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Agenda

§ Understand basic neural language model, structured prediction and
conditional language models

§ Using attention to handle information bottleneck problem

§ Self attention and transformer models
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Resources

§ CS W182 course by Sergey Levine at UC Berkeley. [Link] [Lecture 11,
12]

§ “AI Coffee Break with Letitia” youtube channel [Link]
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https://cs182sp21.github.io/
https://www.youtube.com/channel/UCobqgqE4i5Kf7wrxRxhToQA
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A Basic Neural Language Model
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§ A language model is a model that assigns probabilites to sequences
representing texts.

§ A language model often is used to generate texts.

§ Many language models can be represented as the following general
architecture: !𝑦!,! !𝑦!,# !𝑦!,$ !𝑦!,%

!𝑥!,! !𝑥!,# !𝑥!,$ !𝑥!,%

§ Why does it need multiple outputs and multiple outputs?

§ Most problems that require multiple outputs have strong
dependencies between these outputs.

§ This is sometimes referred to as structured prediction.

Source: CS W182 course, Sergey Levine, UC Berkeley
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A Basic Neural Language Model
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§ Lets say we have a text generation model which generates texts given
an initial prompt.

§ Let the world of the language model consists of the following three
sentences.

I I think therefore I am

I I like machine learning

I I am not just a neural network

§ Output is nonsensical even though the network did great job
individually.

Source: CS W182 course, Sergey Levine, UC Berkeley
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A Basic Neural Language Model
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§ Fix: feed sampled output as input to next timestep.

I

think: 0.3
like: 0.3
am: 0.4

think

§ Now the network knows, it is predicting the third word of a sentence
where the first two words are ‘I think’

§ Key idea: Past outputs should influence future outputs.

§ Also known as autoregressive models.

§ During training: input is the sequence and output is the same
sequence offset by 1.

Source: CS W182 course, Sergey Levine, UC Berkeley
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A Basic Neural Language Model
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§ How are the training sequences represented.

I I think therefore I am

I I like machine learning

I I am not just a neural network

§ Simplest: tokenize the sentence (each word is a token) and use
onehot vector representation.

x1,i =



0
0
...
0
1
0
...
0


§ More complex: word embeddings (we’ll cover this later)

Source: CS W182 course, Sergey Levine, UC Berkeley
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A Few Details
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§ How does the model know it has to stop generating words?

§ During training, add a special token 〈EOS〉 at the end of the
sequence.

§ During testing when it produces an 〈EOS〉 token, we know the
sentence is complete.

§ Similarly a special 〈START〉 token is introduced to kick of the start of
a sentence.

Source: CS W182 course, Sergey Levine, UC Berkeley
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sentence is complete.
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§ Similarly a special 〈START〉 token is introduced to kick of the start of
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§ In conditional language models, text is generated conditioned on
some input.

§ For example, image captioning conditions text generation on image.

§ Previously, initial hidden state of RNN was 0.

§ Now, we set the intial state of the RNN as an encoded representation
from the image, obtained by passing it thorugh a convnet.

§ Both RNN and ConvNet are trained end-to-end.

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ In conditional language models, text is generated conditioned on
some input.

§ For example, image captioning conditions text generation on image.

<START> A cute puppy

<EOS>A cute puppy
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§ Previously, initial hidden state of RNN was 0.

§ Now, we set the intial state of the RNN as an encoded representation
from the image, obtained by passing it thorugh a convnet.

§ Both RNN and ConvNet are trained end-to-end.
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<START> A cute puppy

<EOS>A cute puppy

ℎ! = 0
𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

"𝑦!,$ "𝑦!,$ "𝑦!,% "𝑦!,&

𝑥!
ℎ! = 𝑓(𝑥")

CNN Encoder

RNN Decoder

§ CNN Encoder ‘summarizes’ what is going on in the image and RNN
Decoder expresses the content of the image in words.

§ Training data: Paired image-text data.

Source: CS W182 course, Sergey Levine, UC Berkeley
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What if we condition on another sequence?
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<START> A cute puppy

<EOS>A cute puppy

ℎ! = 0
𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

"𝑦!,$ "𝑦!,$ "𝑦!,% "𝑦!,&

RNN Decoder

§ The RNN Decoder can also be conditioned on another sequence, say
text from another language.

§ The first RNN reads in French, produces h0 and the second RNN
takes h0 and produces English text.

§ The encoder is also RNN based.

§ h0 is only ‘virtual’. 〈EOS〉 token in French doubles as 〈START〉 token
in English.

Source: CS W182 course, Sergey Levine, UC Berkeley
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<START> A cute puppy

<EOS>A cute puppy

ℎ! = 0
𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

"𝑦!,$ "𝑦!,$ "𝑦!,% "𝑦!,&

RNN Encoder RNN Decoder

<START> mingon chiot Un
𝑥!,# 𝑥!,$ 𝑥!,% 𝑥!,&

§ Sometimes, the encoder RNN reads the source language sentence in
reverse.

§ Typically two separate RNNs (with different weights) are used.

§ Both the RNNS are trained end-to-end on paired data (e.g., pairs of
French and English sentences)

Source: CS W182 course, Sergey Levine, UC Berkeley
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<START> A cute puppy

<EOS>A cute puppy

𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

"𝑦!,$ "𝑦!,$ "𝑦!,% "𝑦!,&

mingon chiot Un
𝑥!,$ 𝑥!,% 𝑥!,&

§ RNNs can be stacked.

§ Each RNN layer can
use LSTM cells (or
GRU)

Source: CS W182 course, Sergey Levine, UC Berkeley
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The Bottleneck Problem
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<START> A cute puppy

<EOS>A cute puppy

𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

"𝑦!,$ "𝑦!,$ "𝑦!,% "𝑦!,&

<START> mingon chiot Un
𝑥!,# 𝑥!,$ 𝑥!,% 𝑥!,&

§ All the information about the source sequence is contained only in the
activation at the begining of the decoding.

§ Entire decoding is based on this initial information only.

§ For long and complex sequences, it will help if the decoder can ‘peek’
into the input sequence time and again during decoding.

§ How can we do this?

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ This tells, which timestep in the input is the most relevent to this
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§ The corresponding hidden state is sent to the decoder
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§ What keys and queries mean is learned as a part of the training
process – we do not have to select it manually!
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§ Letter h and s denote hidden states of encoder and decoder respectively
§ Key kt at each timestep t is some learnable function of ht, e.g.,
kt = σ(Wkht + bk)

§ Similarly query ql is some learnable function of decoder state sl
§ Attention et,l measures the similarity between the key and the query

and is given by the dot product between them
§ Intuitively, we want to pull out the hidden state ht for the timestep t at

which et,l is largest
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§ Intuitively, send ht for arg max
t

et,l to decoder at step l

§ ‘arg max’ is not differentiable, we will not be able to train the network.

§ We will use softmax:α.,l= softmax(e.,l), where αt,l=
exp(et,l)∑
t′

exp(et′,l)

§ Send al =
∑
t

αt,lht. αt,ls are small numbers except for the max et,l

Source: CS W182 course, Sergey Levine, UC Berkeley



Agenda Seq-to-Seq Attention Transformers

Attention

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 18 / 50

<START> A cute puppy
𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

mingon chiot Un
𝑥!,$ 𝑥!,% 𝑥!,&

Key
𝑘! = 𝑘(ℎ!)

Query
𝑞" = 𝑞(𝑠")

ℎ$ ℎ% ℎ& 𝑠# 𝑠$ 𝑠% 𝑠&

𝑒!," = 𝑘!. 𝑞"

§ Intuitively, send ht for arg max
t

et,l to decoder at step l

§ ‘arg max’ is not differentiable, we will not be able to train the network.

§ We will use softmax:α.,l= softmax(e.,l), where αt,l=
exp(et,l)∑
t′

exp(et′,l)

§ Send al =
∑
t

αt,lht. αt,ls are small numbers except for the max et,l

Source: CS W182 course, Sergey Levine, UC Berkeley



Agenda Seq-to-Seq Attention Transformers

Attention

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 18 / 50

<START> A cute puppy
𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

mingon chiot Un
𝑥!,$ 𝑥!,% 𝑥!,&

Key
𝑘! = 𝑘(ℎ!)

Query
𝑞" = 𝑞(𝑠")

ℎ$ ℎ% ℎ& 𝑠# 𝑠$ 𝑠% 𝑠&

𝑒!," = 𝑘!. 𝑞"

§ Intuitively, send ht for arg max
t

et,l to decoder at step l

§ ‘arg max’ is not differentiable, we will not be able to train the network.

§ We will use softmax:α.,l= softmax(e.,l), where αt,l=
exp(et,l)∑
t′

exp(et′,l)

§ Send al =
∑
t

αt,lht. αt,ls are small numbers except for the max et,l

Source: CS W182 course, Sergey Levine, UC Berkeley



Agenda Seq-to-Seq Attention Transformers

Attention

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 19 / 50

<START> A cute puppy
𝑦!,# 𝑦!,$ 𝑦!,% 𝑦!,&

mingon chiot Un
𝑥!,$ 𝑥!,% 𝑥!,&

Key
𝑘! = 𝑘(ℎ!)

Query
𝑞" = 𝑞(𝑠")

ℎ$ ℎ% ℎ& 𝑠# 𝑠$ 𝑠% 𝑠&

𝑒!," = 𝑘!. 𝑞"

§ Send al =
∑
t

αt,lht. What does ‘sending’ mean?

I ŷl = f(sl, al)

I Give al to next RNN layer if stacked RNN is used

I Append al to the next decoder step s̄l =

sl−1

al−1

xl


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§ Encoder side:

kt = k(ht)

§ Decoder side:

ql = q(sl)

§ et,l = kt · ql

αt,l =
exp(et,l)∑

t′
exp(et′,l)

al =
∑
t

αt,lht

§ Can be used in different
ways:

§ Concatenate to hidden statesl−1

al−1

xl


§ Use for readout:
ŷl = f(sl, al)

§ Concatenate as input to
next RNN layer.
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§ Simple key-query choice: k and q are identity
functions: kt = ht, ql = sl

§ et,l = kt · ql

αt,l =
exp(et,l)∑

t′
exp(et′,l)

al =
∑
t

αt,lht
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§ Linear multiplicative attention:
kt = Wkht, ql = Wqsl

§ et,l = hTt W
T
k Wqsl = hTt Wesl

αt,l =
exp(et,l)∑

t′
exp(et′,l)

al =
∑
t

αt,lht
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§ Learned value encoding

§ Encoder side: kt = k(ht)

§ Decoder side: ql = q(sl)

§ et,l = kt · ql

αt,l =
exp(et,l)∑

t′
exp(et′,l)

al =
∑
t

αt,lv(ht)

§ v(.) is some learned function and known as the ‘value’.

§ The interpretation is that now you don’t just compute ‘key’, rather you compute
a ‘key-value’ pair of the input hidden states. During decoding, key-query
provides the timestep with largest similarity between key and query.

§ The attention (ideally) collects the value of that timestep from the input. In
‘softmaxed’ version, a weighted combination of the input values are taken.
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§ Every encoder step t produces a key kt
§ Every decoder step l produces a query ql
§ Decoder gets “sent” encoder activation ht

corresponding to the largest value of kt · ql
§ Actually gets al =

∑
t

αt,lht

§ Why is this good?

§ Attention is very powerful, because now all decoder steps are connected to all
encoder steps!

§ Bottleneck is much less important

§ Gradients are much better behaved
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§ If we have attention, do we even need recurrent
connections?

§ Can we transform RNN into a purely
attention-based model?

§ This has a few issues we must overcome:

I Now, step l = 2 can’t acess s0 or s2
I The encoder has no temporal dependences

at all.

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Basic self attention: without making distinction between encoder and decoder

§ Input from each time-step is encoded
e.g., ht = σ(Wxt + b)

§ This is not a recurrent model, but still weight sharing

§ Value vt = v(ht) for each timestep. Before just had
v(ht) = ht, now, e.g., v(ht) = Wvht

§ Every timestep also outputs key kt = k(ht), e.g.,
k(ht) = Wkht

§ Every timestep also outputs query qt = q(ht), e.g.,
q(ht) = Wqht

§ Get similarity between every key and every query
including both coming from the same timestep.
el,t = ql · kt

§ Compute attention scores: αl,t =
exp(el,t)∑

t′
exp(el,t′)

§ Compute attention at timestep l: al =
∑
t

αl,tvt

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Basic self attention: without making distinction between encoder and decoder
§ Input from each time-step is encoded

e.g., ht = σ(Wxt + b)
§ This is not a recurrent model, but still weight sharing

§ Value vt = v(ht) for each timestep. Before just had
v(ht) = ht, now, e.g., v(ht) = Wvht

§ Every timestep also outputs key kt = k(ht), e.g.,
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§ Basic self attention: without making distinction between encoder and decoder
§ Input from each time-step is encoded

e.g., ht = σ(Wxt + b)
§ This is not a recurrent model, but still weight sharing

§ Value vt = v(ht) for each timestep. Before just had
v(ht) = ht, now, e.g., v(ht) = Wvht

§ Every timestep also outputs key kt = k(ht), e.g.,
k(ht) = Wkht

§ Every timestep also outputs query qt = q(ht), e.g.,
q(ht) = Wqht

§ Get similarity between every key and every query
including both coming from the same timestep.
el,t = ql · kt

§ Compute attention scores: αl,t =
exp(el,t)∑

t′
exp(el,t′)

§ Compute attention at timestep l: al =
∑
t

αl,tvt
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§ Basic self attention: without making distinction between encoder and decoder
§ Input from each time-step is encoded

e.g., ht = σ(Wxt + b)
§ This is not a recurrent model, but still weight sharing

§ Value vt = v(ht) for each timestep. Before just had
v(ht) = ht, now, e.g., v(ht) = Wvht

§ Every timestep also outputs key kt = k(ht), e.g.,
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§ Every timestep also outputs query qt = q(ht), e.g.,
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§ Get similarity between every key and every query
including both coming from the same timestep.
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e.g., ht = σ(Wxt + b)
§ This is not a recurrent model, but still weight sharing
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§ Every timestep also outputs key kt = k(ht), e.g.,
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§ Every timestep also outputs query qt = q(ht), e.g.,
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§ Get similarity between every key and every query
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§ At every timestep, self attention takes input and produces an output

§ This can be regarded as a layer
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§ We can build an entire network by stacking such layers

§ This basic idea of getting another sequence from an input sequence is
used to get another class of sequence-to-sequence models known as
‘Transformers’

Source: CS W182 course, Sergey Levine, UC Berkeley
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Keep repeating

§ We can build an entire network by stacking such layers

§ This basic idea of getting another sequence from an input sequence is
used to get another class of sequence-to-sequence models known as
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From Self-Attention to Transformers

§ But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

§ Positional encoding

I Addresses lack of sequence information

§ Multiheaded attention

I allows querying multiple positions at each layer

§ Adding nonlinearities

I So far, each successive layer is linear in the previous one

al =
∑
t

αl,tvt where, vt = Wvht

§ Masked decoding

I How to prevent attention lookups into the future?
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Positional Encoding: What is the Order

§ What we see:

I the person ate a fish.

§ What naive self-attention sees:

ate
person

the

fish a

§ Most alternative orderings are nonsense, but some change meaning

I the fish ate a person
I the ate person a fish
I person fish the a ate

§ In general: the position of words in a sentence carries information!
§ Idea: add some information at the beginning that indicates where it is

in the sequence!

I ht = f(xt, t)
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Positional Encoding

§ There are two main ways to provide the model with this information.
I Concatenating position embedding with word embedding

I Adding position embedding with word embedding

0.87

-0.64

0.81

0.26

-0.35

0.02

-0.01

-0.24

0.07

0.00

-0.42

0.31

0.73

-0.36

0.99

un chiot mingon

§ There isn’t a clear winner, but both has advantages or disadvantages.
§ Just concatenating word position is simple and avoids messing up the

semantic relationship between different words.
§ But its comes with additional memory and parameters.
§ Down-the-line similarity computation between key and query may

contain extra unrelevant terms
§ Addition is another option and tends to work well
§ More information: Link1 Link1
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§ There isn’t a clear winner, but both has advantages or disadvantages.

§ Just concatenating word position is simple and avoids messing up the
semantic relationship between different words.

§ But its comes with additional memory and parameters.
§ Down-the-line similarity computation between key and query may

contain extra unrelevant terms
§ Addition is another option and tends to work well
§ More information: Link1 Link1
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§ Adding the word positions as all dimensions of position embedding
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§ However, adding word positions can significantly distort semantic
positions of the words, especially for words in long sentences.
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§ How about adding fractions only. The added values will never surpass 1
0.87

-0.64

0.81

0.26

-0.35

0.02

-0.01

-0.24

0.07

0.00

-0.42

0.31

0.73

-0.36

0.99

+

0

0

0

0

0

=

e11

e13

e12

e14

e15

+

0.5

0.5

0.5

0.5

0.5

=

e11

e13

e12

e14

e15

+

1

1

1

1

1

=

e11

e13

e12

e14

e15

un chiot mingon0×
1

3 − 1
1×

1
3 − 1

2×
1

3 − 1

§ Not great, as the same position will have different encoding value
§ Then what about using a bounded function that extends till infinity?

1 2 3 4 5 6

1

2

0

§ The problem is that the encoding very quickly saturates and for all
higher position values, they are same

§ Then what about a bounded periodic function extending till infinity?

What is a basic problem?
Different positions may
have same encoding
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§ Fix: use a cosine also (with same frequency)

§ If two components of the encoding comes from two sinusoids, the
problem is largely avoided.

§ But not fully. Because the same pattern repeats.
§ Add more sinusoids with different frequencies.



Agenda Seq-to-Seq Attention Transformers

Positional Encoding - Multiple Sinusoids

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 34 / 50

§ Fix: use a cosine also (with same frequency)

§ If two components of the encoding comes from two sinusoids, the
problem is largely avoided.

§ But not fully. Because the same pattern repeats.
§ Add more sinusoids with different frequencies.



Agenda Seq-to-Seq Attention Transformers

Positional Encoding - Multiple Sinusoids

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 34 / 50

§ Fix: use a cosine also (with same frequency)

§ If two components of the encoding comes from two sinusoids, the
problem is largely avoided.

§ But not fully. Because the same pattern repeats.

§ Add more sinusoids with different frequencies.



Agenda Seq-to-Seq Attention Transformers

Positional Encoding - Multiple Sinusoids

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 34 / 50

§ Fix: use a cosine also (with same frequency)

§ If two components of the encoding comes from two sinusoids, the
problem is largely avoided.

§ But not fully. Because the same pattern repeats.
§ Add more sinusoids with different frequencies.



Agenda Seq-to-Seq Attention Transformers

Positional Encoding - Multiple Sinusoids

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 34 / 50

§ Fix: use a cosine also (with same frequency)

§ If two components of the encoding comes from two sinusoids, the
problem is largely avoided.

§ But not fully. Because the same pattern repeats.
§ Add more sinusoids with different frequencies.



Agenda Seq-to-Seq Attention Transformers

Positional Encoding - sine-cosine Embedding

Abir Das (IIT Kharagpur) CS60010 Mar 23, 24 and 26, 2022 35 / 50

pt =
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§ Learnable positional encoding is
sometimes also used
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From Self-Attention to Transformers

§ But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

§ Positional encoding

I Addresses lack of sequence information

§ Multiheaded attention

I allows querying multiple positions at each layer

§ Adding nonlinearities

I So far, each successive layer is linear in the previous one

al =
∑
t

αl,tvt where, vt = Wvht

§ Masked decoding

I How to prevent attention lookups into the future?
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Source: CS W182 course, Sergey Levine, UC Berkeley
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Multi-Head Attention

§ Since we are relying entirely on attention now, we might want to
‘query to’ different timestep.

§ A sentence like “The animal didn’t cross the street because it was too
tired’, we would want to know

I If “animal” refers to “it”

I If it is the “animal” who didn’t “cross”
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§ Idea: have multiple keys, queries, and values for every time step!

𝑥! 𝑥" 𝑥#

ℎ! ℎ" ℎ#

𝑘!,! 𝑞!,! 𝑣!,! 𝑘#,! 𝑞#,! 𝑣#,! 𝑘$,! 𝑞$,! 𝑣$,!

𝑘!,# 𝑞!,# 𝑣!,# 𝑘#,# 𝑞#,# 𝑣#,# 𝑘$,# 𝑞$,# 𝑣$,#

𝑘!,$ 𝑞!,$ 𝑣!,$ 𝑘#,$ 𝑞#,$ 𝑣#,$ 𝑘$,$ 𝑞$,$ 𝑣$,$

𝑎#,!

𝑎#,#

𝑎#,$

§ Compute weights independently for each head
§ el,t,i = ql,i · kt,i
§ αl,t,i=

exp(el,t,i)∑
t′

exp(el,t′,i)

§ al,i =
∑
t

αl,t,ivt,i

§ Full attention vector is formed by
concatenation

a2 =

[
a2,1
a2,2
a2,3

]
§ Around 8 heads per layer tend to work well.

Source: CS W182 course, Sergey Levine, UC Berkeley
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Agenda Seq-to-Seq Attention Transformers

From Self-Attention to Transformers

§ But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

§ Positional encoding

I Addresses lack of sequence information

§ Multiheaded attention

I allows querying multiple positions at each layer

§ Adding nonlinearities

I So far, each successive layer is linear in the previous one

al =
∑
t

αl,tvt where, vt = Wvht

§ Masked decoding

I How to prevent attention lookups into the future?
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𝑥! 𝑥" 𝑥#

ℎ! ℎ" ℎ#

softmax

𝛼!,! 𝛼!," 𝛼!,#

𝑘! 𝑞! 𝑣! 𝑘" 𝑞" 𝑣" 𝑘# 𝑞# 𝑣#

𝑒!,! 𝑒!," 𝑒!,#

∑

𝑎!

§ k(ht) = Wkht, q(ht) = Wqht, v(ht) = Wvht
el,t = ql · kt

αl,t=
exp(el,t)∑
t′

exp(el,t′)

al =
∑
t

αl,tvt =
∑
t
αl,tWvht = Wv

∑
t
αl,tht

§ We make a non-linear choice of the timesteps we
need to attend to, but we combine the the linear
transformations of those timesteps

§ Every self-attention “layer” is a linear transformation
of the previous layer (with nonlinear weights)

§ In many situations, This is not very expressive

Source: CS W182 course, Sergey Levine, UC Berkeley
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Self-attention “layer”

§ Some learnable non-linear function e.g.,
hlt = σ(W lat + bl)

§ It is just a neural network at every position
after self-attention layer

§ Referred to as “position-wise feedforward
network”

Source: CS W182 course, Sergey Levine, UC Berkeley
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Self-a'en)on “layer”

𝑎! 𝑎" 𝑎#

ℎ!" ℎ"" ℎ#"

'𝑦" '𝑦# '𝑦$

𝑦! 𝑦" 𝑦#

ℎ!! ℎ"! ℎ#!

𝑘! 𝑞! 𝑣! 𝑘" 𝑞" 𝑣" 𝑘# 𝑞# 𝑣#

Self-attention “layer”

𝑎! 𝑎" 𝑎#

ℎ!" ℎ"" ℎ#"

'𝑦" '𝑦# '𝑦$

§ Nothing is preventing a crude self-attention ‘language model’ to look
into the future

§ (In reality, we have many alternating self-attention layers and
position-wise feedforward networks, not just one)

§ Self-attention at first timestep needs to peek
into activation at timestep two and three. but
activation at timestep two depends on output
from timestep one and activation at timestep
three depends on output from timestep two

§ Easy solution of this circular dependency:

((((((el,t = ql · kt

el,t =

{
ql · kt, if l ≥ t
−∞, otherwise

§ In practice: Just replace exp(el,t) with 0 if l < t inside the softmax

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ We will combine the pieces that we learnt to
get the classic Transformer model

§ There are a number of model designs that use
successive self-attention and position-wise
nonlinear layers to process sequences

§ These are generally called “Transformers”
because they transform one sequence into
another at each layer

I See Vaswani et al. Attention Is All You
Need, NeurIPS 2017

§ The “classic” transformer (Vaswani et al.
2017) is a sequence to sequence model.

§ A number of well-known follow works also use
transformers for language modeling (BERT,
GPT, etc.)

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ As compared to a sequence to sequence RNN model
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§ batch normalization is very helpful, but hard to use with sequence
models

§ Sequences are different lengths, makes normalizing across the batch hard

§ Sequences can be very long, so we sometimes have small batches

§ Solution: “Layer normalization” like batch norm, but not across the
batch

§ Batch norm

d dimensional vectors for each
sample in batch: a1, a2, · · · , aB

µ =
1

B

B∑
i=1

ai

σ =

√√√√ 1

B

B∑
i=1

(ai − µ)2

āi = ai−µ
σ γ + β

§ Layer norm

One d dimensional vector a

µ =
1

d

d∑
j=1

aj

σ =

√√√√1

d

d∑
j=1

(aj − µ)2

ā = a−µ
σ γ + β

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ The Transformer from Vaswani et al. ‘Attention Is All You Need’, NeurIPS, 2017
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§ The Transformer from Vaswani et al. ‘Attention Is All You Need’, NeurIPS, 2017

#ℎ!$ = &'()*+,*-(#'!$ + ℎ!$)

ℎ!$ = 1&
$23&4 1#

$ #'!$ + 5#$ + 5&$

#'!$ = &'()*+,*-(#ℎ!$'# + '!$)

input: #ℎ!$'#
output: '!$

concatenates attention from all heads

essentially a residual connection with LN

passed to next layer 6 + 1

2-layer neural net at each position
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