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Agenda RNNs LSTM

Agenda

§ Understand models involving sequential inputs and/or outputs.

§ Using recurrent neural networks [RNNs] to deal with sequential
inputs/outputs

§ From RNNs to LSTMs.
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Agenda RNNs LSTM

Resources

§ CS W182 course by Sergey Levine at UC Berkeley. [Link] [Lecture 10]
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https://cs182sp21.github.io/


Agenda RNNs LSTM

What if we have variable size inputs?

§ Before,

𝒙! “Cat”: 0.64

§ Now,

I x1 = (x1,1,x1,2,x1,3,x1,4)

I x2 = (x2,1,x2,2,x2,3)

I x3 = (x3,1,x3,2,x3,3,x3,4,x3,5)

§ Example,

I classifying sentiment for a phrase (sequence of words)

I classifying the activity in a video (sequence of images)
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Agenda RNNs LSTM

Simple Idea

§ Now,

I x1 = (x1,1,x1,2,x1,3,x1,4)

I x2 = (x2,1,x2,2,x2,3)

I x3 = (x3,1,x3,2,x3,3,x3,4,x3,5)

§ Simple Idea: Zeropad up to length of longest sequence.

𝒙!,#, 𝒙!,$, 𝒙!,%, 0,0,0

§ Very simple, but doesn’t scale well for very long sequences.
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One Input per Layer?

𝒙!,! 𝒙!,# 𝒙!,$ 𝒙!,% 𝒙#,! 𝒙#,# 𝒙#,$ 𝒙$,# 𝒙$,$ 𝒙$,% 𝒙$,&𝒙$,!

§ Each layer,

h̄(l−1) =

[
h(l−1)

xi,t

]
a(l) = W(l)h̄(l−1) + b(l)

h(l) = g
(
a(l)
)

§ Obvious question: What happens to the missing layers?

Abir Das (IIT Kharagpur) CS60010 Mar 17 and 19, 2022 6 / 29

Source: CS W182 course, Sergey Levine, UC Berkeley



Agenda RNNs LSTM

Zero Prior Activation

𝒙!,! 𝒙!,# 𝒙!,$ 𝒙!,% 𝒙#,! 𝒙#,# 𝒙#,$ 𝒙$,# 𝒙$,$ 𝒙$,% 𝒙$,&𝒙$,!
𝒂(") = 0 𝒂(") = 0 𝒂(") = 0

§ All activations prior to the first word/layer are assummed to be zero.

§ More efficient than always 0-padding the sequence up to max length.
Each layer is much smaller than the giant first layer needed in case
the whole sequence with zero padding is fed to the first layer.

§ Later layers get more training.

§ Total number of weight matrices increases with max sequence length!
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Agenda RNNs LSTM

Can We Share Weight Matrices?

𝒙!,! 𝒙!,# 𝒙!,$ 𝒙!,% 𝒙#,! 𝒙#,# 𝒙#,$ 𝒙$,# 𝒙$,$ 𝒙$,% 𝒙$,&𝒙$,!
𝒂(") = 0 𝒂(") = 0 𝒂(") = 0

What if 𝑊(() and 𝑏(() for all the layers are same?

§ This is called a Recurrent Neural Network (RNN).

§ Another notion: a recurrent neural network extends a standard neural
network along the time dimension.

𝒙!
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Backpropagation Revisit

𝒙
𝑾("), 𝒃(")

𝒂(") 𝒉(")
𝑔(. ) 𝑾($), 𝒃($)

𝒉($)
𝑔(. )

𝒂($)
𝑾(%), 𝒃(%) o(. )

𝒂(%) 𝒚 = 𝒇(𝒙, 𝜽) 𝐽 𝒇 𝒙, 𝜽 , 𝒄

𝒙
𝑾(")

𝒂(") 𝒉(")
𝑔(. )

Linear
Layer

Sigmoid
Layer

𝑾($)

𝒂($) 𝒉($)
𝑔(. )

Linear
Layer

Sigmoid
Layer

𝑾(%)

𝒂(%)
o(. )

Linear
Layer

Softmax
Layer

Cross-entropy
Loss

𝐽 𝒂(%)

§ For breviety, bias is not considered.

§ Specific names of the activation functions are shown.

§ Loss function is shown at the bottom as a function of output
preactivation.
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Backpropagation Revisit
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𝒙
𝑾(")

𝒂(") 𝒉(")
𝑔(. )

Linear
Layer

Sigmoid
Layer

𝑾($)

𝒂($) 𝒉($)
𝑔(. )

Linear
Layer

Sigmoid
Layer

𝑾(%)

𝒂(%)
o(. )

Linear
Layer

Softmax
Layer

Cross-entropy
Loss

𝐽 𝒂(%)

§ ∂J
∂W(3) = ∂a(3)

∂W(3)
∂J
∂a(3)

§ ∂J
∂W (2) = ∂a(2)

∂W(2)
∂h(2)

∂a(2)
∂a(3)

∂h(2)
∂J
∂a(3)

§ ∂J
∂W (1) = ∂a(1)

∂W(1)
∂h(1)

∂a(1)
∂a(2)

∂h(1)
∂h(2)

∂a(2)
∂a(3)

∂h(2)
∂J
∂a(3)



Agenda RNNs LSTM

Backpropagation Revisit
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𝒉(")
𝑾($)

𝒂($)
o(. )

Linear
Layer

Softmax
Layer

Cross-entropy
Loss

𝐽 𝒂($)
§ Initialize δ = ∂J

∂a(3)

§ For each layer with input x and output y

I if layer has learnable parameters θ
∂J
∂θ
← ∂y

∂θ
δ

I δ ← ∂y
∂x

δ

To get ∂J
∂W(3) (which is equal to ∂a(3)

∂W(3)
∂J
∂a(3) ),

§ δ = ∂J
∂a(3)

§ ∂J
∂W(3) = ∂a(3)

∂W(3)
∂J
∂a(3)

§ δ ← ∂a(3)

∂h(2)
∂J
∂a(3) (New δ for the layer to the left)
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Backpropagation Revisit
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𝒂(") 𝒉(")
𝑔(. )

Sigmoid
Layer

§ Initialize δ = ∂J

∂a(3)

§ For each layer with input x and output y

I if layer has learnable parameters θ
∂J
∂θ
← ∂y

∂θ
δ

I δ ← ∂y
∂x

δ

To get ∂J
∂W(2) (which is equal to ∂a(2)

∂W(2)
∂h(2)

∂a(2)
∂a(3)

∂h(2)
∂J
∂a(3) ),

§ <No operation>

§ δ ← ∂h(2)

∂a(2)
∂a(3)

∂h(2)
∂J
∂a(3)
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𝒉(")
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𝒙
𝑾(")

𝒂(")
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∂a(1)
∂a(2)

∂h(1)
∂h(2)

∂a(2)
∂a(3)

∂h(2)
∂J
∂a(3)

§ δ ← ∂a(1)

∂x
∂h(1)

∂a(1)
∂a(2)

∂h(1)
∂h(2)

∂a(2)
∂a(3)

∂h(2)
∂J
∂a(3)
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§ Neural network is a chain. We get δ from the next layer which is
backpropagated into the previous layer.

§ Initialize δ = ∂J

∂a(3)

§ For each layer with input x and output y

I if layer has learnable parameters θ
∂J
∂θ
← ∂y

∂θ
δ

I δ ← ∂y
∂x

δ

𝑓 𝑥 = 𝑦
𝑥 𝑦

𝜃

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Neural network is a chain. We get δ from the next layer which is
backpropagated into the previous layer.

§ Initialize δ = ∂J

∂a(3)

§ For each layer with input x and output y

I if layer has learnable parameters θ
∂J
∂θ
← ∂y

∂θ
δ

I δ ← ∂y
∂x

δ

𝑓 𝑥 = 𝑦
𝑥 𝑦

𝜃

𝛿! =
𝜕𝐽
𝜕𝑦𝛿" =

𝜕𝐽
𝜕𝑥

=
𝜕𝑦
𝜕𝑥
𝛿!

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ RNN uses shared weights.

𝒙!,! 𝒙!,# 𝒙!,$ 𝒙!,%
𝒂(") = 0

Weights are shared for all the layers.

§ What change to backpropagation is required?

§ (Remember: ) If u=f(x, y), where x=φ(t), y=ψ(t), then ∂u
∂t = ∂u

∂x
∂x
∂t + ∂u

∂y
∂y
∂t

§ ∂f
∂θ = ∂f

∂θ
∂θ
∂θ + ∂f

∂h
∂h
∂θ = ∂f

∂θ + ∂h
∂θ

∂f
∂h

§ �����∂J
∂θ ←

∂y
∂θ δ Instead, use: ∂J

∂θ+ = ∂y
∂θ δ

§ “accumulate” the gradients during backward pass
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§ RNN uses shared weights.

𝒙!,! 𝒙!,# 𝒙!,$ 𝒙!,%
𝒂(") = 0

Weights are shared for all the layers.

§ What change to backpropagation is required?

ℎ 𝜃𝑥

𝜃

𝑓 𝜃, ℎ(𝜃)

𝜃

§ (Remember: ) If u=f(x, y), where x=φ(t), y=ψ(t), then ∂u
∂t = ∂u

∂x
∂x
∂t + ∂u

∂y
∂y
∂t

§ ∂f
∂θ = ∂f

∂θ
∂θ
∂θ + ∂f

∂h
∂h
∂θ = ∂f

∂θ + ∂h
∂θ

∂f
∂h

§ �����∂J
∂θ ←

∂y
∂θ δ Instead, use: ∂J

∂θ+ = ∂y
∂θ δ

§ “accumulate” the gradients during backward pass
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§ Initialize δ = ∂J

∂a(3)

§ For each layer with input x and output y

I if layer has learnable parameters θ
∂J
∂θ

+ = ∂y
∂θ

δ

I δ ← ∂y
∂x

δ
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Variable Size Outputs

§ Image description or image captioning: A crowd of people looking
at giraffes in a zoo.

§ Before: An input at every layer

§ Now: An output at every layer
!𝑦!,! !𝑦!,# !𝑦!,$ #𝒚!,%

𝒙&

Abir Das (IIT Kharagpur) CS60010 Mar 17 and 19, 2022 19 / 29
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!𝑦!,! !𝑦!,# !𝑦!,$ #𝒚!,%

𝒙&

At each step:

a(l) = W(l)h(l−1) + b(l)

h(l) = g(a(l))

ŷl = f(h(l))

§ f(.) at the end is some kind of readout function. Could be as simple
as a linear layer + softmax.

§ We have a loss on each ŷl (e.g., cross-entropy).

§ L(ŷ1:T ) =
∑
l

L(ŷl)

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ This is what we saw previously.

𝑓 𝑥 = 𝑦
𝑥 𝑦

𝜃

𝛿! =
𝜕ℒ
𝜕𝑦

𝛿" =
𝜕ℒ
𝜕𝑥

=
𝜕𝑦
𝜕𝑥
𝛿!

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Some nodes can have outputs going into multiple downstream nodes.

𝑓 𝑥 = 𝑦
𝑥 𝑦

𝜃

𝛿! =
𝜕ℒ
𝜕𝑦

𝛿" =
𝜕ℒ
𝜕𝑥

=
𝜕𝑦
𝜕𝑥
𝛿!

𝑦

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Some nodes can have outputs going into multiple downstream nodes.

§ During backpropagation two δ’s coming in.

§ Lets call them δ1y and δ2y .

𝑓 𝑥 = 𝑦
𝑥 𝑦

𝜃

𝛿!"
𝛿# =

𝜕ℒ
𝜕𝑥

=
𝜕𝑦
𝜕𝑥
𝛿!

𝑦
𝛿!$

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Some nodes can have outputs going into multiple downstream nodes.

§ During backpropagation two δ’s coming in.

§ Lets call them δ1y and δ2y .

§ Sum these two δ’s for backpropagation.

𝑓 𝑥 = 𝑦𝑥 𝑦

𝜃

𝛿!"
𝛿# =

𝜕ℒ
𝜕𝑥

=
𝜕𝑦
𝜕𝑥
𝛿!

𝑦
𝛿!$

𝛿! = 𝛿!"+𝛿!#

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Very simple rule:

§ For each node with multiple descendants in the computational graph:

§ Simply add up the delta vectors coming from all of the descendants.

Lin1 𝑔1

𝑓1

ℒ1

Lin2 𝑔2

𝑓2

ℒ2

Lin3 𝑔3

𝑓3

ℒ3

∑ ℒ

𝑥

Source: CS W182 course, Sergey Levine, UC Berkeley
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Recurrent Neural Networks: Process Sequences

Deep Learning Foundations and Applications Recurrent Neural Networks January 24th, 2019 4 / 15

§ One to one: Image classification.

§ One to many: Image captioning.

§ Many to one: Sentiment analysis, Video action recognition.

§ Many to many: Machine translation.

§ Many to many: Tracking, Image classification (with attention)
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§ One to one: Image classification.

§ One to many: Image captioning.
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𝒙!,! 𝒙!,# 𝒙!,$ 𝒙!,%

"𝑦!,! "𝑦!,# "𝑦!,$ "𝑦!,% § RNNs are extremely deep networks.

§ For a 1000 length sequence, this means
backpropagating through 1000 layers.

§ ∂J
∂W(1) = ∂a(1)

∂W(1)
∂h(1)

∂a(1)
∂a(2)

∂h(1)
∂h(2)

∂a(2) · · · ∂J
∂a(n)

Source: CS W182 course, Sergey Levine, UC Berkeley
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𝒙!,! 𝒙!,# 𝒙!,$ 𝒙!,%

"𝑦!,! "𝑦!,# "𝑦!,$ "𝑦!,% § RNNs are extremely deep networks.

§ For a 1000 length sequence, this means
backpropagating through 1000 layers.

§ ∂J
∂W(1) = ∂a(1)

∂W(1)
∂h(1)

∂a(1)
∂a(2)

∂h(1)
∂h(2)

∂a(2) · · · ∂J
∂a(n)

§ Multiplying many many numbers together means,

I If most of the numbers are < 1, we get 0. (vanishing gradients)
I If most of the numbers are > 1, we get ∞. (exploding gradients)
I If all numbers are close to 1, then we get a reasonable answer.

§ Exploding gradients could be fixed with gradient clipping.

§ Vanishing gradients are bigger problem.

§ Intuitively, vanishing gradients prevents gradient signals from later
steps reach earlier steps.

§ This prevents the RNN from remembering things from the begining.
Source: CS W182 course, Sergey Levine, UC Berkeley
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§ Basic idea: We would like the gradients to be close to 1.

§ For Jacobians, this means the eigenvalues to be close to 1.

§ But first, bit of notations.

§ Each timestep,

h̄t−1 =

[
ht−1

xt

]
; at = Wh̄t−1 + b; ht = g

(
at
)

︸ ︷︷ ︸
ht=q(ht−1,xt); RNN dynamics

§ Best gradient flow is when dynamics Jacobian ∂q
∂ht−1

= I

§ However, it ‘depends’ on whether you want the RNN to ‘forget’ the
past or not.

Source: CS W182 course, Sergey Levine, UC Berkeley
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§ We want ∂qi
∂ht−1,i

≈ 1 if we choose to remember ht−1,i.

§ A little “neural circuit” decides whether to remember or overwrite.

§ ft→0 means ct−1’s value is forgotten and overridden by gt.

§ ft→1 means ct−1’s value is remembered and additively modified by gt.

§ ct is the new cell state.

§ ct = ftct−1 + gt with ft ∈ [0, 1].

§ ∂qi
∂ct−1,i

= ft ∈ [0, 1]

§ Where do we get ft and gt?

Source: CS W182 course, Sergey Levine, UC Berkeley
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𝑐!"#
“Cell State”

X

𝑓! ∈ [0, 1]
“forget gate”

+
𝑐!

ℎ!"#
RNN output at
previous time step

W

[
ht−1

xt

]
+ b =


f̄t
īt
ḡt

ōt



Isn’t all these a little
arbitrary?

Yes, but it ends up
working quite well in
practice and much
better than a naive
RNN.

Source: CS W182 course, Sergey Levine, UC Berkeley
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īt
ḡt

ōt
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ḡt

ōt
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ct = ftct−1 + gt
Changes very little
step to step!
Long term memory.

Changes all the time
(multiplicative)
short term memory.
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Some Practical Notes

§ In practice, naive RNNs almost never work.

§ LSTM units dramatically improve over naive RNNs.

§ Requires way more hyperparameter tuning than standard fully
connected or conv-nets.

§ Some modifications and alternatives work better for sequences.

I Transformers

I Gated recurrent unit (GRU)
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