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Agenda

To get introduced to two important tasks of computer vision - detection
and segmentation along with deep neural network's application in these
areas in recent years.
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From Classification to Detection

Classification

Image Maps
Input

dog (0.01)
cat (0.02)
elephant (0.90)

Convolutions Fully Connected

Detection
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Challenges of Object Detection

§ Simultaneous recognition and localization

§ Images may contain objects from more than one class and multiple
instances of the same class

§ Evaluation

Abir Das (IIT Kharagpur)
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Localization and Detection

Classification
+ Localization

Classification Object Detection

%
Single object Multiple objects
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Evaluation

§ At test time 3 things are predicted:- Bounding box coordinates,
Bounding box class label, Confidence score

§ Performance is measured in terms of loU (Intersection over Union)

O Growdmuin
O Pprediction

Loy - e of overlap

‘area of union

§ According to PASCAL criterion,
> a detection is correct if loU > 0.5
» For multiple detections onIy one is

by the (

considered true positive

mupm V[\llllD]L

detection and 4 false

ections—it was the. ibility of

Image Source
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https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
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Evaluation: Precision-Recall

relevant elements

false negatives true negatives
® o L ] o o
How many selected How many relevant
P items are relevant? items are selected?
o
o
false positives Precision = ——— Recall = ——
° (o]
®
o
selected elements
.. tp
§ precision = —2—
P tp+fp
tp
§ recall = —2—
tp+fn

Image Source
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https://en.wikipedia.org/wiki/Precision_and_recall

Datasets Localization Detection
00000®00000 0000 000000000000000000000 000000000000

Evaluation: Average Precision

Lets consider an image with 5 apples where our detector provides 10
detections.

Rank Correct Precision [Recall m *

1|True Positive 1.00 0.20 oo

2|True Positive 1.00 0.40

3|False Positive 0.67 0.40 o 060

4|False Positive 0.50 0.40 2

5|False Positive 0.40 0.40 I

6[True Positive 0.50 0.60

7|True Positive 0.57 0.80 020

8|False Positive 0.50 0.80

9|False Positive 0.44 0.80 000

10(True Positive 0.50 1.00 et

Source: This medium post
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Evaluation: Average Precision

Area under curve is a measure of performance. This gives the average
precision of the detector.

Rank Correct Precision [Recall

1|True Positive 1.00 0.20
2|True Positive 1.00 0.40
3|False Positive 0.67 0.40 <
4[False Positive 0.50 040| %
5|False Positive 0.40 0.40 &
6|True Positive 0.50 0.60
7|True Positive 0.57 0.80
8|False Positive 0.50 0.80
9|False Positive 0.44 0.80

10|True Positive 0.50 1.00

Source: This medium post
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Evaluation: mean Average Precision

A little more detail:
§ The curve is made smooth from the zigzag pattern by finding the

highest precision value at or to the right side of the recall values.
§ Then the average is taken for 11 recall values (0, 0.1, 0.2, ... 1.0) -
Average Precison (AP)

§ The mean average precision (mAP) is the mean of the average
precisions (AP) for all classes of obijects.

100 3

Precision

020

Recall . .
Source: This medium post
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Non-max Suppression

What to do if there are multiple detections of the same object? Can you
think its effect on precision-recall?

<3

Source: deeplearning.ai

Abir Das (IIT Kharagpur)

Feb 18, 19, Mar 02, 03, 04, 2022 11/50


https://www.deeplearning.ai/deep-learning-specialization/

Datasets Localization

Detection
00000000080 0000

0000000000000 O0000O0000 000000000000

Non-max Suppression

§ Sort the predictions by the confidence scores

§ Starting with the top score prediction, ignore any other prediction of

the same class and high overlap (e.g., loU > 0.5) with the top ranked
prediction

§ Repeat the above step until all predictions are checked

Source: deeplearning.ai
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https://www.deeplearning.ai/deep-learning-specialization/
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Segmentation

Semantic

Segmentation Instance

Segmentation

GRASS, :
TREE, SKY DOG, DOG, CAT

Source: ¢s231n course, Stanford University
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Train®

§ Dataset size (by 2012): 11.5K training/val images, 27K bounding
boxes, 7K segmentations
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PASCAL VOC

Object detection renaissance
(2013-present)

80% PASCAL VOC 1
= 70% A
g A
£ 60% Before deep convnets R-CNNv1
5 |
‘> 50%

S [ |
£ A A
a 40% X
) A Using deep convnets
© [
G_>J3OA A
A
< 0%
© A
[J]
€ 10%

0%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
year

Source: ICCV '15, Fast R-CNN
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COCO Dataset

What is COCQO?

Fawta

COCO is a large-scale object detection,
segmentation, and captioning dataset.
COCO has several features:

Object segmentation
Recognition in context
Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances
80 object categories

91 stuff categories

5 captions per image

CLLCLC

250,000 people with keypoints ttp://cocodataset.org

Abir Das (IIT Kharagpur) b 18, 19, Mar 02, 03, 04, 2022 16 /50


http://cocodataset.org/
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COCO Tasks

Image Classification Semanfic Segmentation

Abir Das (IIT Kharagpur) Feb 18, 19, Mar 02, 03, 04, 2022 17 /50
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Classification + Localization

Classification + Localization: Task

Classification: C classes
Input: Image
Output: Class label
Evaluation metric: Accuracy

— CAT

Localization:

Input: Image > (x, y, W, h)
Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Union

Classification + Localization: Do both

Source: ¢s231n course, Stanford University
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Classification + Localization

|ldea #1: Localization as Regression

Input: image

Neural Net Output:

—_— Box coordinates
(4 numbers) \
Loss:
Correct output: L2 distance
box coordinates /

Only one object, (4 numbers)
simpler than detection

Source: ¢s231n course, Stanford University
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Classification + Localization

Simple Recipe for Classification + Localization
Step 1: Train (or download) a classification model (AlexNet, VGG, GooglLeNet)

Convolution

and Pooling Fully-connected

layers

+D@—> H —»| | —» Softmax loss

Final conv Class scores
Image feature map

Source: ¢s231n course, Stanford University
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Simple Recipe for Classification + Localization

Step 2: Attach new fully-connected “regression head” to the network

Convolution
and Pooling

Image

Abir Das (IIT Kharagpur)

Final conv
feature map

Fully-connected
layers

|

Class scores

“Classification head”

Fully-connected
layers

-

Box coordinates

“Regression head”

Source: ¢s231n course, Stanford University
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Classification + Localization

Simple Recipe for Classification + Localization
Step 3: Train the regression head only with SGD and L2 loss

Fully-connected
layers

|iy

Convolution Class scores
and Pooling

Fully-connected

ol TR

Final conv

Box coordinates
Image feature map

Source: ¢s231n course, Stanford University
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Classification + Localization

Simple Recipe for Classification + Localization
Step 4: At test time use both heads

Fully-connected
layers

-]

Convolution Class scores
and Pooling

Fully-connected

layers
H H -1
Final conv
feature map Box coordinates

Image

Source: ¢s231n course, Stanford University
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Classification + Localization

Aside: Localizing multiple objects

Want to localize exactly K

objects in each image
Fully-connected
layers

|i-|

Class scores

(e.g. whole cat, cat head, cat
left ear, cat right ear for K=4)

Convolution
and Pooling

Fully-connected
layers

HH—»H K x 4 numbers

Final conv (one box per object)

Box coordinates
Image feature map

Source: ¢s231n course, Stanford University
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Classification + Localization

Aside: Human Pose Estimation

Represent a person by K joints

Regress (x, y) for each joint from
last fully-connected layer of
AlexNet

(Details: Normalized coordinates,
iterative refinement)

Toshev and Szegedy, “DeepPose: Human Pose
Estimation via Deep Neural Networks”, CVPR 2014

Source: ¢s231n course, Stanford University
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Sliding Window: Overfeat

Winner of ILSVRC 2013
localization challenge

Convolution
+ pooling
FC
FC

Feature map:

Image: 1024 x5 x5

3x221x221

Sermanet et al, “Integrated Recognition, Localization and
Detection using Convolutional Networks”, ICLR 2014

Class scores:

4096 4096
- 1000
FC FC
> — Softmax
loss
FC FC
—_— —_ Euclidean
loss
B Boxes:
4096 1024 1000 x 4

Source: ¢s231n course, Stanford University
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Classification + Localization

Detection
000000000000

Sliding Window: Overfeat

Network input:
3x221x 221 Larger image:
3 x 257 x 257

Source: ¢s231n course, Stanford University
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Classification + Localization

Sliding Window: Overfeat

0.5
Network input: Classification scores:
3x221x 221 Larger image: P(cat)

3 x 257 x 257

Source: ¢s231n course, Stanford University
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Classification + Localization

Sliding Window: Overfeat

05 | 0.75
Network input: Classification scores:
3x221x 221 Larger image: P(cat)

3 x 257 x 257

Source: ¢s231n course, Stanford University
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Classification + Localization

Sliding Window: Overfeat

05 | 0.75

0.6
Network input: Classification scores:
3x221x 221 Larger image: P(cat)

3 x 257 x 257

Source: ¢s231n course, Stanford University
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Classification + Localization

Sliding Window: Overfeat

05 | 0.75

0.6 0.8
Network input: Classification scores:
3x221x 221 Larger image: P(cat)

3 x 257 x 257

Source: ¢s231n course, Stanford University
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Classification + Localization

Sliding Window: Overfeat

05 | 0.75

0.6 0.8
Network input: Classification scores:
3x221x 221 Larger image: P(cat)

3 x 257 x 257

Source: ¢s231n course, Stanford University
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Classification + Localization

Sliding Window: Overfeat

Greedily merge boxes and
scores (details in paper)

0.8

Network input:
3x221x 221 Larger image: Classification score: P
3 x 257 x 257 (cat)

Source: ¢s231n course, Stanford University
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Classification + Localization

Sliding Window: Overfeat

In practice use many sliding window
locations and multiple scales

Window positions + score maps Box regression outputs

Detection

000000000000

Final Predictions

Source: ¢s231n course, Stanford University
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Classification + Localization

Efficient Sliding Window: Overfeat

4096 4096 Class scores:

2 1000
FC FC
Convolution e e
+ pooling
FC U
FC ]
Feature map: FC FC
Image: 1024 x5x5 —> —>
3x221x221
B Boxes:
4096 1024 1000 x 4

Source: ¢s231n course, Stanford University
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Classification + Localization

Efficient Sliding Window: Overfeat

Efficient sliding window by converting fully-

connected layers into convolutions Class scores:

4096 x 1 x 1 1024 x 1 x 1 1000 x 1 x 1
Convolution \ ) —> | J—>| J
+ pooling 1x 1 conv 1x 1 conv
5x5
conv
conv
Feature map: 1x 1 conv 1x 1 conv
. 1024 x5x5 1
3x 701 % 221 - | = = g
X X 4096 x 1 x 1 1024 x 1x 1 Box coordinates:

(4 x1000)x 1 x 1

Source: ¢s231n course, Stanford University

Abir Das (IIT Kharagpur)
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Classification + Localization

Efficient Sliding Window: Overfeat

Training time: Small image, 1
x 1 classifier output

Test time: Larger image, 2 x 2
classifier output, only extra
compute at yellow regions

Sermanet et al, “Integrated Recognition, Localization and Detection using Convolutional Networks”, ICLR 2014

Source: ¢s231n course, Stanford University
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Classification + Localization

ImageNet Classification + Localization

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression
with box merging

VGG: Same as Overfeat, but fewer scales
and locations; simpler method, gains all due
to deeper features

ResNet: Different localization method (RPN)
and much deeper features

Source: ¢s231n course, Stanford University

Abir Das (IIT Kharagpur) Feb 18, 19, Mar 02, 03, 04, 2022 38/50



Introduction Datasets Localization
00000000000 0000 000000000000000000000 ©00000000000

Detection as Regression

§ In detection you don't know the number of objects present
§ So, it is problematic to address detection as regression

§ How many output neurons to put?

Abir Das (IIT Kharagpur) Feb 18, 19, Mar 02, 03, 04, 2022 39/50
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Detection as Classification

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES

CS231n course, Stanford University
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Detection as Classification

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO

CS231n course, Stanford University
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Detection as Classification

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO

CS231n course, Stanford University
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Detection as Classification

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

CS231n course, Stanford University
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Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

By

Problem: Need to apply CNN to huge number
of locations, scales, and aspect ratios, very
computationally expensive!

Dog? NO
Cat? YES
Background? NO

Abir Das (IIT Kharagpur)

CS231n course, Stanford University
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Detection as Classification

§ Need to apply CNN to huge number of locations, scales and aspect
ratios

§ If the classifier is fast enough, this is done. Pre Deep Learning
approach.

§ Deep learning classifiers, first get a tiny subset of possible positions.
Only these are passed through the deep classifiers.

§ The possible positions are called ‘candidate proposals’ or ‘region
proposals’.

Abir Das (IIT Kharagpur) Feb 18, 19, Mar 02, 03, 04, 2022 45 /50
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Detection with Region Proposals

Proposal
Generation

Original Image Region Proposals Detections

§ Generate and evaluate a few (much less than exhaustive search)
region proposals

§ Proposal mechanism can take advantage of low-level cues (e.g., edges
or connected components)

§ Classifier can be slower but more powerful

Abir Das (IIT Kharagpur) Feb 18, 19, Mar 02, 03, 04, 2022 46 /50
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Selective Search

J Uijlings, K van de Sande, T Gevers, and A
Smeulders, ‘Selective Search for Object Recognition’,
1JCV 2013

Abir Das (IIT Kharagpur) 18, 19, Mar 02, 03, 04, 2022


http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
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Selective Search

Algorithm 1: Hierarchical Grouping Algorithm
Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {ry,---,r,} using [13]
Initialise similarity set S =0
foreach Neighbouring region pair (r;,r;) do
Calculate similarity s(r;,7;)
S= SUS(}’,', r/-)

while S # 0 do

Get highest similarity s(r;,7;) = max(S)

Merge corresponding regions r; = r; Ur;

Remove similarities regarding r; : S = S\ s(ri,rs)
Remove similarities regarding r; : § = S\ s(r,,r;)
Calculate similarity set S, between 7, and its neighbours
S=SUS;

R=RUr,

Extract object location boxes L from all regions in R

J Uijlings, K van de Sande, T Gevers, and A
Smeulders, ‘Selective Search for Object Recognition’,
1JCV 2013
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http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
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EdgeBoxes

§ Edgeboxes depend on a fast scoring/evaluating method for bounding
boxes.

§ First edges are extracted for the whole image and they are grouped
according to their similarity

§ The main idea of scoring boxes builds on the fact that edges tend to
correspond to object boundaries and bounding boxes that tightly
enclose a set of edges are likely to contain an object.

§ Gets 75% recall with 800 boxes (vs 1400 for Selective Search) and is

40 times faSter C Zitnick and P Dollar, ‘Edge Boxes: Locating

Object Proposals from Edges’, ECCV 2014
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Many Region Proposal Methods

J Hosang, R Benenson, P Dollar and B Schiele,
‘What makes for effective detection proposals?’,
IEEE TPAMI 2016
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https://arxiv.org/pdf/1502.05082.pdf
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