Detection and Segmentation CS60010: Deep Learning

Abir Das

IIT Kharagpur

Feb 18, 19, Mar 02, 03, 04, 2022

Agenda

To get introduced to two important tasks of computer vision - detection and segmentation along with deep neural network's application in these areas in recent years.

From Classification to Detection

Classification

Detection

Challenges of Object Detection

- § Simultaneous recognition and localization
- § Images may contain objects from more than one class and multiple instances of the same class
- § Evaluation

Localization and Detection

Classification

Object Detection

CAT

CAT

CAT, DOG, DUCK

Single object

Multiple objects

Evaluation

- At test time 3 things are predicted: Bounding box coordinates, Bounding box class label, Confidence score
- Performance is measured in terms of IoU (Intersection over Union)

- § According to PASCAL criterion,
 - a detection is correct if IoU > 0.5
 - For multiple detections only one is considered **true positive**

of the same object in an image were considered false detections e.g. 5 detections of a single object counted as 1 correct detection and 4 false detections—it was the responsibility of the participant's system to filter multiple detections from its

Evaluation: Precision-Recall

- § precision $=\frac{tp}{tp+fp}$
- § $recall = \frac{tp}{tp+fn}$

Image Source

Evaluation: Average Precision

Lets consider an image with 5 apples where our detector provides 10 detections.

Rank	Correct	Precision	Recall
1	True Positive	1.00	0.20
2	True Positive	1.00	0.40
3	False Positive	0.67	0.40
4	False Positive	0.50	0.40
5	False Positive	0.40	0.40
6	True Positive	0.50	0.60
7	True Positive	0.57	0.80
8	False Positive	0.50	0.80
9	False Positive	0.44	0.80
10	True Positive	0.50	1.00

Evaluation: Average Precision

Area under curve is a measure of performance. This gives the average precision of the detector.

Rank	Correct	Precision	Recall
1	True Positive	1.00	0.20
2	True Positive	1.00	0.40
3	False Positive	0.67	0.40
4	False Positive	0.50	0.40
5	False Positive	0.40	0.40
6	True Positive	0.50	0.60
7	True Positive	0.57	0.80
8	False Positive	0.50	0.80
9	False Positive	0.44	0.80
10	True Positive	0.50	1.00

Evaluation: mean Average Precision

A little more detail:

- The curve is made smooth from the zigzag pattern by finding the highest precision value at or to the right side of the recall values.
- § Then the average is taken for 11 recall values (0, 0.1, 0.2, ... 1.0) -Average Precison (AP)

§ The mean average precision (mAP) is the mean of the average precisions (AP) for all classes of objects.

Source: This medium post

10/50

Non-max Suppression

What to do if there are multiple detections of the same object? Can you think its effect on precision-recall?

Non-max Suppression

- § Sort the predictions by the confidence scores
- § Starting with the top score prediction, ignore any other prediction of the same class and high overlap (e.g., IoU > 0.5) with the top ranked prediction
- § Repeat the above step until all predictions are checked

Source: deeplearning.ai

Segmentation

Semantic Segmentation

GRASS, CAT, TREE, SKY

Instance Segmentation

DOG, DOG, CAT

PASCAL VOC

aeroplane

§ Dataset size (by 2012): 11.5K training/val images, 27K bounding boxes, 7K segmentations

PASCAL VOC

Source: ICCV '15, Fast R-CNN

COCO Dataset

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 1.5 million object instances
 80 object categories
- 91 stuff categories
- ✓ 5 captions per image
- 5 captions per image
- 250,000 people with keypoints

http://cocodataset.org

Feb 18, 19, Mar 02, 03, 04, 2022

COCO Tasks

Image Classification Semantic Segmentation

40

Object Detection

Instance Segmentation

Classification + Localization: Task

Classification: C classes

Input: Image

Output: Class label

Evaluation metric: Accuracy

CAT

Localization:

Introduction

0000000000

Input: Image

Output: Box in the image (x, y, w, h)

Fvaluation metric: Intersection over Union

(x, y, w, h)

Classification + Localization: Do both

Idea #1: Localization as Regression

Only one object, simpler than detection

Simple Recipe for Classification + Localization

Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Source: cs231n course, Stanford University

20 / 50

Simple Recipe for Classification + Localization

Step 2: Attach new fully-connected "regression head" to the network

Introduction

0000000000

Simple Recipe for Classification + Localization

Step 3: Train the regression head only with SGD and L2 loss

Introduction

Classification + Localization

Simple Recipe for Classification + Localization

Step 4: At test time use both heads

Aside: Localizing multiple objects

K x 4 numbers (one box per object)

Aside: Human Pose Estimation

Represent a person by K joints

Regress (x, y) for each joint from last fully-connected layer of AlexNet

(Details: Normalized coordinates, iterative refinement)

Toshev and Szegedy, "DeepPose: Human Pose Estimation via Deep Neural Networks", CVPR 2014

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Sliding Window: Overfeat

Introduction

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

Sliding Window: Overfeat

Introduction

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75	

Classification scores: P(cat)

Source: cs231n course, Stanford University 4 D F 4 P F F F F F F

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	

Classification scores: P(cat)

Feb 18, 19, Mar 02, 03, 04, 2022

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)

Sliding Window: Overfeat

Introduction

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Greedily merge boxes and scores (details in paper)

0.8

Classification score: P (cat)

Source: cs231n course, Stanford University 4 D F 4 P F F F F F F

33 / 50

Sliding Window: Overfeat

In practice use many sliding window locations and multiple scales

Window positions + score maps

Box regression outputs

Final Predictions

Introduction

0000000000

Efficient Sliding Window: Overfeat

Source: cs231n course, Stanford University 4 D F 4 P F F F F F F

Introduction

0000000000

liassification + Localization

Efficient Sliding Window: Overfeat

Efficient sliding window by converting fullyconnected lavers into convolutions Class scores: 4096 x 1 x 1 1024 x 1 x 1 1000 x 1 x 1 Convolution + pooling 1 x 1 conv 1 x 1 conv 5 x 5 conv 5 x 5 conv Feature map: 1 x 1 conv 1 x 1 conv 1024 x 5 x 5 Image: 3 x 221 x 221 4096 x 1 x 1 1024 x 1 x 1 Box coordinates: (4 x 1000) x 1 x 1

Classification + Localization

Efficient Sliding Window: Overfeat

Training time: Small image, 1 x 1 classifier output

Test time: Larger image, 2 x 2 classifier output, only extra compute at yellow regions

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

Source: cs231n course, Stanford University

Classification + Localization

Introduction

ImageNet Classification + Localization

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Detection as Regression

Introduction

0000000000

- § In detection you don't know the number of objects present
- § So, it is problematic to address detection as regression
- § How many output neurons to put?

Introduction

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO Background? YES

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

Dog? NO Cat? YES Background? NO

- § Need to apply CNN to huge number of locations, scales and aspect ratios
- § If the classifier is fast enough, this is done. Pre Deep Learning approach.
- § Deep learning classifiers, first get a tiny subset of possible positions. Only these are passed through the deep classifiers.
- § The possible positions are called 'candidate proposals' or 'region proposals'.

Detection with Region Proposals

- § Generate and evaluate a few (much less than exhaustive search) region proposals
- § Proposal mechanism can take advantage of low-level cues (e.g., edges or connected components)
- § Classifier can be slower but more powerful

Selective Search

Introduction

J Uijlings, K van de Sande, T Gevers, and A Smeulders, 'Selective Search for Object Recognition', IJCV 2013

Selective Search

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image

Output: Set of object location hypotheses L

Obtain initial regions $R = \{r_1, \dots, r_n\}$ using [13]

Initialise similarity set $S = \emptyset$

foreach Neighbouring region pair (r_i, r_j) **do**

Calculate similarity $s(r_i, r_j)$ $S = S \cup s(r_i, r_i)$

while $S \neq \emptyset$ do

Get highest similarity $s(r_i, r_j) = \max(S)$

Merge corresponding regions $r_t = r_i \cup r_j$

Remove similarities regarding r_i : $S = S \setminus s(r_i, r_*)$

Remove similarities regarding $r_j : S = S \setminus s(r_*, r_j)$

Calculate similarity set S_t between r_t and its neighbours

 $S = S \cup S_t$ $R = R \cup r_t$

Extract object location boxes L from all regions in R

J Uijlings, K van de Sande, T Gevers, and A Smeulders, 'Selective Search for Object Recognition', $IJCV\ 2013$

EdgeBoxes

- § Edgeboxes depend on a fast scoring/evaluating method for bounding boxes.
- § First edges are extracted for the whole image and they are grouped according to their similarity
- § The main idea of scoring boxes builds on the fact that edges tend to correspond to object boundaries and bounding boxes that tightly enclose a set of edges are likely to contain an object.
- § Gets 75% recall with 800 boxes (vs 1400 for Selective Search) and is 40 times faster

C Zitnick and P Dollar, 'Edge Boxes: Locating
Object Proposals from Edges', ECCV 2014

Introduction

Many Region Proposal Methods

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		√	√	0.2	***	*	
CPMC [19]	Grouping	✓	✓	✓	250	-	**	*
EdgeBoxes [20]	Window scoring	7	✓	√	0.3	**	***	***
Endres [21]	Grouping	√	√	√	100	-	* * *	**
Geodesic [22]	Grouping	✓		1	1	*	***	**
MCG [23]	Grouping	✓	✓	1	30	*	***	***
Objectness [24]	Window scoring		✓	✓	3		*	
Rahtu [25]	Window scoring		✓	✓	3			*
RandomizedPrim's [26]	Grouping	✓		✓	1	*	*	**
Rantalankila [27]	Grouping	✓		1	10	**		**
Rigor [28]	Grouping	✓		✓	10	*	**	**
SelectiveSearch [29]	Grouping	1	✓	1	10	**	***	***
Gaussian				✓	0			*
SlidingWindow				✓	0	***		
Superpixels		✓			1	*		1.0
Uniform				1	0			

J Hosang, R Benenson, P Dollar and B Schiele, 'What makes for effective detection proposals?', IEEE TPAMI 2016