of as a random variable itself.

$$
\mathbf{X}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right]=\left[X_{1}, X_{2}, \cdots, X_{n}\right]^{T}
$$

§ Possible values of the vector random variable are denoted by $\mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$

Multiple Random Variables

§ The Joint PMF of n-dimensional discrete random vector \mathbf{X}

$$
\begin{equation*}
P_{\mathbf{X}}(\mathbf{x})=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{n}=x_{n}\right) \tag{28}
\end{equation*}
$$

§ Relation between the marginal and the joint PMFs,

$$
\begin{equation*}
P_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}} \cdots \sum_{x_{n}} P_{\mathbf{X}}(\mathbf{x}) \tag{29}
\end{equation*}
$$

§ Similarly, joint CDF is also defined.

$$
\begin{align*}
F_{\mathbf{X}}(\mathbf{x}) & =P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \cdots, X_{n} \leq x_{n}\right) \\
& = \begin{cases}\sum_{j \leq x_{1}} \sum_{k \leq x_{2}} \cdots \sum_{l \leq x_{n}} P_{\mathbf{X}}\left(\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}\right) & \mathbf{X}: \text { discrete } \\
\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \cdots \int_{-\infty}^{x_{n}} f_{\mathbf{X}}\left([u, v, \cdots, w]^{T}\right) d u d v \cdots d w & \mathbf{X}: \text { continuous }\end{cases} \tag{30}
\end{align*}
$$

Multiple Random Variables

§ The joint PDF of n-dimensional continuous random vector \mathbf{X}

$$
\begin{equation*}
f_{\mathbf{X}}(\mathbf{x})=\frac{\partial^{n} F_{\mathbf{X}}(\mathbf{x})}{\partial x_{1} \partial x_{2} \cdots \partial x_{3}} \tag{31}
\end{equation*}
$$

§ The marginal PDF

$$
\begin{equation*}
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{x}}\left(\left[x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right]^{T}\right) d x_{2} d x_{3} \cdots d x_{n} \tag{32}
\end{equation*}
$$

§ The conditional PDF

$$
\begin{equation*}
f_{X_{1} / X_{2}, \cdots, X_{n}}\left(x_{1} / x_{2}, \cdots, x_{n}\right)=\frac{f_{\mathbf{X}}(\mathbf{x})}{f_{X_{2}, \cdots, X_{n}}\left(x_{2}, \cdots, x_{n}\right)} \tag{33}
\end{equation*}
$$

Chain rule

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =f\left(x_{n} \mid x_{1}, \cdots, x_{n-1}\right) f\left(x_{1}, \cdots, x_{n-1}\right) \\
& =f\left(x_{n} \mid x_{1}, \cdots, x_{n-1}\right) f\left(x_{n-1} \mid x_{1}, \cdots, x_{n-2}\right) f\left(x_{1}, \cdots, x_{n-2}\right) \\
& =f\left(x_{1}\right) \prod_{i=2}^{n} f\left(x_{i} \mid x_{1}, x_{2}, \cdots, x_{i-1}\right)
\end{aligned}
$$

Multiple Random Variables

§ There's also natural generalization of independence.

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \tag{35}
\end{equation*}
$$

Expectation: Consider an arbitrary function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The expected value is,

$$
\mathbb{E}[g(\mathbf{X})]=\int_{\mathbb{R}^{n}} g(\mathbf{X}) f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

If g is a function from \mathbb{R}^{n} to \mathbb{R}^{m}, then the expected value of g is the element-wise expected values of the output vector, i.e., if $\mathrm{g}(\mathrm{x})=\left[g_{1}(\mathrm{x}), g_{2}\left(\mathrm{x}, \cdots, g_{n}(\mathrm{x})\right)\right]^{T}$, then
$\mathbb{E}[\mathbf{g}(\mathbf{x})]=\left[\mathbb{E}\left[g_{1}(\mathbf{x})\right], \mathbb{E}\left[g_{2}(\mathbf{x}]\right.\right.$,

Multiple Random Variables

§ There's also natural generalization of independence.

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \tag{35}
\end{equation*}
$$

§ Expectation: Consider an arbitrary function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The expected value is,

$$
\begin{equation*}
\mathbb{E}[g(\mathbf{X})]=\int_{\mathbb{R}^{n}} g(\mathbf{X}) f_{\mathbf{x}}(\mathbf{x}) d \mathbf{x} \tag{36}
\end{equation*}
$$

§ If g is a function from \mathbb{R}^{n} to \mathbb{R}^{m}, then the expected value of g is the element-wise expected values of the output vector, i.e., if $\mathbf{g}(\mathbf{x})=\left[g_{1}(\mathbf{x}), g_{2}\left(\mathbf{x}, \cdots, g_{n}(\mathbf{x})\right)\right]^{T}$, then $\mathbb{E}[\mathbf{g}(\mathbf{x})]=\left[\mathbb{E}\left[g_{1}(\mathbf{x})\right], \mathbb{E}\left[g_{2}(\mathbf{x}], \cdots, \mathbb{E}\left[g_{n}(\mathbf{x})\right)\right]^{T}\right.$

Multiple Random Variables

§ Covariance matrix: For a random vector $\mathbf{X} \in \mathbb{R}^{n}$, covariance matrix $\boldsymbol{\Sigma}$ is $n \times n$ square matrix whose entries are given by $\boldsymbol{\Sigma}_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$.

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\left[\begin{array}{cccc}
\operatorname{Var}\left(X_{1}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}, X_{2}\right) & \cdots & \operatorname{Var}\left(X_{2}, X_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \operatorname{Cov}\left(X_{n}, X_{2}\right) & \cdots & \operatorname{Var}\left(X_{n}, X_{n}\right)
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathbb{E}\left[X_{1}^{2}\right]-\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{1}\right] & \cdots & \mathbb{E}\left[X_{1} X_{n}\right]-\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{n}\right] \\
\mathbb{E}\left[X_{2} X_{1}\right]-\mathbb{E}\left[X_{2}\right] \mathbb{E}\left[X_{1}\right] & \cdots & \mathbb{E}\left[X_{2} X_{n}\right]-\mathbb{E}\left[X_{2}\right] \mathbb{E}\left[X_{n}\right] \\
\vdots & \ddots & \vdots \\
\mathbb{E}\left[X_{n} X_{1}\right]-\mathbb{E}\left[X_{n}\right] \mathbb{E}\left[X_{1}\right] & \cdots & \mathbb{E}\left[X_{n}^{2}\right]-\mathbb{E}\left[X_{n}\right] \mathbb{E}\left[X_{n}\right]
\end{array}\right] \\
& \left.=\left[\begin{array}{ccc}
\mathbb{E}\left[X_{1}^{2}\right] & \cdots & \mathbb{E}\left[X_{1} X_{n}\right] \\
\mathbb{E}\left[X_{2} X_{1}\right] & \cdots & \mathbb{E}\left[X_{2} X_{n}\right] \\
\vdots & \ddots & \vdots \\
\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{1}\right] & \cdots & \mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{n}\right] \\
\mathbb{E}\left[X_{2}\right] \mathbb{E}\left[X_{1}\right] & \cdots & \mathbb{E}\left[X_{2}\right] \mathbb{E}\left[X_{n}\right] \\
\vdots & \cdots & \mathbb{E}\left[X_{n}^{2}\right]
\end{array}\right] \begin{array}{ccc}
\vdots \\
\mathbb{E}\left[X_{n}\right] \mathbb{E}\left[X_{1}\right] & \cdots & \mathbb{E}\left[X_{n}\right] \mathbb{E}\left[X_{n}\right]
\end{array}\right] \\
& =\mathbb{E}\left[\mathbf{X X} \mathbf{X}^{T}\right]-\mathbb{E}[\mathbf{X}] \mathbb{E}\left[\mathbf{X}^{T}\right]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{T}\right]
\end{aligned}
$$

Linear Transformations of Random Vectors

§ Suppose \mathbf{X} is some random vector and $\mathbf{Y}=\mathbf{f}(\mathbf{X})$, then we would like to know what are the first two moments of Y.
\S Let $\mathbf{f}($.$) is a linear function that is \mathbf{Y}=\mathbf{A X}+\mathbf{b}$, where $\mathbf{X} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{Y} \in \mathbb{R}^{m}$.
The mean will be $\mathbb{E}[\mathbf{Y}]=\mathbb{E}[\mathbf{A X}+\mathrm{b}]=\mathbf{A} \mathbb{E}[\mathbf{X}]+\mathrm{b}$.
The covariance matrix $\boldsymbol{\Sigma}_{\mathbf{Y}}$ is given by,

Linear Transformations of Random Vectors

§ Suppose \mathbf{X} is some random vector and $\mathbf{Y}=\mathbf{f}(\mathbf{X})$, then we would like to know what are the first two moments of Y.
\S Let $\mathbf{f}($.$) is a linear function that is \mathbf{Y}=\mathbf{A X}+\mathbf{b}$, where $\mathbf{X} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{Y} \in \mathbb{R}^{m}$.
\S The mean will be $\mathbb{E}[\mathbf{Y}]=\mathbb{E}[\mathbf{A X}+\mathbf{b}]=\mathbf{A} \mathbb{E}[\mathbf{X}]+\mathbf{b}$.
\S The covariance matrix $\boldsymbol{\Sigma}_{\mathbf{Y}}$ is given by,

$$
\begin{align*}
\boldsymbol{\Sigma}_{\mathbf{Y}} & =\mathbb{E}\left[(\mathbf{Y}-\mathbb{E}[\mathbf{Y}])(\mathbf{Y}-\mathbb{E}[\mathbf{Y}])^{T}\right] \\
& =\mathbb{E}\left[(\mathbf{A X}+\mathbf{b}-\mathbf{A} \mathbb{E}[\mathbf{X}]-\mathbf{b})(\mathbf{A X}+\mathbf{b}-\mathbf{A} \mathbb{E}[\mathbf{X}]-\mathbf{b})^{T}\right] \tag{38}\\
& =\mathbb{E}\left[\mathbf{A}(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{T} \mathbf{A}^{T}\right] \\
& =\mathbf{A} \mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{T}\right] \mathbf{A}^{T}=\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{X}} \mathbf{A}^{T}
\end{align*}
$$

Cross-covariance between \mathbf{X} and \mathbf{Y} is $\boldsymbol{\Sigma}_{\mathbf{X Y}}=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{Y}-\mathbb{E}[\mathbf{Y}])^{T}\right]$
For $\mathbf{Y}=\mathbf{A} \mathbf{X}+\mathbf{b}$, it can be shown that $\boldsymbol{\Sigma}_{\mathbf{Y}} \mathbf{Y}=\boldsymbol{\Sigma}_{\mathbf{Y}} \mathbf{A}^{T}$

Linear Transformations of Random Vectors

§ Suppose \mathbf{X} is some random vector and $\mathbf{Y}=\mathbf{f}(\mathbf{X})$, then we would like to know what are the first two moments of Y.
\S Let $\mathbf{f}($.$) is a linear function that is \mathbf{Y}=\mathbf{A X}+\mathbf{b}$, where $\mathbf{X} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{Y} \in \mathbb{R}^{m}$.
\S The mean will be $\mathbb{E}[\mathbf{Y}]=\mathbb{E}[\mathbf{A X}+\mathbf{b}]=\mathbf{A} \mathbb{E}[\mathbf{X}]+\mathbf{b}$.
\S The covariance matrix $\boldsymbol{\Sigma}_{\mathbf{Y}}$ is given by,

$$
\begin{align*}
\boldsymbol{\Sigma}_{\mathbf{Y}} & =\mathbb{E}\left[(\mathbf{Y}-\mathbb{E}[\mathbf{Y}])(\mathbf{Y}-\mathbb{E}[\mathbf{Y}])^{T}\right] \\
& =\mathbb{E}\left[(\mathbf{A X}+\mathbf{b}-\mathbf{A} \mathbb{E}[\mathbf{X}]-\mathbf{b})(\mathbf{A X}+\mathbf{b}-\mathbf{A} \mathbb{E}[\mathbf{X}]-\mathbf{b})^{T}\right] \\
& =\mathbb{E}\left[\mathbf{A}(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{T} \mathbf{A}^{T}\right] \tag{38}\\
& =\mathbf{A} \mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{T}\right] \mathbf{A}^{T}=\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{X}} \mathbf{A}^{T}
\end{align*}
$$

§ Cross-covariance between \mathbf{X} and \mathbf{Y} is $\boldsymbol{\Sigma}_{\mathbf{X Y}}=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{Y}-\mathbb{E}[\mathbf{Y}])^{T}\right]$
\S For $\mathbf{Y}=\mathbf{A X}+\mathbf{b}$, it can be shown that $\boldsymbol{\Sigma}_{\mathbf{X Y}}=\boldsymbol{\Sigma}_{\mathbf{X}} \mathbf{A}^{T}$.

[^0]: Three events are of special importance.
 Simple event are the outcomes of random experiments.
 Sure event is the sample space S which consists of all outcomes and
 hence always occurs.
 Impossible or null event ϕ which contains no outcomes and hence

