# NLP: Pretraining and Applications CS60010: Deep Learning

Abir Das

IIT Kharagpur

Mar 30 and 31, 2022



#### Agenda

- Discussion on unsupervised pretraining towards word embedding
- § Discussion on Word2Vec, ELMO, BERT



#### Resources

§ CS W182 course by Sergey Levine at UC Berkeley. [Link] [Lecture 13]

## The Big Idea: Unsupervised Pretraining

- Deep learning works best when we have a lot of data
- **Good news**: there is plenty of text data out there!
- Bad news: most of it is unlabeled
- 1,000s of times more data without labels (i.e., valid English text in books, news, web) vs. labeled/paired data (e.g., English/French translations)
- § The big challenge: how can we use freely available and unlabeled text data to help us apply deep learning methods to NLP?

4 / 40

## Start Simple: How do we Represent Words

$$c = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- Dimensionality = Number of words in vocabulary
- § Not great, not terrible
- § Semantic relationship is not preserved

## Start Simple: How do we Represent Words

$$x = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$



- Dimensionality = Number of words in vocabulary
- Not great, not terrible
- Semantic relationship is not preserved
- The pixels mean something! Not a great metric space, but, still, they mean something

5 / 40

## Start Simple: How do we Represent Words

$$c = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$



- $\S$  Dimensionality = Number of words in vocabulary
- § Not great, not terrible
- § Semantic relationship is not preserved
- § The pixels mean something! Not a great metric space, but, still, they mean something
- § Maybe if we had a more meaningful representation of words, then learning downstream tasks would be much easier!
- § Meaningful = vectors corresponding to similar words should be close

#### Some Examples of Good Word Embedding





Source: CS W182 course, Sergey Levine, UC Berkeley

#### How do we learn embeddings?

- § Basic idea: the meaning of a word is determined by what other words occur in close proximity to it in sentences
- § Learn a representation for each word such that its neighbors are "close" under this representation

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...
```

These context words will represent banking

§ **Terminology**: The other words which are close to the word in question are known as *context* words. Specifically, context words are words that occur within some distance of the word in question





§ Cast it as a binary classification problem - is this the right context word or not?



- § Cast it as a binary classification problem is this the right context word or not?
- §  $u_o$  and  $v_c$  denote the vector representations of the context word o and the center word c respectively
- § For every word in the vocabulary these two vectors are maintained.
- § Our goal is to learn them. Once learned, we generally get a single representation of the words by averaging these two



- § Cast it as a binary classification problem is this the right context word or not?
- §  $u_o$  and  $v_c$  denote the vector representations of the context word o and the center word c respectively
- § For every word in the vocabulary these two vectors are maintained.
- § Our goal is to learn them. Once learned, we generally get a single representation of the words by averaging these two
- § The idea gave rise to word2vec model by Tomas Mikolov *et al.*



- §  $p(o \text{ is the right word}|c) = \sigma(u_o^T v_c) = \frac{1}{1 + \exp{-u_o^T v_c}}$
- § This brings the right context word  $u_o$  and right center word  $v_c$  close together



- §  $p(o \text{ is the right word}|c) = \sigma(u_o^T v_c) = \frac{1}{1 + \exp{-u_o^T v_c}}$
- § This brings the right context word  $u_o$  and right center word  $v_c$  close together
- But we need to also provide some negative examples to learn
- §  $p(o \text{ is the wrong word}|c) = \sigma(-u_o^T v_c) = \frac{1}{1 + \exp u_o^T v_c}$
- § This will push the wrong pairs of words further apart



- §  $p(o \text{ is the right word}|c) = \sigma(u_o^T v_c) = \frac{1}{1 + \exp{-u_o^T v_c}}$
- § This brings the right context word  $u_o$  and right center word  $v_c$  close together
- § But we need to also provide some negative examples to learn
- §  $p(o \text{ is the wrong word}|c) = \sigma(-u_o^T v_c) = \frac{1}{1 + \exp u_o^T v_c}$
- § This will push the wrong pairs of words further apart
- § For every center word c and every context word o we will add the "right" log probabilities. Then for some randomly sampled words for the same center word we will add the "wrong"s log probabilites. UC Berkeley



§ This sum is then minimized over the word representations

$$\mathop{\arg\max}_{u_1,\cdots,u_n,v_1,\cdots,v_n} \sum_{c,o} \log p(o \text{ is the right}|c) + \sum_{c,w} \log p(w \text{ is the wrong}|c)$$

#### Word2Vec Summary

- §  $p(o \text{ is the right word}|c) = \sigma(u_o^T v_c) = \frac{1}{1 + \exp{-u_o^T v_c}}$
- §  $p(w \text{ is the wrong word}|c) = \sigma(-u_w^T v_c) = \frac{1}{1+\exp u^T v_c}$
- $\mathop{\arg\max}_{u_1,\cdots,u_n,v_1,\cdots,v_n} \sum_{c,o} \log p(o \text{ is the right}|c) + \sum_{c,o} \log p(w \text{ is the wrong}|c)$
- $\sum_{u_1, \dots, u_n, v_1, \dots, v_n} \sum_{c, o} \log \sigma(u_o^T v_c) + \sum_{c, w} \log \sigma(-u_w^T v_c)$

## Word2Vec Examples

#### Algebraic relations:

$$\label{eq:vec("woman")-vec("man")} \begin{split} & \text{vec("aunt")-vec("uncle")} \\ & \text{vec("woman")-vec("man")} & \simeq \text{vec("queen")-vec("king")} \end{split}$$





| Type of relationship  | Word Pair 1 |            | Word Pair 2 |               |
|-----------------------|-------------|------------|-------------|---------------|
| Common capital city   | Athens      | Greece     | Oslo        | Norway        |
| All capital cities    | Astana      | Kazakhstan | Harare      | Zimbabwe      |
| Currency              | Angola      | kwanza     | Iran        | rial          |
| City-in-state         | Chicago     | Illinois   | Stockton    | California    |
| Man-Woman             | brother     | sister     | grandson    | granddaughter |
| Adjective to adverb   | apparent    | apparently | rapid       | rapidly       |
| Opposite              | possibly    | impossibly | ethical     | unethical     |
| Comparative           | great       | greater    | tough       | tougher       |
| Superlative           | easy        | easiest    | lucky       | luckiest      |
| Present Participle    | think       | thinking   | read        | reading       |
| Nationality adjective | Switzerland | Swiss      | Cambodia    | Cambodian     |
| Past tense            | walking     | walked     | swimming    | swam          |
| Plural nouns          | mouse       | mice       | dollar      | dollars       |
| Plural verbs          | work        | works      | speak       | speaks        |

§ Word embeddings associate a vector with each word. This can make for a much better representation than just a one-hot vector.

- § Word embeddings associate a vector with each word. This can make for a much better representation than just a one-hot vector.
- § The vector does not change if the word is used in different ways.
  - ▶ Let's play baseball
  - ► I saw a play yesterday
- § Same word2vec representation, even though they mean different.

- § Word embeddings associate a vector with each word. This can make for a much better representation than just a one-hot vector.
- § The vector does not change if the word is used in different ways.
  - ► Let's play baseball
  - ► I saw a play yesterday
- § Same word2vec representation, even though they mean different.
- § Can we learn word representations that **depend on context**?

- Word embeddings associate a vector with each word. This can make for a much better representation than just a one-hot vector.
- § The vector does not change if the word is used in different ways.
  - ► Let's play baseball
  - I saw a play yesterday
- § Same word2vec representation, even though they mean different.
- § Can we learn word representations that depend on context?
- High level idea:
  - Train a language model
  - Run it on a sentence
  - Use its hidden state



- Word embeddings associate a vector with each word. This can make for a much better representation than just a one-hot vector.
- § The vector does not change if the word is used in different ways.
  - ► Let's play baseball
  - ► I saw a play yesterday
- § Same word2vec representation, even though they mean different.
- § Can we learn word representations that depend on context?
- § High level idea:
  - ► Train a language model
  - Run it on a sentence
  - Use its hidden state



- Question 1: How to train the best language model for this?
- § Question 2: How to use this language model for downstream tasks?

- § ELMO: Embedding from Language Models
  - Peters *et al.* "Deep Contextualized Word Representations", NAACL 2018.
  - Bidirectional LSTM model used for context-dependent embeddings

- § BERT: Bidirectional Encoder Representations from Transformers Devlin *et al.* "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", NAACL 2019.
  - Transformer language model used for context-dependent embeddings



§ ELMO, in essence, is a language model (recurrent) producing the next word given the words so far in the sentence



- § ELMO, in essence, is a language model (recurrent) producing the next word given the words so far in the sentence
- § Problem with this basic approach is that the representation of a word in a sentence will depend only on the previous words not on the entire sentence
- § Compare this with word2vec. It used context words both before and after the center word



- § ELMO, in essence, is a language model (recurrent) producing the next word given the words so far in the sentence
- § Problem with this basic approach is that the representation of a word in a sentence will depend only on the previous words not on the entire sentence
- § Compare this with word2vec. It used context words both before and after the center word
- § There can be many ways to resolve this. ELMO uses two separate language models



- The backward LM runs over the sequence in reverse, predicting the previous word given the future
- In practice, the two models share parameters from the initial embedding layer and last fc layer. The LSTMs of the two models do not share parameters



- The backward LM runs over the sequence in reverse, predicting the previous word given the future
- § In practice, the two models share parameters from the initial embedding layer and last fc layer. The LSTMs of the two models do not share parameters
- § Now if you have representations of the same word from both the models, it will contain both forward and backward information



§ "Together" all these hidden states form a representation of the word 'cute'



- § "Together" all these hidden states form a representation of the word 'cute'
- § Simple option:  $\mathsf{ELMO}_t = [h_{t,2}^\mathsf{fwd}, h_{t,2}^\mathsf{bwd}]$



- § "Together" all these hidden states form a representation of the word 'cute'
- § Simple option:  $\mathsf{ELMO}_t = [h_{t,2}^\mathsf{fwd}, h_{t,2}^\mathsf{bwd}]$
- § Complex option:  $\mathrm{ELMO}_t = \gamma \sum_{i=1}^L w_i[h_{t,i}^{\mathrm{fwd}}, h_{t,i}^{\mathrm{bwd}}]$

 $w_i$  are softmax-normalized weights and  $\gamma$  allows the task specific model to scale the entire ELMo vector

Source: CS W182 course, Sergey Levine, UC Berkeley



- $\S$   $w_i$  and  $\gamma$  are learned.
- § After taking hidden representations from an ELMO model pretrained on large amount of text data,  $w_i$  and  $\gamma$  are learned for the particular downstream task
- § ELMO $_t$  is concatenated with other word representations (e.g., word2vec) and passed thorugh the model for the task
- $\S$  Model parameters along with  $w_i$  and  $\gamma$  are also learned

| TASK PREVIOUS SOTA |                      |                  | OUR<br>BASELINE | ELMo +<br>BASELINE | INCREASE<br>(ABSOLUTE/<br>RELATIVE) |
|--------------------|----------------------|------------------|-----------------|--------------------|-------------------------------------|
| SQuAD              | Liu et al. (2017)    | 84.4             | 81.1            | 85.8               | 4.7 / 24.9%                         |
| SNLI               | Chen et al. (2017)   | 88.6             | 88.0            | $88.7 \pm 0.17$    | 0.7 / 5.8%                          |
| SRL                | He et al. (2017)     | 81.7             | 81.4            | 84.6               | 3.2 / 17.2%                         |
| Coref              | Lee et al. (2017)    | 67.2             | 67.2            | 70.4               | 3.2 / 9.8%                          |
| NER                | Peters et al. (2017) | $91.93 \pm 0.19$ | 90.15           | $92.22 \pm 0.10$   | 2.06 / 21%                          |
| SST-5              | McCann et al. (2017) | 53.7             | 51.4            | $54.7 \pm 0.5$     | 3.3 / 6.8%                          |

- § ELMO shows improved performance in six downstream tasks
  - Question answering
  - ► Textual entailment
  - Semantic role labeling
  - ▶ Coreference resolution
  - Named entity extraction
  - Sentiment analysis

#### **ELMO Summary**



- Train forward and backward language models on a large corpus of unlabeled text data
- § Use the (concatenated) forward and backward LSTM states to represent the word in context
- **§** Concatenate the ELMo embedding to the word embedding (or one-hot vector) as an input into a downstream task-specific sequence model
- § This provides a context specific and semantically meaningful representation of each token

20 / 40

§ BERT is transformer based and either the classic BERT or its variants are de facto standard, now-a-days, for word embedding



- BERT is transformer based and either the classic BERT or its variants are de facto standard, now-a-days, for word embedding
- What if we would like to naively replace LSTM with transformer
- ELMO was trained as a language model. So we could try to train transformer as a language model

21 / 40



- § BERT is transformer based and either the classic BERT or its variants are de facto standard, now-a-days, for word embedding
- § What if we would like to naively replace LSTM with transformer
- § ELMO was trained as a language model. So we could try to train transformer as a language model
- § Before we used transformer in seq-to-seq model where the language model is the decoder and the encoder provides the 'condition'
- § All we have to do to get an unconditional language model is to use the same decoder but remove the condition



§ Cross-attention was responsible for the condition and we remove it from the transformer decoder to get a language model





- § Cross-attention was responsible for the condition and we remove it from the transformer decoder to get a language model
- We have masked self-attention as the transformer decoder has it and it prevents the circular dependency on future words
- § But we don't have the cross-attention anymore





- § Cross-attention was responsible for the condition and we remove it from the transformer decoder to get a language model
- We have masked self-attention as the transformer decoder has it and it prevents the circular dependency on future words
- § But we don't have the cross-attention anymore
- § This direct way of repalcing LSTM in ELMO with transformer decoder is not bidirectional though
- We could train two transformers and make "transformer ELMO"





§ But is there a better way? Can we simply remove the mask in self-attention and have one transformer?





- § But is there a better way? Can we simply remove the mask in self-attention and have one transformer?
- § What could go wrong?





- But is there a better way? Can we simply remove the mask in self-attention and have one transformer?
- What could go wrong?
- § The model can very easily learn a shortcut to get the right answer. The "right answer" at time t is same as the input at time t+1!





- But is there a better way? Can we simply remove the mask in self-attention and have one transformer?
- § What could go wrong?
- § The model can very easily learn a shortcut to get the right answer. The "right answer" at time t is same as the input at time t+1!
- § BERT has to modify the training procedure slightly to avoid this trivial solution



§ The first thing is that there is no shifting in output. The output at timestep t is exactly same as the input at timestep t

24 / 40



- § The first thing is that there is no shifting in output. The output at timestep t is exactly same as the input at timestep t
- § But the input is modified a little bit to make the task harder for the decoder
- § Randomly mask out some input tokens where 'masking' means replacing the token with a special token denoted as [MASK]
- § However, the output reamins the same



- § The first thing is that there is no shifting in output. The output at timestep t is exactly same as the input at timestep t
- § But the input is modified a little bit to make the task harder for the decoder
- § Randomly mask out some input tokens where 'masking' means replacing the token with a special token denoted as [MASK]
- § However, the output reamins the same
- § Input: I [MASK] therefore I [MASK]
  Output: I think therefore I am
- § This "fill in the blanks" task forces the model to work hard to learn a good representation
- § At the same time, the absence of masked self-attention makes it **bidirectional**



BERT is trained with pairs of sentences
The first sentence starts with the [CLS]
token and second with [SEP] token



- BERT is trained with pairs of sentences
- The first sentence starts with the [CLS] token and second with [SEP] token
- Many NLP tasks involve two sentences e.g., question and answer, paragraph and summary etc. The idea is language model is accustomed with seeing such input pairs



- § BERT is trained with pairs of sentences
- The first sentence starts with the [CLS] token and second with [SEP] token
  - Many NLP tasks involve two sentences e.g., question and answer, paragraph and summary etc. The idea is language model is accustomed with seeing such input pairs
- § Input sentence pairs are transformed in two ways
  - ▶ Randomly replace 15% of the tokens with [MASK]
  - ightharpoonup Randomly swap the order of the sentences 50% of the time



- BERT is trained with pairs of sentences
- The first sentence starts with the [CLS] token and second with [SEP] token
- Many NLP tasks involve two sentences e.g., question and answer, paragraph and summary etc. The idea is language model is accustomed with seeing such input pairs
- § Input sentence pairs are transformed in two ways
  - ▶ Randomly replace 15% of the tokens with [MASK]
  - ightharpoonup Randomly swap the order of the sentences 50% of the time
- § The first input and first output are also special
  - ► The first input token is a special token [CLS]
  - ► The final hidden state corresponding to [CLS] is [NSP]. It predicts whether first sentence follows the second or vice-versa. It provides different ways to use BERT
    Source: CS W182 course, Sergey Levine, UC Berkeley



- § If you have NLP tasks requiring the whole sentence representation, taking output from this [NSP] and replacing with task specific classifier does better job
- § Some such examples are: Entailment classification, semantic equivalence, Sentiment classification etc.

26 / 40



- § If you have NLP tasks requiring the whole sentence representation, taking output from this [NSP] and replacing with task specific classifier does better job
- § Some such examples are: Entailment classification, semantic equivalence, Sentiment classification *etc*.
  - ▶ Train BERT normally with huge corpus of unlabeled text data
  - Put a crossentropy loss on only the first output (replaces the sentence order classifier)
    Source: CS W182 course Serrey Levine LIC Berl
    - Source: CS W182 course, Sergey Levine, UC Berkeley

      Finetune whole model end-to-end on the new task ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + (



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE. SWAG



(c) Question Answering Tasks: SQuAD v1.1



(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Source: https://jalammar.github.io/illustrated-bert/

#### We can also pull out features, just like with ELMo!

What is the best contextualized embedding for "Help" in that context?



Source: https://jalammar.github.io/illustrated-bert/

| System                | MNLI-(m/mm) | QQP  | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE  | Average |
|-----------------------|-------------|------|------|-------|------|-------|------|------|---------|
|                       | 392k        | 363k | 108k | 67k   | 8.5k | 5.7k  | 3.5k | 2.5k | -       |
| Pre-OpenAI SOTA       | 80.6/80.1   | 66.1 | 82.3 | 93.2  | 35.0 | 81.0  | 86.0 | 61.7 | 74.0    |
| BiLSTM+ELMo+Attn      | 76.4/76.1   | 64.8 | 79.8 | 90.4  | 36.0 | 73.3  | 84.9 | 56.8 | 71.0    |
| OpenAI GPT            | 82.1/81.4   | 70.3 | 87.4 | 91.3  | 45.4 | 80.0  | 82.3 | 56.0 | 75.1    |
| $BERT_{BASE}$         | 84.6/83.4   | 71.2 | 90.5 | 93.5  | 52.1 | 85.8  | 88.9 | 66.4 | 79.6    |
| BERT <sub>LARGE</sub> | 86.7/85.9   | 72.1 | 92.7 | 94.9  | 60.5 | 86.5  | 89.3 | 70.1 | 82.1    |

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples.

- § The General Language Understanding Evaluation (GLUE) benchmark is a collection of diverse natural language understanding tasks
- $\S$  BERT<sub>BASE</sub> is 12 layers and BERT<sub>LARGE</sub> is 24 layers
- § Since its inception, BERT has been applied to many NLP tasks and that often makes a huge difference in performance

Source: BERT Paper

### GPT et al.



- § People have also used one-directional (forward) type transformer models. It does have one big advantage over BERT
- § Generation is not really possible with BERT, but a forward (masked attention) model can do it!
- § GPT (GPT-2, GPT-3 *etc.*) is a classic example of this

# Pretrained Language Models Summary

#### § BERT

- ▶ BERT is a 'bidirectional' transformer
- ▶ Trained with masked out tokens as a fill-in-the-blank task
- ► + Great representations
- Can't generate texts

# Pretrained Language Models Summary

#### § BERT

- ▶ BERT is a 'bidirectional' transformer
- ► Trained with masked out tokens as a fill-in-the-blank task
- ► + Great representations
- ► Can't generate texts

#### § OpenAl GPT

- ▶ GPT is an one dimensional transformer
- ▶ Transformer decoder without cross-attention and with masked self-attention
- + Can generate texts
- ► Ok representations

# Pretrained Language Models Summary

### § BERT

- ▶ BERT is a 'bidirectional' transformer
- ► Trained with masked out tokens as a fill-in-the-blank task
- ► + Great representations
- ► Can't generate texts

#### § OpenAl GPT

- ▶ GPT is an one dimensional transformer
- ▶ Transformer decoder without cross-attention and with masked self-attention
- + Can generate texts
- Ok representations

#### § ELMO

- Bidirectional LSTMs
- ▶ ELMO trains two separate LSTM language models
- Ok representations
- Largely supplanted by BERT

31 / 40

# Image Captioning



### Video Captioning

#### Example from MSR-VTT Dataset



- A black and white horse runs around.
- 2. A horse galloping through an open field. 3. A horse is running around in green lush grass.
- 4. There is a horse running on the grassland.
- 5. A horse is riding in the grass.



- A man and a woman performing a musical. 2. A teenage couple perform in an amateur musical 3. Dancers are playing a routine.
- 4. People are dancing in a musical.
- 5. Some people are acting and singing for performance. 5. A car is drifting in a fast speed

- 1. A woman giving speech on news channel
- 2. Hillary Clinton gives a speech. 3. Hillary Clinton is making a speech at the conference
- A woman is giving a speech on stage. 5. A lady speak some news on TV.
- 1. A white car is drifting. Cars racing on a road surrounded by lots of people.
- 3. Cars are racing down a narrow road. A race car races along a track.

- 1. A child is cooking in the kitchen.
- 2. A girl is putting her finger into a plastic cup
- containing an egg.
- 3. Children boil water and get egg whites ready. 4. People make food in a kitchen.
- 5. A group of people are making food in a kitchen
- 1. A player is putting the basketball into the post from
- The player makes a three-pointer. People are playing basketball.
- A 3 point shot by someone in a basketball race.
- 5. A basketball team is playing in front of speculators.

Figure 1. Examples of the clips and labeled sentences in our MSR-VTT dataset. We give six samples, with each containing four frames to represent the video clip and five human-labeled sentences.

Source: J Xu. T Mei. T Yao and Y Rui. 'MSR-VTT: A Large Video Description Dataset for Bridging Video and Language'. CVPR 2016

33 / 40

## Video Captioning



Source: S Venugopalan *et al.* 'Translating Videos to Natural Language Using Deep Recurrent Neural Networks', NAACL 2015

### Video Captioning



Source: S Venugopalan *et al.* 'Sequence to Sequence – Video to Text', ICCV 2015



query='man in middle with blue shirt and blue shorts'



Source: R Hu et al. 'Natural Language Object Retrieval', CVPR 2016



Source: R Hu *et al.* 'Natural Language Object Retrieval', CVPR 2016



At test time, given an input image I, a query text S and a set of candidate bounding boxes  $\{b_i\}$ , the query text S is scored on i-th candidate box using the likelihood of the query text sequence conditioned on the local image region, the whole image and the spatial configuration of the box, computed as

$$s = p(S|I_{box}, I_{im}, x_{spatial})$$

$$= \prod_{w_t \in S} p(w_t|w_{t-1}, \cdots, w_1, I_{box}, I_{im}, x_{spatial})$$
(8)

and the highest scoring candidate boxes are retrieved.

Source: R Hu et al. 'Natural Language Object Retrieval', CVPR 2016

39 / 40



Source: R Hu et al. 'Natural Language Object Retrieval', CVPR 2016